Simulação de Robôs Móveis e Articulados: Aplicações e Prática

Fernando Santos Osório
Rafael Alceste Berri
Aplicações da Robótica Móvel

Fernando Santos Osório
Rafael Alceste Berri
Aplicações: Robôs Móveis e Articulados

- Robótica Industrial
- Robótica de Serviço
- Robótica de Campo
- Robótica para o Entretenimento
- Robótica Educacional
- Robótica aplicada a Medicina
- Telepresença Robótica
-

IEEE LARS-SBR 2014
• Research & Development of Service Robots: Growing Market …

“The market for personal and service robots is about $3 billion now but is expected to reach $15 billion by 2015, according to the Japan Robotics Association and market analysts like ABI Research. In 10 years or so, experts predict, sales of personal robots could surpass sales of industrial robots, now about $4.6 billion a year.”
[NewsWeek August 09, 2008 by Katie Baker]

• Applications of this technology *:

:: Cleaning & Housekeeping :: Edutainment :: Humanoids
:: Humanitarian Demining :: Rehabilitation :: Inspection
:: Agriculture & Harvesting :: Lawn Mowers :: Surveillance
:: Medical Applications :: Mining :: Construction
:: Automatic Refilling :: Guides & Office :: Fire Fighters
:: Picking & Palletising :: Food Industry :: Search & Rescue

*IEEE Technical Committee on Service Robots
• Research & Development of Service Robots: Growing Market …

“The market for personal and service robots is about $3 billion now but is expected to reach $15 billion by 2015, according to the Japan Robotics Association and market analysts like ABI Research. In 10 years or so, experts predict, sales of personal robots could surpass sales of industrial robots, now about $4.6 billion a year.”
[NewsWeek August 09, 2008 by Katie Baker]

The global service robotics market in 2011 was worth $18.39 billion. This market is valued at $20.73 billion in 2012 and expected to reach $46.18 billion by 2017 at an estimated CAGR* of 17.4% from 2012 to 2017.

Service Robotics Market (Personal & Professional)
Global Forecast & Assessment by Applications & Geography (2012 – 2017)
By: marketsandmarkets.com - Publishing Date: July 2012 - Report Code: SE 1146

*IEEE Technical Committee on Service Robots
Intelligent Robots: Industry, Jobs, Companies & Opportunities!

7.5 Million home robots!

About Our Robots

iRobot has made some of the world’s most important robots.

iRobot Home Robots: The smarter way to get it done

iRobot’s home robots are revolutionizing the way people clean – inside and out. More than 7.5 million home robots have been sold worldwide. The award-winning iRobot® Roomba® vacuum cleaning robot is leading the charge. Roomba® made practical robots a reality for the first time and showed the world that robots are here to stay. iRobot’s acclaimed line of home robots also includes the iRobot® Scooba® floor washing robot, the iRobot® Verro® pool cleaning robot and the iRobot® Looj® gutter cleaning robot.

http://www.irobot.com/filelibrary/ppt/corp/cool_stuff_ppt/cool_stuff_ppt.html

The world’s robot population has reached 8.6 million. That’s more than one...
Aspirador de pó Roomba

Percepção Simples
Wander Behavior + Avoid Obstacles

Comportamento
Reativo Simples
Seguidor de Linhas

Percepção Simples
Line Following

Comportamento
Reativo Simples
Amazon Acquires Kiva Systems for $775 Million

POSTED BY: ERICO GUIZZO / SEG, MARÇO 19, 2012

Looks like Amazon is getting some robots. LOTS of robots.

The giant online retailer announced today that it is acquiring Kiva Systems, a North Reading, Mass.-based company that invented a revolutionary way of managing vast warehouses by using fleets of mobile robots to sort, organize, and transport inventory.

Amazon agreed to acquire all of the outstanding shares of Kiva for approximately US $775 million in cash. The companies expect to close the acquisition in the second quarter of 2012.
Autonomous Driving: Challenges!

Line follower

CoRA
Autonomous Robots Competition
[UFMG]
[FAPEMIG]
COMPETITIONS:

- **DARPA Grand Challenge 2004** (Desert / No winners)
- **DARPA Grand Challenge 2005** (Desert)
 Winner: Stanley - Stanford Racing Team (S.Thrun)
- **DARPA Urban Challenge 2007** (Urbano)
 Winner: Boss - CMU (Tartan Racing / Carnegie Mellon University)
- **ELROB – The European Robot Trial**
- **AUVSI Competition (IGVC - Intelligent Ground Vehicle Competition)**
- **DARPA Robotics Challenge (DRC) 2013/14** – Humanoid Robot Driving a Car
Autonomous Driving: Challenges!

Darpa Grand Challenge
Autonomous Driving: Challenges!

Darpa Grand Challenge Waypoint – GPS Coordinates
Intelligent Vehicles

DARPA Grand Challenge

VISION LINKED TO SPEED

Smart speed switch, which helped Stanley win the 2005 Grand Challenge, combines laser and video sensors in a four-step process. First, the robot filters its laser data to identify a section of terrain ahead that is smooth and relatively flat (green). Second, a program finds the corresponding patch of road in the video frame sent by the onboard camera (blue outlines). Next, the system highlights all other areas in the same video frame that match that pattern, which it equates with good, drivable road (pink areas). Finally, the software checks whether the matching area completely fills the robot’s intended path for the next 130 feet (orange). If it does, then the system concludes that a long stretch of open road lies ahead, and it informs the onboard planning computer that it is safe to step on the gas.

Trinocular Terramax (right) can build a 3-D stereo view of the world from any of three pairs (arrows) of color video cameras. The closest cameras (purple), used at slow speeds, can detect obstacles up to 50 feet away. At fast speeds the robot selects its widest pair (orange), which can pick up objects 65 to 165 feet ahead. The third pair (pink) offers a happy medium.

Video from onboard camera

Laser scan lines

Camera and five laser scanners

Ranges for three camera pairs

Video from onboard camera

Terramax might first detect the pillars of an underpass with its long-range stereo cameras (orange zone above). As the vehicle slows, it will switch to medium- and then short-range camera pairs to make certain it notices all the obstacles in its video scene (inset).
Where is safe?

Computational Vision
Where is safe?

Navigable / Safe

Non Navigable (not safe)

Computational Vision
Project CaRINA I: R&D

Autonomous Navigation

October 2011:
Total path: 1,08 km
Autonomous Control Mode
Intelligent Vehicles

DARPA Grand Challenge

Winner – Stanley / Stanford University

Volkswagen of America, Inc. - Electronics Research Laboratory - Palo Alto, California 94304, Gary Bradski, Bob Davies, Scott Ettinger, Adrian Kaehler, and Ara Nefian

Intel Research - 2200 Mission College Boulevard, Santa Clara, California 95052, Pamela Mahoney ...
Autonomous Vehicles – Urban Spaces

DARPA Urban Challenge

Boss, the autonomous Chevy Tahoe that won the 2007 DARPA Urban Challenge

Tartan Racing – CMU Carnegie Mellon University
Pittsburgh, Pennsylvania
The quest for Autonomous Vehicles

LRM Laboratory :)
2009: INCT-SEC was created and start its activities
2010: April / Acquisition of our 1st vehicle (Electric Car) Club Car CarryAll CaRINA 1
2010: October / Autonomous Driving on Campus 2 using CaRINA 1
2011: July / Acquisition of our 2nd vehicle - Fiat Palio Adventure - CaRINA 2
2012: September / CaRINA 2 at USP/SC Campus 2 - Fully autonomous!
Intelligent Vehicles

State of the Art

• Reference Challenges:
 – DARPA Urban Challenge
 – Elrob

• Projects:
 – Boss, Junior e Spirit of Berlin
 – MIG e MuCAR-3
 – BRAiVE e Porter
 – Google Autonomous Car
State of the Art

Intelligent Vehicles
Intelligent Vehicles

State of the Art

- **Reference**
 - Challenges:
 - DARPA Urban Challenge
 - Elrob

- **Projects**:
 - Boss, Junior e Spirit of Berlin
 - MIG e MuCAR-3
 - BRAiVE e Porter
 - Google Autonomous Car
Intelligent Vehicles

Brazilian Initiatives

Automated Vehicles: Assisted conduction, Drive-by-wire

- **GPVA** – Grupo de Pesquisa em Veículos Autônomos / RS
 Automated Baja Buggy, drive-by-wire e sist. de visão - 2002/2008
- **USP SC** – EESC/ICMC - Projeto SENA (Fiat Stilo instrumented w/sensors)
 Sistema Embarcados para Navegação Autônoma 2008/2011
- **UNIFEI /MG** - Grupo de Automação e Tecnologia da Informação / UFJF
 Projeto Driving4u - Chevrolet Zafira 2008/2011

Autonomous Vehicles: Perception e Actuation

- **UFMG DEE** – R&D Group: Veículos Autônomos (PDVA) - GM Astra
 CADU Carro Autônomo Desenvolvido na UFMG – final 2007/2012
- **CTI** CenPRA - DRVC Divisão de Robótica e Visão Computacional - “Freedom”
 Projeto VERO - Veículo Robótico Terrestre de Exterior – 2008/2012
- **USP SC** – ICMC / LRM – Projeto CaRINA I e II - Club Car, Palio Adventure
 Carro Robótico Inteligente para Navegação Autônoma – 2010/2012
- **UFES**: LCAD carro adquirido em Setembro/2012- TorcRobotics Bywire-XGV
Intelligent Vehicles

Brazilian Initiatives

Autonomous Vehicles:

• GPVA – Baja Buggy - 2002/2008
• USP SC - SENA – Fiat Stilo - 2008/2011
• UNIFEI /MG - Projeto Driving4u Chevrolet Zafira 2008/2011
Autonomous Vehicles:
- UFMG DEE - GM Astra - CADU 2007/2012
- CTI CenPRA - DRVC - Freedom Elétrico VERO - 2008/2012
- USP SC – ICMC / LRM – Club Car CarryAll CaRINA I - 2010/2012
Intelligent Vehicles

Brazilian Initiative @ USP São Carlos
Autonomia

• Executar tarefas sem a intervenção humana
DRC – Darpa Robotics Challenge
2013-2015 / US$ 2M Prize
DRC – Darpa Robotics Challenge TASKs

- Drive a utility vehicle at the site.
- Move/Walk across ruins/debris.
- Remove debris blocking an entryway.
- Open a door and enter a building.
- Climb an industrial ladder and traverse an industrial walkway.
- Use a tool to break through a concrete panel.
- Locate and close a valve near a leaking pipe.
- Connect a fire hose to a standpipe and turn on a valve.

http://www.theroboticschallenge.org/overview
DRC – Darpa Robotics Challenge

How to Win?

1. First:
 Finish the Tasks

2. Second:
 Time to Finish the Task

3. Third:
 Amount of Data Required to Finish the Task
 (bits uplinked + bits downlinked)
DRC – Darpa Robotics Challenge

How to Win?

1. First:
 Finish the Tasks

2. Second:
 Time to Finish the Task

3. Third:
 Amount of Data Required to Finish the Task
 (bits uplinked + bits downlinked)
Google Acquires Seven Robot Companies, Wants Big Role in Robotics

By Evan Ackerman
Posted 4 Dec 2013 | 14:52 GMT

Here is the list of companies Google has acquired:

- Schaft Inc.
- Industrial Perception, Inc
- Redwood Robotics
- Meka Robotics
- Holomini
- Bot & Dolly
- Boston Dynamics
- DeepMind Technologies

Pesquisa em Robótica

Sensores
- Laser Hokuyo
- Visão Estereo
- Kinect

Aplicações
- Robôs de Segurança e Tele-Presença
- Veículos Autônomos
Simulação!
A SEGUIR:

SIMULAÇÃO DE ROBÔS MÓVEIS E ARTICULADOS
Contato:
Prof. Fernando Osório
Prof. Denis Wolf
http://www.icmc.usp.br/~fosorio
E-mail: { fosorio, denis } @icmc.usp.br

Laboratório de Robótica Móvel – ICMC/USP

Site: http://www.lrm.icmc.usp.br/
Vídeos: http://youtube.com/lrmicmc
https://www.youtube.com/user/lrmicmc/videos