

HyCAR – A Robust Hybr id Control

Architecture for Autonomous Robots

Farlei J. Heinen, Fernando S. Osório
UNISINOS University – Universidade do Vale do Rio dos Sinos

Mestrado em Computação Aplicada - PIPCA
Av. Unisinos 950, São Leopoldo – RS - Brasil

{farlei, osorio} @exatas.unisinos.br
http://ncg.unisinos.br/robotica/simulador

Abstract. This work presents a new hybrid architecture applied to autonomous mo-
bile robot control - HyCAR (Hybrid Control for Autonomous Robots). This archi-
tecture provides a robust control for robots as they become able to operate and adapt
themselves to different environments and conditions. We designed this new hybrid
control architecture, integrating the two main techniques used in robotic control (de-
liberative and reactive control) and the most important environment representation
techniques (grids, geometric and topological maps), through a three-layer architec-
ture approach (vital, functional and deliberative layers). To guarantee the robustness
of our control system, we also integrated a localization module based on Monte
Carlo localization method. This localization module possesses an important role in
our control system, and supplies a solid base for the control and navigation of
autonomous mobile robots. In order to validate our control architecture, a realistic
simulator of mobile robots was implemented (SimRob3D) allowing the practical use
of the proposed system. We implemented several three-dimensional environment
models, as well as diverse sensorial and kinematics models found in actual robots.
Our simulation results had demonstrated that the control system is perfectly able to
determine the mobile robot position into a partially known environment, considering
local or global localization, and also to determine if the robot needs to re-localize it-
self given an incorrect localization. In navigation tasks the robot was able to plan
and follow self-generated trajectories in a dynamic environment, which can include
several unexpected static and mobile obstacles. We also demonstrated that with the
integration of topological and grid information we improved planning algorithm
execution.

1. Introduction

The robotic mobile vehicles [1] are an interesting subject of research in the field of Arti-
ficial Intelligence, which tries to improve the autonomy and robustness of those vehicles.
The main difference between mobile robots and other robotic research fields, such as the
field related to robotic manipulators, is the fact of this kind of robotic application operates
in complex environments that modify itself dynamically and usually are unpredictable. We
are confronted to large scale environments due to robot locomotion capacity, and these en-
vironments can also enclose other static or mobile unknown obstacles. To operate in this
kind of environments the robot must be able to acquire and use all available knowledge
about the environment (map), to estimate the robot position in this environment, to possess
the ability to recognize obstacles, and to answer in real time to different situations that can
occur in this dynamic environment. Moreover, all these functionalities must operate in par-

allel, and then, modularity is indispensable. The tasks responsible for activities like to per-
ceive the environment, to localize the robot in the environment, to plan trajectories and to
move the robot preventing collisions, attempt to solve together the main problems treated
in the study of the autonomous mobile robots.

The tasks that allow a mobile robot to move from a specified point to another point in
the environment are called robotic navigation tasks. We are confronted to several problems
that make the navigation in a real environment very complex: environments are dynamic
and they can be modified as time passes (e.g. furniture can be moved from one position to
another one); changes in the environment can obligate to change the initial task planning;
mobile obstacles with unpredictable exact trajectories can be found moving continuously
around the environment (e.g. walking humans); data from sensors can be inexact and sub-
ject to errors, as well as, commands sent to actuators can be incorrectly executed; among
others problems. All these problems demand robots that are able to deal with dynamic and
uncertain data.

The first main problem we need to solve in autonomous mobile robot navigation is the
problem of robot localization. Without knowing the actual position of the robot related to
the known map of the environment (some initial environment representation), a control
system has a lot of difficulties to control the robot in order to perfectly accomplish one
specific task. The execution of complex tasks can be made impossible without having an
estimated almost precise robot localization. A robust control system must have the capacity
of self-localization in an environment, using the sensorial information and also the avail-
able information representing the environment (map) to estimate the robot position. This
problem is also complex, and usually represents the “essential base” of a robotic control
system.

The main goal of this work is to develop a robust control system for autonomous mobile
robots that are able to operate and automatically adapt their behavior accordingly to differ-
ent environments conditions. The control system must be able to determine the robot posi-
tion using sensorial information and available environment map, even if the data are ap-
proximate and imprecise. The system must be able to keep, during navigation and tasks
execution, an estimation of the correct robot position, starting with an initial approximate
known position (local localization), or yet without any information about the robot initial
position (global localization). During navigation the system should be able to detect and
recover from incorrect position estimations (robot positioning error detection and relocali-
zation). The system must be able to control the robot and navigate in a dynamic environ-
ment, preventing collisions with static and mobile obstacles. In order to achieve this goal a
hybrid architecture for robot control and navigation was proposed and implemented.

In the next sections we will describe the proposed architecture – HyCar/Cohbra (section
2), the implemented simulator – SimRob3D – that was used to validate and to test our hy-
brid architecture (section 3), and some important results demonstrating the robustness and
performance of our system (section4).

2. HYCAR / COHBRA – Robot Control Architecture

In this work we present a new hybrid architecture of robot control - HyCAR/COHBRA
(Hybrid Control of Autonomous Robots, or using the Portuguese acronym from “COntrole
HíBrido de Robôs Autônomos”) [10]. This architecture integrates several important mod-
ules and components (data structures and methods) currently used to control autonomous
mobile robots in one single block.

The mobile robot control architecture was structured in 3 layers: vital layer, functional
layer and deliberative layer (Fig. 1). Each one of them is responsible for the reactive con-
trol (short term action), task execution control (mid term actions), and task planning (long

term actions), respectively. This type of system was also adopted in other similar works,
like those developed by Gat [2] with the ATLANTIS architecture, and by Bonasso et al.
[3] with the 3T architecture. However, our architecture proposes some extensions like the
inclusion of the localizer module and the integration of multiple views of the environ-
ment (maps).

Figure 1 - Robot control architecture diagram, showing its main components:
Control Layers (vital, functional and planner); Localizer; Environment Represen-
tation (polygonal, grid and topological maps); and Shared Memory.

In order to obtain a solid base for the execution of tasks implemented by the three Con-

trol Layers (vital, functional and planner), an additional module was integrated into the ar-
chitecture: the localizer module. This localizer module must supply an estimated robot po-
sition related to the available environment map, and also using the sensorial data, it can
continuously validate the estimated robot position. The localizer module is an essential part
of our autonomous mobile robot control architecture, since we need an approximately cor-
rect robot position to perform tasks like: ‘Move the robot from Office H to Room O’. If the
system doesn’t know where the robot is, it will be very hard to control it in order to
achieve missions such as the above described task.

So, in the proposed architecture presented in this work, the localizer plays a central and
essential role. The localizer allows us to determine the robot position, to detect changes in
the environment maps and to detect static and dynamic obstacles. Since we can estimate
the sensorial data according to a determined robot position and known environment con-
figuration, then we can check it against the actual sensor data, and use this information to
perform the above tasks (re-localize, detect changes and detect obstacles).

The specific form as the environment is represented internally in a control system, de-
termines its precision and performance. Each one of the main known approaches applied to
autonomous mobile robot control uses the most suitable environment representation
adapted to some specific algorithm and/or purpose, choosing mainly between techniques
like: discrete grids, geometrical maps, topological maps, probabilistic maps, Voronoy dia-
grams or potential field [11,12]. The proposed architecture we adopt in this work integrates

some of the most important approaches of environment representation, composing a hybrid
scheme of environment maps, divided into layers: polygonal layer, grid layer and topologi-
cal/semantic layer (Fig. 1).

The communication between all system components of our control architecture is al-
lowed through a common data integration area implemented by shared memory. Through
the use of this central repository of information, the several components of our architecture
can exchange vital information for the perfect functioning of the autonomous mobile robot
control system.

2.1 HYCAR / COHBRA Control System

Based on the concepts proposed in the HyCAR/COHBRA architecture [10] was imple-
mented one specific control system. A special attention was given to the localizer module
in the development of this system, as it is considered the main component of our control
system and one of the main focus of this work. If the autonomous mobile robot possesses a
good estimation of its actual position in the environment, then the navigation task becomes
simpler and more precise. In the next sections we will describe the main components of the
HyCAR hybrid control system: environment representation, localizer module and control
layers.

2.1.1. Internal Representation of the Environment

In the internal representation of the environment we used together the three environment
representation approaches defined in the control architecture: polygonal map, grid map and
topological/semantic map. The polygonal map is mainly used by the localizer module to
estimate the robot position, and it is initially supplied by the user in DXF format (Auto-
CAD Data) defining a blueprint of the environment (complete or approximate). The grid
map is used by the deliberative layer to plan trajectories from a starting point to a goal des-
tination (A* Algorithm [8]). The grid maps are generated from the polygonal map splitting
the environment into cells using a predefined target resolution. The main function of topo-
logical/semantic maps is to improve planning performance, given some additional informa-
tion that helps the planner to reduce space-state search and optimize the robot trajectory
calculation.

2.1.2. Localizer Module

The Localizer Module was implemented using a Monte Carlo Localization (MCL) tech-
nique based on Fox et al [4] work. Monte Carlo localization approach possesses several
advantages: it requires less computational resources than the majority of other techniques;
it concentrates the resources and computational efforts in the areas of bigger interest for the
localization; and as it is a probabilistic technique it can aggregate additional information
about the robot position (e.g. certainty values associated to each estimated robot position).

One of the main reasons of our choice of a Monte Carlo localization method implemen-
tation and its integration into the HyCAR control system was its capacity to solve the three
great problems related to robot localization: local localization, global localization, and re-
localization.

In the local localization, the Monte Carlo localizer is able to keep a correct robot posi-
tion from an initial specified position with an acceptable level of error. This method per-
forms well during continuous robot displacements without the necessity of an external
calibration function. The local localization is usually done when we start to use a mobile

robot, where the user assigns the approximate position of the robot in the environment (e.g.
Office H on the left of the desk). The Monte Carlo localizer is also capable to perform a
global localization, without need of any initial robot position information in order to de-
termine the actual robot position. This localization technique is also capable of re-localize
the robot, first detecting when the estimated robot position, apparently correct, does not
reflect the actual robot position, and then performing a global localization to search for a
new approximately correct robot position.

Monte Carlo Algorithm

The Monte Carlo localization (MCL) algorithm is divided in two phases: one phase of
movement and the other phase of sensorial reading. Initially ‘N’ samples (particles) are
generated, uniformly distributed in the entire environment map (global localization), or
distributed around the most likely robot position (local localization). Each sample is com-
posed of a robot estimated position (x, y, direction) and the associated certainty.

In the movement phase, the robot is activated and the MCL algorithm generates new ‘N’
samples, used to approximate the new robot position after this action. Each sample is ran-
domly generated from the previous samples set. Samples are chosen from the old samples
set with basis on their certainty that affects the probability of being preserved. Suppose L’
being one position in the old sample. The new position L in the new sample is generated
using P(L | L’ , a), thus considering the observed action of movement ‘a’ . Before the correct
robot position be achieved, it is possible to apply a certain threshold specifying the genera-
tion of some really new samples (samples renewal threshold).

In the sensorial reading phase, information are incorporated readapting the weight (cer-
tainty) of each sample in the set, using the sensorial values to estimate the certainty of each
specific sample related to its position. This phase is mainly based on the idea that we can
estimate the sensorial reading of the robot for a specific position related to the known envi-
ronment map, and then compare this estimated sensorial data within the actual sensorial
data obtained from the robot. From this comparison we can obtain the certainty value re-
lated to an estimated robot position.

To determine if the robot is or not correctly localized, we use the certainty value of the
best sample (the one with the biggest certainty into the set) plus a dispersion measure of
the whole set (that indicates if the particles are mainly concentrated around one specific
position). These two information can help us to determine if the robot position was cor-
rectly estimated.

One problem of the Monte Carlo localization is that it is assumed that: (i) the environ-
ment is static; (ii) the representation of the environment corresponds to the real environ-
ment; and (iii) mobile obstacles do not exist. This kind of situation is not usually found in a
real environment, for this reason it was necessary to use certain special techniques to treat
this problem in our control system.

One approach to solve this problem was proposed by Fox [6] using “filters” to ignore
certain readings from the sensors when these do not match with the expected inputs. Fox
considered two techniques, entropy filters and filters of distance. The technique we
adopted in our implementation of MCL module was the distance filter. This filter was bet-
ter suitable to the kind of sensors implemented in our system (distance sensors).

Besides allowing the autonomous mobile robot to localize itself in a dynamic environ-
ment, the distance filter helps other modules of HyCAR control system. It makes available
in the shared memory information about the filtered sensors, thus allowing the system to
detect new static obstacles not present in environment maps. Filtered sensors indicate a dif-
ference between the internal representation and the real environment. The available data
about filtered sensors is used by the functional layer to update the internal representation of

the environment. The only restriction of our system is during the localization process when
we can work into a partially known environment but with no dynamic (mobile) obstacles.
Once the robot position is known (correctly localized) then we can work in an environment
with no restrictions: including unmapped static and mobile obstacles.

2.1.3. Vital Layer

The vital layer is responsible for reactive control of the autonomous mobile robot, com-
posed of several simple process executed in parallel: elementary robot behaviors. These
behaviors made an association between sensorial entrances and commands send to the ac-
tuators. Each behavior can be seen as a "sensorial-motor reaction", reacting directly to the
environment stimuli.

We implemented 5 elementary behaviors in the vital layer, targeting to enable the robot:
to follow trajectories calculated by the deliberative layer; to help the localizer module to
determine the robot position; and to preserve the physical integrity of the robot. When fol-
lowing a pre-defined trajectory the autonomous mobile robot must be able to avoid and
deviate from the unexpected obstacles (static or dynamic). The five behaviors implemented
in the vital layer are: (i) stop; (ii) wander; (iii) avoid obstacles; (iv) move in direction to
near target position; and (v) go back. The “avoid obstacle” behavior is based on the poten-
tial field method (VFF) as used by Borenstein & Koren [5].

The interactions between these behaviors are managed through an arbitrator. The arbi-
trator has the function of activate or inhibit certain behaviors, depending on the commands
received from the sequencer in the functional layer. The arbitrator can also be programmed
to compute fusion rules of behaviors outputs, in order to integrate ambiguous outputs from
different behaviors.

2.1.4. Functional Layer

The functional layer is composed of various modules that interact among themselves,
executing different functions responsible for the integration of the control system compo-
nents. One of these functions of this layer is to select which elementary behaviors from the
vital layer will be executed at a time, and to provide parameters to these elementary behav-
iors (e.g. next target position to move). With the information provided by functional layer
and using the specification of the execution sequence of these elementary behaviors, the
robot can execute high level tasks defined by the deliberative layer planner.

The sequencer of the functional layer was implemented in the form of a finite-state
automaton. Each state of this automaton indicates for the arbitrator, in the vital layer,
which behaviors must be set on or must be inhibited. So, the sequencing is executed
through inhibitions of some specified outputs coming from elementary behaviors. There is
no module in the functional layer that can act directly in the control of the robot actuators,
which are controlled by the arbitrator in the vital layer. The modules of the functional layer
are responsible for supplying information to the elementary behaviors of the vital layer that
will be active, and inhibit the outputs of the behaviors that should be deactivated.

The functional layer is also composed by other functional modules that play auxiliary
tasks in the control process of the autonomous mobile robot. In the HyCAR control system
where specified a series of auxiliary functional modules. One of these modules is responsi-
ble for monitoring and update the internal representation of the environment, and the others
provide parameters that assist other modules in different control layers.

2.1.5. Deliberative Layer

The deliberative layer has the only function to perform trajectories planning, from the
robot position to a final user defined position. The planner may be activated by the user
(new destination position specification) or it can be interrupted by requests originated from
the functional layer. Sometimes the functional layer can detect an impossibility of plan
execution (route no longer available due to obstacles) and then request a new planning.

The planning task is processed in two phases. In the first one, using the topological in-
formation (connectivity graph), a pre-planning is executed and determines the sequence of
topological regions that will be traversed in the final path. The Dijkstra algorithm [7] was
used in this initial phase, and this information will be used to optimize the next phase of
planning. In the second phase, the A* algorithm [8] is used to calculate the definitive tra-
jectory based on a grid representation of the environment map. The grid representation
based algorithms can be great CPU time-consuming tasks, depending on the grid size. In
our system, this task is optimized using the pre-planning phase to reduce the size of the
grid used by the path-planning algorithm.

The trajectory planning obtained using the A* algorithm produces a way composed by a
sequence of cells that must be followed to reach the destination position. This sequence of
cells is converted into a sequence of points into the polygonal representation using the cen-
ter of cell as base. The final plan is one trajectory to be followed by the autonomous mo-
bile robot, from its current position to the destination position, composed by a sequence of
points in the polygonal layer representation. This plan is made available into the shared
memory to be used by the functional layer.

3. SimRob3D Simulator

We implemented a robot simulator that includes all necessary resources to realize ex-
periments with autonomous mobile robots placed in a dynamic environment. This imple-
mentation was created in order to validate our proposed control system. This simulator was
called SimRob3D (Mobile Robots Simulator based on Three-dimensional Environ-
ments) [10]. The main characteristic of this simulator resides in the fact that it implements
our proposed control architecture using a three-dimensional environment for the navigation
of the simulated mobile robots. The environment structure and objects can be designed
with three-dimensional modeling software existing in the market (AutoCad, 3D Studio,
among others), once we adopted in our simulator a common standard 3D data file format,
the “.3DS”. This file format allows us to specify different elements composing the robot
environment (walls, objects, light, textures), resulting in an environment with a high level
of realism if compared with other environments used in some 2D based simulators.

The simulator allows the user to place and configure obstacles, also allowing moving
them in real time during simulation. The obstacles can also be pre-programmed to move in
cyclical trajectories. The simulator possess several sensorial and kinematics models (e.g.
encoder, sonar, infrared and laser sensors; Ackerman and differential kinematics), allowing
the user to configure different types of robots.

All the sensors and actuators interact directly with the three-dimensional environment,
becoming the simulation more realistic. Sensor and actuators are also modeled in a realistic
way, i.e. we included in their model a gaussian error in order to introduce input sensor er-
rors (e.g. noise) and output control errors (e.g. wheels sliding). These models of sensors
and actuators provided to us a more realistic and non-deterministic robot behavior.

Another important characteristic of our simulator is its modularity. The controller is pro-
grammed separately from other simulation functions, implemented as a dynamic library

(DLL). The controller is loaded at execution time, and it can be implemented using any
language chosen by user. As the controller is completely separated from the robot and en-
vironment simulation, it has a well defined interface to communicate with the robot. The
only information exchanged between robot controller and the other simulation modules are
basically “Get_Sensors” and “Send_Command” . So, we can easily replace the simulated
robot by an actual robot. HyCAR controller was implemented in that way, as a separated
module that communicates with other SimRob3d modules.

4. Simulation Results

We used SimRob3D to validate HyCAR robot control architecture in localization and
navigation tasks. Several localization experiments in static and dynamic environments
were carried out: using a perfect environment map and using a modified environment map
(with some static and dynamic/mobile obstacles added, which are not present in the origi-
nal map). We evaluated the capacity of our system to perform local and global localization,
and also we test the ability of the system to re-localize the robot when an incorrect initial
position was informed to the robot. These experiments were executed using the original
Trinity environment map [9] (figure 2). We also used some variations of that environment,
in order to evaluate each type of localization, where the robot available environment map
was set to the original Trinity environment, but during simulation the robot interacted with
a modified map with some removed objects and added obstacles.

Figure 2 - Three-dimensional environment used in localization and navigation
experiments based upon Trinity Fire-Fighting Contest environment map [9].

Table 1 shows the simulation results, using a 6x8cm Ackerman based robot, with the lo-
calizer module configured to use: 1000 particles sampling, 16 sonar sensors (30 degree
wide range field, 100.0 to 1.0 cm distance sensibility, 5% of average noise) and 2 actua-
tors - wheels and steering (10% average error on encoders, 1% average error on command
response). Experiments were made with robot following a pre-defined trajectory, with a
total of 2700 simulation cycles. Each cycle corresponds to a set of sensorial readings re-
ceived from the robot and used by the localizer module to estimate the robot position. Ta-
ble 1 values are the average obtained from10 different simulations results.

Table 1 - Results obtained in localization experiments.

Experiment Number of Localization Cycles
(Cor rect Position Found)

Number of Localization
Cycles

Local Localization 0 2700
Global Localization 674.4 2025.5
Re-localization 681.8 2018.2

Navigation experiments were carried out in static and dynamic environments with some

static or mobile obstacles added on it. The main objective was to evaluate the capacity of
the control system to conduct the robot in these environments, following the plans supplied
by the deliberative layer. The robot was placed in an initial position and the user specified
several target destinations.

(a)
Star tStar t Trajectory

Object absent in
environment map

Object absent
in map

Trajectory

Object absent in
environment map

Object absent
in map

 (b)

Figure 3 - Trinity environment map with destination points used in navigation experi-
ments (a). Robot movement sequence executed to avoid an unexpected obstacle (b).

The results obtained in navigation experiments had shown that, in all simulations (10
simulations for each experiment: from the initial position, move to destination points 1-10;
see Fig. 3(a), the control system was able to guide the mobile robot and achieve destination
position, deviating from all unmapped obstacles (static or mobile), as can be seen in
Fig. 3(b). The localizer module was able to keep a correct robot position during the entire
trajectory, with an average certainty of 98% and a dispersion of 0.73cm with 91% particles
grouped. Calculating the difference between the controller estimated position and the simu-
lated robot position (actual position), we obtained a positioning error of 2.16cm in average
computed over all simulation execution, in a 6.15m2 environment.

We also carried out some experiments to determine if the use of a hybrid environment
map representation can improve the planning algorithm execution. We used the same navi-
gation tasks as described in Fig. 3(a). The planning execution time was measured for A*
algorithm with no pre-planning and after that using our pre-planning algorithm based on
topological information. The obtained results showed an improvement of global planning
time execution with average gain of 68.5%.

These results demonstrate an efficient integration between the deliberative layer and the
vital layer (reactive). The robot was capable to accomplish different navigation tasks even
in presence of a modified environment with mobile obstacles. The localizer module also
demonstrated the capacity to keep a correct robot position estimation even in a partially
known environment (modified environment).

Our experiments demonstrated that our hybrid control system was able to keep an esti-
mated correct position in all simulations configurations, with very good local localization
ability. The experiments with global localization and re-localization obtained good resulted
in most of tested environments, having some difficulties only in environments with a great
number of modifications. In the navigation tasks, the control system was perfectly able to
move the robot up to the specified objectives in all types of environment we used in our
experiments. Some videos showing SimRob3D experiments can be viewed in the simulator
site on the Internet: http://ncg.unisinos.br/robotica/simulador/index_us.html

5. Conclusion

The results had shown that HyCAR hybrid control system was perfectly able to control
autonomous mobile robots. The system was able to execute navigation tasks in static and
dynamic (modified) environments also including the presence of mobile obstacles. The
mobile robot was able to follow global trajectories planned by the deliberative layer mod-
ule, and using their reactive skills from the vital layer module, it was possible to navigate
without colliding with any kind of obstacle or being imprisoned by local minima, even in a
dynamic environment. Our experimental results showed that cooperation between the
global planning algorithm and the local reactive algorithm (intermediated by the functional
layer) provided a robust robot control and navigation system. The localization module also
shows a capacity to determine and to keep a good estimation of the robot position in the
environment.

The proposed architecture fulfills our main goals: (i) provides a global navigation system
with a low computational cost; (ii) provides a robust local navigation system, preventing
the robot to stay blocked in a local minima or to collide with unmapped obstacles. The lo-
calization module has a central role in this system, since this module provided indispensa-
ble conditions to correctly control the robot in order to achieve the proposed tasks. This
demonstrates that it was possible through the combination of different methods to obtain a
robust control system integrating and exploiting the best characteristics of each one of
these methods.

The main contribution of this work was the proposal of a new hybrid control architecture
for autonomous mobile robots that was validated through experiments. The HyCAR sys-
tem proved to be robust and capable of operate in dynamic environments. The HyCAR ar-
chitecture is well adapted to operate an autonomous mobile robot in changing environ-
ments that can include mobile obstacles, and also it is able to determine the robot position
in these environments even when the environment did not reflect exactly the internal repre-
sentation map. In the near future we are planning to integrate our control system into a
Nomad 200 robot and then evaluate our control system in real situations.

References

[1] G. Dudek and M. Jenkin. Computational Pr inciples of Mobile Robotics. Cambridge University Press,
Cambridge, UK. 2000.

[2] E. Gat. Integrating Planning and Reacting in a Heterogeneous Asynchronous Architecture for Con-
trolling Real-Wor ld Mobile Robots. AAAI-92 Proceedings, AAAI Press, 1992.

[3] R. P. Bonasso., et al. Exper iences with an Architecture for Intelligent Reactive Agents. Journal of
Experimental and Theoretical AI, 9(2). 1997.

[4] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Car lo localization: Efficient position estimation
for mobile robots. In Proc. of the National Conference on Artificial Intelligence (AAAI). 1999.

[5] Borenstein, J. and Koren, Y. Real-time Obstacle Avoidance for Fast Mobile Robots. IEEE Transac-
tions on Systems, Man, and Cybernetics, Vol. 19, No. 5, pp. 1179-1187. 1989.

[6] D. Fox. Markov Localization: A Probabilistic Framework for Mobile Robot Localization and Navi-
gation. Institute of Computer Science III, University of Bonn, Germany. Doctoral Thesis. 1998.

[7] T. Cormen, C. Leiserson, R. Rivest. Introduction to Algor ithms. MIT Electrical Engineering and Com-
puter Science Series. MIT Press. 1990.

[8] Nilsson N. J. Pr inciples of Ar tificial Intelligence. Tioga Plublishing Company. 1980.

[9] Trinity College. Fire-Fighting Home Robot Contest Website. Ultima Atualização: Abr 2002.
“http://www.trincoll.edu/events/robot/” .

[10] Heinen, Farlei. Sistema de Controle Híbr ido para Robôs Móveis Autônomos. Master Thesis.
UNISINOS University, PIPCA-Applied Computing Master Course. São Leopoldo-RS, Brazil. May 2002.

[11] Dudek, Gregory and Jenkin Mitchel. Computational Pr inciples of Mobile Robots. Cambridge Univer-
sity Press. 2000.

[12] Murphy, Robin R. An Introduction to AI Robotics. MIT Press. 2000.

