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Abstract. This work presents a new hybrid architecture applied to autonomous mo-
bile robot control - HyCAR (Hybrid Control for Autonomous Robots). This archi-
tecture provides a robust control for robots as they become able to operate and adapt 
themselves to different environments and conditions. We designed this new hybrid 
control architecture, integrating the two main techniques used in robotic control (de-
liberative and reactive control) and the most important environment representation 
techniques (grids, geometric and topological maps), through a three-layer architec-
ture approach (vital, functional and deliberative layers). To guarantee the robustness 
of our control system, we also integrated a localization module based on Monte 
Carlo localization method. This localization module possesses an important role in 
our control system, and supplies a solid base for the control and navigation of 
autonomous mobile robots. In order to validate our control architecture, a realistic 
simulator of mobile robots was implemented (SimRob3D) allowing the practical use 
of the proposed system. We implemented several three-dimensional environment 
models, as well as diverse sensorial and kinematics models found in actual robots. 
Our simulation results had demonstrated that the control system is perfectly able to 
determine the mobile robot position into a partially known environment, considering 
local or global localization, and also to determine if the robot needs to re-localize it-
self given an incorrect localization. In navigation tasks the robot was able to plan 
and follow self-generated trajectories in a dynamic environment, which can include 
several unexpected static and mobile obstacles. We also demonstrated that with the 
integration of topological and grid information we improved planning algorithm 
execution. 

 
 

1. Introduction 
 

The robotic mobile vehicles [1] are an interesting subject of research in the field of Arti-
ficial Intelligence, which tries to improve the autonomy and robustness of those vehicles. 
The main difference between mobile robots and other robotic research fields, such as the 
field related to robotic manipulators, is the fact of this kind of robotic application operates 
in complex environments that modify itself dynamically and usually are unpredictable. We 
are confronted to large scale environments due to robot locomotion capacity, and these en-
vironments can also enclose other static or mobile unknown obstacles. To operate in this 
kind of environments the robot must be able to acquire and use all available knowledge 
about the environment (map), to estimate the robot position in this environment, to possess 
the ability to recognize obstacles, and to answer in real time to different situations that can 
occur in this dynamic environment. Moreover, all these functionalities must operate in par-



allel, and then, modularity is indispensable. The tasks responsible for activities like to per-
ceive the environment, to localize the robot in the environment, to plan trajectories and to 
move the robot preventing collisions, attempt to solve together the main problems treated 
in the study of the autonomous mobile robots. 

The tasks that allow a mobile robot to move from a specified point to another point in 
the environment are called robotic navigation tasks. We are confronted to several problems 
that make the navigation in a real environment very complex: environments are dynamic 
and they can be modified as time passes (e.g. furniture can be moved from one position to 
another one); changes in the environment can obligate to change the initial task planning; 
mobile obstacles with unpredictable exact trajectories can be found moving continuously 
around the environment (e.g. walking humans); data from sensors can be inexact and sub-
ject to errors, as well as, commands sent to actuators can be incorrectly executed; among 
others problems. All these problems demand robots that are able to deal with dynamic and 
uncertain data.  

The first main problem we need to solve in autonomous mobile robot navigation is the 
problem of robot localization. Without knowing the actual position of the robot related to 
the known map of the environment (some initial environment representation), a control 
system has a lot of difficulties to control the robot in order to perfectly accomplish one 
specific task. The execution of complex tasks can be made impossible without having an 
estimated almost precise robot localization. A robust control system must have the capacity 
of self-localization in an environment, using the sensorial information and also the avail-
able information representing the environment (map) to estimate the robot position. This 
problem is also complex, and usually represents the “essential base”  of a robotic control 
system. 

The main goal of this work is to develop a robust control system for autonomous mobile 
robots that are able to operate and automatically adapt their behavior accordingly to differ-
ent environments conditions. The control system must be able to determine the robot posi-
tion using sensorial information and available environment map, even if the data are ap-
proximate and imprecise. The system must be able to keep, during navigation and tasks 
execution, an estimation of the correct robot position, starting with an initial approximate 
known position (local localization), or yet without any information about the robot initial 
position (global localization). During navigation the system should be able to detect and 
recover from incorrect position estimations (robot positioning error detection and relocali-
zation). The system must be able to control the robot and navigate in a dynamic environ-
ment, preventing collisions with static and mobile obstacles. In order to achieve this goal a 
hybrid architecture for robot control and navigation was proposed and implemented.  

In the next sections we will describe the proposed architecture – HyCar/Cohbra (section 
2), the implemented simulator – SimRob3D – that was used to validate and to test our hy-
brid architecture (section 3), and some important results demonstrating the robustness and 
performance of our system (section4).  

 
2. HYCAR / COHBRA – Robot Control Architecture 
 

In this work we present a new hybrid architecture of robot control - HyCAR/COHBRA 
(Hybrid Control of Autonomous Robots, or using the Portuguese acronym from “COntrole 
HíBrido de Robôs Autônomos”) [10]. This architecture integrates several important mod-
ules and components (data structures and methods) currently used to control autonomous 
mobile robots in one single block. 

The mobile robot control architecture was structured in 3 layers: vital layer, functional 
layer and deliberative layer (Fig. 1). Each one of them is responsible for the reactive con-
trol (short term action), task execution control (mid term actions), and task planning (long 



term actions), respectively. This type of system was also adopted in other similar works, 
like those developed by Gat [2] with the ATLANTIS architecture, and by Bonasso et al. 
[3] with the 3T architecture. However, our architecture proposes some extensions like the 
inclusion of the localizer module and the integration of multiple views of the environ-
ment (maps). 

 

 
Figure 1 - Robot control architecture diagram, showing its main components: 
Control Layers (vital, functional and planner); Localizer; Environment Represen-
tation (polygonal, grid and topological maps); and Shared Memory.  

 
In order to obtain a solid base for the execution of tasks implemented by the three Con-

trol Layers (vital, functional and planner), an additional module was integrated into the ar-
chitecture: the localizer module. This localizer module must supply an estimated robot po-
sition related to the available environment map, and also using the sensorial data, it can 
continuously validate the estimated robot position. The localizer module is an essential part 
of our autonomous mobile robot control architecture, since we need an approximately cor-
rect robot position to perform tasks like: ‘Move the robot from Office H to Room O’. If the 
system doesn’t know where the robot is, it will be very hard to control it in order to 
achieve missions such as the above described task.  

So, in the proposed architecture presented in this work, the localizer plays a central and 
essential role. The localizer allows us to determine the robot position, to detect changes in 
the environment maps and to detect static and dynamic obstacles. Since we can estimate 
the sensorial data according to a determined robot position and known environment con-
figuration, then we can check it against the actual sensor data, and use this information to 
perform the above tasks (re-localize, detect changes and detect obstacles).  

The specific form as the environment is represented internally in a control system, de-
termines its precision and performance. Each one of the main known approaches applied to 
autonomous mobile robot control uses the most suitable environment representation 
adapted to some specific algorithm and/or purpose, choosing mainly between techniques 
like: discrete grids, geometrical maps, topological maps, probabilistic maps, Voronoy dia-
grams or potential field [11,12]. The proposed architecture we adopt in this work integrates 



some of the most important approaches of environment representation, composing a hybrid 
scheme of environment maps, divided into layers: polygonal layer, grid layer and topologi-
cal/semantic layer (Fig. 1).  

The communication between all system components of our control architecture is al-
lowed through a common data integration area implemented by shared memory. Through 
the use of this central repository of information, the several components of our architecture 
can exchange vital information for the perfect functioning of the autonomous mobile robot 
control system.  
 
2.1 HYCAR / COHBRA Control System 
 

Based on the concepts proposed in the HyCAR/COHBRA architecture [10] was imple-
mented one specific control system. A special attention was given to the localizer module 
in the development of this system, as it is considered the main component of our control 
system and one of the main focus of this work. If the autonomous mobile robot possesses a 
good estimation of its actual position in the environment, then the navigation task becomes 
simpler and more precise. In the next sections we will describe the main components of the 
HyCAR hybrid control system: environment representation, localizer module and control 
layers. 

 
2.1.1. Internal Representation of the Environment 
 

In the internal representation of the environment we used together the three environment 
representation approaches defined in the control architecture: polygonal map, grid map and 
topological/semantic map. The polygonal map is mainly used by the localizer module to 
estimate the robot position, and it is initially supplied by the user in DXF format (Auto-
CAD Data) defining a blueprint of the environment (complete or approximate). The grid 
map is used by the deliberative layer to plan trajectories from a starting point to a goal des-
tination (A*  Algorithm [8]). The grid maps are generated from the polygonal map splitting 
the environment into cells using a predefined target resolution. The main function of topo-
logical/semantic maps is to improve planning performance, given some additional informa-
tion that helps the planner to reduce space-state search and optimize the robot trajectory 
calculation.  

 
2.1.2. Localizer Module 
 

The Localizer Module was implemented using a Monte Carlo Localization (MCL) tech-
nique based on Fox et al [4] work. Monte Carlo localization approach possesses several 
advantages: it requires less computational resources than the majority of other techniques; 
it concentrates the resources and computational efforts in the areas of bigger interest for the 
localization; and as it is a probabilistic technique it can aggregate additional information 
about the robot position (e.g. certainty values associated to each estimated robot position).  

One of the main reasons of our choice of a Monte Carlo localization method implemen-
tation and its integration into the HyCAR control system was its capacity to solve the three 
great problems related to robot localization: local localization, global localization, and re-
localization.  

In the local localization, the Monte Carlo localizer is able to keep a correct robot posi-
tion from an initial specified position with an acceptable level of error. This method per-
forms well during continuous robot displacements without the necessity of an external 
calibration function. The local localization is usually done when we start to use a mobile 



robot, where the user assigns the approximate position of the robot in the environment (e.g. 
Office H on the left of the desk). The Monte Carlo localizer is also capable to perform a 
global localization, without need of any initial robot position information in order to de-
termine the actual robot position. This localization technique is also capable of re-localize 
the robot, first detecting when the estimated robot position, apparently correct, does not 
reflect the actual robot position, and then performing a global localization to search for a 
new approximately correct robot position.  
 
Monte Carlo Algorithm 

The Monte Carlo localization (MCL) algorithm is divided in two phases: one phase of 
movement and the other phase of sensorial reading. Initially ‘N’  samples (particles) are 
generated, uniformly distributed in the entire environment map (global localization), or 
distributed around the most likely robot position (local localization). Each sample is com-
posed of a robot estimated position (x, y, direction) and the associated certainty.  

In the movement phase, the robot is activated and the MCL algorithm generates new ‘N’  
samples, used to approximate the new robot position after this action. Each sample is ran-
domly generated from the previous samples set. Samples are chosen from the old samples 
set with basis on their certainty that affects the probability of being preserved. Suppose L’  
being one position in the old sample. The new position L in the new sample is generated 
using P(L | L’ , a), thus considering the observed action of movement ‘a’ . Before the correct 
robot position be achieved, it is possible to apply a certain threshold specifying the genera-
tion of some really new samples (samples renewal threshold). 

In the sensorial reading phase, information are incorporated readapting the weight (cer-
tainty) of each sample in the set, using the sensorial values to estimate the certainty of each 
specific sample related to its position. This phase is mainly based on the idea that we can 
estimate the sensorial reading of the robot for a specific position related to the known envi-
ronment map, and then compare this estimated sensorial data within the actual sensorial 
data obtained from the robot. From this comparison we can obtain the certainty value re-
lated to an estimated robot position. 

To determine if the robot is or not correctly localized, we use the certainty value of the 
best sample (the one with the biggest certainty into the set) plus a dispersion measure of 
the whole set (that indicates if the particles are mainly concentrated around one specific 
position). These two information can help us to determine if the robot position was cor-
rectly estimated. 

One problem of the Monte Carlo localization is that it is assumed that: (i) the environ-
ment is static; (ii) the representation of the environment corresponds to the real environ-
ment; and (iii) mobile obstacles do not exist. This kind of situation is not usually found in a 
real environment, for this reason it was necessary to use certain special techniques to treat 
this problem in our control system.  

One approach to solve this problem was proposed by Fox [6] using “filters”  to ignore 
certain readings from the sensors when these do not match with the expected inputs. Fox 
considered two techniques, entropy filters and filters of distance. The technique we 
adopted in our implementation of MCL module was the distance filter. This filter was bet-
ter suitable to the kind of sensors implemented in our system (distance sensors).  

Besides allowing the autonomous mobile robot to localize itself in a dynamic environ-
ment, the distance filter helps other modules of HyCAR control system. It makes available 
in the shared memory information about the filtered sensors, thus allowing the system to 
detect new static obstacles not present in environment maps. Filtered sensors indicate a dif-
ference between the internal representation and the real environment. The available data 
about filtered sensors is used by the functional layer to update the internal representation of 



the environment. The only restriction of our system is during the localization process when 
we can work into a partially known environment but with no dynamic (mobile) obstacles. 
Once the robot position is known (correctly localized) then we can work in an environment 
with no restrictions: including unmapped static and mobile obstacles. 

 
2.1.3. Vital Layer 
 

The vital layer  is responsible for reactive control of the autonomous mobile robot, com-
posed of several simple process executed in parallel: elementary robot behaviors. These 
behaviors made an association between sensorial entrances and commands send to the ac-
tuators. Each behavior can be seen as a "sensorial-motor reaction", reacting directly to the 
environment stimuli. 

We implemented 5 elementary behaviors in the vital layer, targeting to enable the robot: 
to follow trajectories calculated by the deliberative layer; to help the localizer module to 
determine the robot position; and to preserve the physical integrity of the robot. When fol-
lowing a pre-defined trajectory the autonomous mobile robot must be able to avoid and 
deviate from the unexpected obstacles (static or dynamic). The five behaviors implemented 
in the vital layer are: (i) stop; (ii) wander; (iii) avoid obstacles; (iv) move in direction to 
near target position; and (v) go back. The “avoid obstacle”  behavior is based on the poten-
tial field method (VFF) as used by Borenstein & Koren [5].  

The interactions between these behaviors are managed through an arbitrator. The arbi-
trator has the function of activate or inhibit certain behaviors, depending on the commands 
received from the sequencer in the functional layer. The arbitrator can also be programmed 
to compute fusion rules of behaviors outputs, in order to integrate ambiguous outputs from 
different behaviors.  

 
2.1.4. Functional Layer 
 

The functional layer  is composed of various modules that interact among themselves, 
executing different functions responsible for the integration of the control system compo-
nents. One of these functions of this layer is to select which elementary behaviors from the 
vital layer will be executed at a time, and to provide parameters to these elementary behav-
iors (e.g. next target position to move). With the information provided by functional layer 
and using the specification of the execution sequence of these elementary behaviors, the 
robot can execute high level tasks defined by the deliberative layer planner.  

The sequencer of the functional layer was implemented in the form of a finite-state 
automaton. Each state of this automaton indicates for the arbitrator, in the vital layer, 
which behaviors must be set on or must be inhibited. So, the sequencing is executed 
through inhibitions of some specified outputs coming from elementary behaviors. There is 
no module in the functional layer that can act directly in the control of the robot actuators, 
which are controlled by the arbitrator in the vital layer. The modules of the functional layer 
are responsible for supplying information to the elementary behaviors of the vital layer that 
will be active, and inhibit the outputs of the behaviors that should be deactivated.  

The functional layer is also composed by other functional modules that play auxiliary 
tasks in the control process of the autonomous mobile robot. In the HyCAR control system 
where specified a series of auxiliary functional modules. One of these modules is responsi-
ble for monitoring and update the internal representation of the environment, and the others 
provide parameters that assist other modules in different control layers.  

 



2.1.5.   Deliberative Layer 
 

The deliberative layer  has the only function to perform trajectories planning, from the 
robot position to a final user defined position. The planner may be activated by the user 
(new destination position specification) or it can be interrupted by requests originated from 
the functional layer. Sometimes the functional layer can detect an impossibility of plan 
execution (route no longer available due to obstacles) and then request a new planning. 

The planning task is processed in two phases. In the first one, using the topological in-
formation (connectivity graph), a pre-planning is executed and determines the sequence of 
topological regions that will be traversed in the final path. The Dijkstra algorithm [7] was 
used in this initial phase, and this information will be used to optimize the next phase of 
planning. In the second phase, the A*  algorithm [8] is used to calculate the definitive tra-
jectory based on a grid representation of the environment map. The grid representation 
based algorithms can be great CPU time-consuming tasks, depending on the grid size. In 
our system, this task is optimized using the pre-planning phase to reduce the size of the 
grid used by the path-planning algorithm.  

The trajectory planning obtained using the A*  algorithm produces a way composed by a 
sequence of cells that must be followed to reach the destination position. This sequence of 
cells is converted into a sequence of points into the polygonal representation using the cen-
ter of cell as base. The final plan is one trajectory to be followed by the autonomous mo-
bile robot, from its current position to the destination position, composed by a sequence of 
points in the polygonal layer representation. This plan is made available into the shared 
memory to be used by the functional layer.  

 
3. SimRob3D Simulator 
 

We implemented a robot simulator that includes all necessary resources to realize ex-
periments with autonomous mobile robots placed in a dynamic environment. This imple-
mentation was created in order to validate our proposed control system. This simulator was 
called SimRob3D (Mobile Robots Simulator based on Three-dimensional Environ-
ments) [10].  The main characteristic of this simulator resides in the fact that it implements 
our proposed control architecture using a three-dimensional environment for the navigation 
of the simulated mobile robots. The environment structure and objects can be designed 
with three-dimensional modeling software existing in the market (AutoCad, 3D Studio, 
among others), once we adopted in our simulator a common standard 3D data file format, 
the “.3DS”. This file format allows us to specify different elements composing the robot 
environment (walls, objects, light, textures), resulting in an environment with a high level 
of realism if compared with other environments used in some 2D based simulators.  

The simulator allows the user to place and configure obstacles, also allowing moving 
them in real time during simulation. The obstacles can also be pre-programmed to move in 
cyclical trajectories. The simulator possess several sensorial and kinematics models (e.g. 
encoder, sonar, infrared and laser sensors; Ackerman and differential kinematics), allowing 
the user to configure different types of robots.  

All the sensors and actuators interact directly with the three-dimensional environment, 
becoming the simulation more realistic. Sensor and actuators are also modeled in a realistic 
way, i.e. we included in their model a gaussian error in order to introduce input sensor er-
rors (e.g. noise) and output control errors (e.g. wheels sliding). These models of sensors 
and actuators provided to us a more realistic and non-deterministic robot behavior.   

Another important characteristic of our simulator is its modularity. The controller is pro-
grammed separately from other simulation functions, implemented as a dynamic library 



(DLL). The controller is loaded at execution time, and it can be implemented using any 
language chosen by user. As the controller is completely separated from the robot and en-
vironment simulation, it has a well defined interface to communicate with the robot. The 
only information exchanged between robot controller and the other simulation modules are 
basically “Get_Sensors”  and “Send_Command” . So, we can easily replace the simulated 
robot by an actual robot. HyCAR controller was implemented in that way, as a separated 
module that communicates with other SimRob3d modules. 

 
4. Simulation Results 
 

We used SimRob3D to validate HyCAR robot control architecture in localization and 
navigation tasks. Several localization experiments in static and dynamic environments 
were carried out: using a perfect environment map and using a modified environment map 
(with some static and dynamic/mobile obstacles added, which are not present in the origi-
nal map). We evaluated the capacity of our system to perform local and global localization, 
and also we test the ability of the system to re-localize the robot when an incorrect initial 
position was informed to the robot. These experiments were executed using the original 
Trinity environment map [9] (figure 2). We also used some variations of that environment, 
in order to evaluate each type of localization, where the robot available environment map 
was set to the original Trinity environment, but during simulation the robot interacted with 
a modified map with some removed objects and added obstacles. 

 

 

Figure 2 - Three-dimensional environment used in localization and navigation 
experiments based upon Trinity Fire-Fighting Contest environment map [9]. 

Table 1 shows the simulation results, using a 6x8cm Ackerman based robot, with the lo-
calizer module configured to use: 1000 particles sampling, 16 sonar sensors (30 degree 
wide range field, 100.0 to 1.0 cm distance sensibility, 5% of average noise) and 2 actua-
tors - wheels and steering (10% average error on encoders, 1% average error on command 
response). Experiments were made with robot following a pre-defined trajectory, with a 
total of 2700 simulation cycles. Each cycle corresponds to a set of sensorial readings re-
ceived from the robot and used by the localizer module to estimate the robot position. Ta-
ble 1 values are the average obtained from10 different simulations results. 

 
Table 1 - Results obtained in localization experiments.  

Experiment Number  of Localization Cycles 
(Cor rect Position Found) 

Number  of Localization 
Cycles 

Local Localization 0 2700 
Global Localization 674.4 2025.5 
Re-localization 681.8 2018.2 



 
Navigation experiments were carried out in static and dynamic environments with some 

static or mobile obstacles added on it. The main objective was to evaluate the capacity of 
the control system to conduct the robot in these environments, following the plans supplied 
by the deliberative layer. The robot was placed in an initial position and the user specified 
several target destinations. 
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Figure 3 - Trinity environment map with destination points used in navigation experi-
ments (a). Robot movement sequence executed to avoid an unexpected obstacle (b). 

The results obtained in navigation experiments had shown that, in all simulations (10 
simulations for each experiment: from the initial position, move to destination points 1-10; 
see Fig. 3(a), the control system was able to guide the mobile robot and achieve destination 
position, deviating from all unmapped obstacles (static or mobile), as can be seen in 
Fig. 3(b). The localizer module was able to keep a correct robot position during the entire 
trajectory, with an average certainty of 98% and a dispersion of 0.73cm with 91% particles 
grouped. Calculating the difference between the controller estimated position and the simu-
lated robot position (actual position), we obtained a positioning error of 2.16cm in average 
computed over all simulation execution, in a 6.15m2 environment. 

We also carried out some experiments to determine if the use of a hybrid environment 
map representation can improve the planning algorithm execution. We used the same navi-
gation tasks as described in Fig. 3(a). The planning execution time was measured for A*  
algorithm with no pre-planning and after that using our pre-planning algorithm based on 
topological information. The obtained results showed an improvement of global planning 
time execution with average gain of 68.5%. 

These results demonstrate an efficient integration between the deliberative layer and the 
vital layer (reactive). The robot was capable to accomplish different navigation tasks even 
in presence of a modified environment with mobile obstacles. The localizer module also 
demonstrated the capacity to keep a correct robot position estimation even in a partially 
known environment (modified environment).  

Our experiments demonstrated that our hybrid control system was able to keep an esti-
mated correct position in all simulations configurations, with very good local localization 
ability. The experiments with global localization and re-localization obtained good resulted 
in most of tested environments, having some difficulties only in environments with a great 
number of modifications. In the navigation tasks, the control system was perfectly able to 
move the robot up to the specified objectives in all types of environment we used in our 
experiments. Some videos showing SimRob3D experiments can be viewed in the simulator 
site on the Internet: http://ncg.unisinos.br/robotica/simulador/index_us.html 

 
5. Conclusion 
 



The results had shown that HyCAR hybrid control system was perfectly able to control 
autonomous mobile robots. The system was able to execute navigation tasks in static and 
dynamic (modified) environments also including the presence of mobile obstacles. The 
mobile robot was able to follow global trajectories planned by the deliberative layer mod-
ule, and using their reactive skills from the vital layer module, it was possible to navigate 
without colliding with any kind of obstacle or being imprisoned by local minima, even in a 
dynamic environment. Our experimental results showed that cooperation between the 
global planning algorithm and the local reactive algorithm (intermediated by the functional 
layer) provided a robust robot control and navigation system. The localization module also 
shows a capacity to determine and to keep a good estimation of the robot position in the 
environment. 

The proposed architecture fulfills our main goals: (i) provides a global navigation system 
with a low computational cost; (ii) provides a robust local navigation system, preventing 
the robot to stay blocked in a local minima or to collide with unmapped obstacles. The lo-
calization module has a central role in this system, since this module provided indispensa-
ble conditions to correctly control the robot in order to achieve the proposed tasks. This 
demonstrates that it was possible through the combination of different methods to obtain a 
robust control system integrating and exploiting the best characteristics of each one of 
these methods.  

The main contribution of this work was the proposal of a new hybrid control architecture 
for autonomous mobile robots that was validated through experiments. The HyCAR sys-
tem proved to be robust and capable of operate in dynamic environments. The HyCAR ar-
chitecture is well adapted to operate an autonomous mobile robot in changing environ-
ments that can include mobile obstacles, and also it is able to determine the robot position 
in these environments even when the environment did not reflect exactly the internal repre-
sentation map. In the near future we are planning to integrate our control system into a 
Nomad 200 robot and then evaluate our control system in real situations. 
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