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ABSTRACT
This paper describes our research and experiments with au-
tonomous robots, in which were used genetic algorithms to
evolve stable gaits of simulated legged robots in a physically
based simulation environment. In our approach, gaits are
de�ned using two di�erent methods: a �nite state machine
based on the joint angles of the robot legs; and an Elman's
recurrent neural network. The parameters for both methods
are optimized using genetic algorithms, and the proposed
model also allows the evolution of the robot body morphol-
ogy. Several experiments are described, and the obtained
results show that it is possible to generate stable gaits and
e�cient morphologies using machine learning techniques.

1. INTRODUCTION
The autonomous mobile robots have been attracting the

attention of a great number of researchers, due to the chal-
lenge that this research domain proposes: making these sys-
tems capable of intelligent reasoning and able to interact
with the environment in which they are inserted in, through
sensor perception (infrared, sonar, bumpers, gyro, etc) and
motor action planning and execution [4]. At the present
time, most of the mobile robots use wheels for locomotion,
which makes this task easy to control and e�cient in terms
of energy consumption, but they have some important dis-
advantages since they have problems moving across irregular
surfaces and crossing borders and edges, like stairs. So, in
order to make mobile robots better adapted to human en-
vironments and to irregular surfaces, they must be able to
walk or have a similar locomotion mechanism used by hu-
mans and animals, i.e., they should have legs [1, 4].
However, the development of legged robots capable of

moving on irregular surfaces is a quite di�cult task, which
needs the con�guration of many gait parameters. The man-
ual con�guration of these parameters demands a lot of e�ort
and time consuming of a human specialist, and the obtained
results are usually suboptimal and speci�c for one robot
architecture. Thus, it would be useful to generate robot
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gait con�gurations in an automatic manner, using machine
learning [18] techniques like genetic algorithms (GA) [6] and
arti�cial neural networks (ANN) [8].
In some previous work, we made a comparative study be-

tween robots with four (tetrapod) and six (hexapod) legs
[13], and also about the use and the in�uence of di�er-
ent �tness functions [9, 10] used in robot control evolution.
This paper shows a comparative study between the follow-
ing legged robot control strategies: (i) Control based on
FSM (�nite state machine); (ii) Control based on ANN. In
both strategies the parameters were optimized using GAs.
Besides, this paper includes the evolution of the robot mor-
phology at the same time that the evolution of the control
parameters. This paper is structured as follows: Section 2
describes some related work in control of legged robots; Sec-
tion 3 describes the proposed model, called LegGen; Sec-
tion 4 describes the accomplished experiments and the ob-
tained results; and Section 5 provides some �nal remarks.

2. RELATED WORK
Control of locomotion in legged robots is a challenging

multidimensional control problem [1,4]. It requires the spec-
i�cation and coordination of motions in all robot legs while
considering factors such as stability and surface friction [15].
This is a research area which has obvious ties with the con-
trol of animal locomotion, and it is a suitable task to use
to explore this issue [21]. It has been a research area for
a considerable period of time, from the �rst truly indepen-
dent legged robots like Phony Pony [17], where each joint
was controlled by a simple �nite state machine, to the algo-
rithmic control of bipeds and quadrupeds by Raibert [20].
Lewis [16] evolved controllers for a hexapod robot which

learned to walk inspired on insect-like gaits. After a staged
evolution, its behavior was shaped towards the �nal goal of
walking. Bongard [2] evolved the parameters of a dynamic
neural network to control various types of simulated robots.
Busch [3] used genetic programming to evolve the control
parameters of several robot types. Jacob [14], on the other
hand, used reinforcement learning to control a simulated
tetrapod robot. Reeve [21] evolved the parameters of various
neural network models using genetic algorithms.
In most of these approaches described above, the �tness

function used was the distance traveled by the robot in a pre-
de�ned amount of time. Although this �tness function has
been largely used, it may hinder the evolution of more stable
gaits [7]. In our approach, we use in the �tness function, be-
yond distance traveled, sensory information (gyroscope and
bumpers) to allow stable and fast gaits [10].
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3. PROPOSED MODEL
The LegGen simulator1 [10, 12, 13] was developed to ac-

complish the gait control of simulated legged robots in an au-
tomatic way. This simulator is composed of several modules,
showed in Figure 1. The Robotnik module is responsible for
the robot and virtual environment creation using a physics
simulation library called ODE2 (Open Dynamics Engine).
The Evolution module is responsible for the evolution of the
control parameters using genetic algorithms. The Senso-
rial module is responsible for sensory information reading
during simulation and �tness calculation for each individ-
ual. The Viewer module is responsible for the visualization
of results in a three-dimensional graphic environment. The
Controller module is responsible for the robot joint control,
which is accomplished using two strategies: (i) a �nite state
machine (FSM); (ii) an arti�cial neural network (ANN). The
following sections describe these control strategies.

Figure 1: The LegGen modules

3.1 Finite state machine control
In the LegGen simulator, the gait control is generated us-

ing a �nite state machine (FSM), in which is de�ned for
each state and for each robot joint their �nal expected an-
gles con�guration [2]. In this way, the controller needs to
continually read the joint angles state, in order to check if
the joint motor accomplished the task. Real robots do this
using sensors (encoders) to control the actual angle attained
by the joints [1, 4]. So, in this approach the gait control is
accomplished in the following way: initially the controller
verify if the joints have already reached the expected an-
gles. The joints that do not have reached them are moved
(activate motors), and when all the joints have reached their
respective angles, the FSM passes to the following state.
To synchronize the movements, it is important that all

joints could reach their respective angles at almost the same
time. This is possible with the application of a speci�c joint
angular velocity for each joint, calculated by the equation:

Vij = V ri(αij − αij−1) (1)

where Vij is the velocity applied to the motor joint i in the
j state, αij is the joint angle i in the j state, αij−1 is the
joint angle i in j − 1 state, and V ri is the reference velocity
of the i state, used to control the set velocity. The reference
velocity V r is one parameter of the gait control that is also
optimized by the genetic algorithm. The other parameters
are the joint angles for each state. To reduce the search
space, the GA only generates values between the maximum
and minimum accepted values for each speci�c parameter.

3.2 Neural control
Besides �nite state machines, LegGen can use arti�cial

neural networks (ANN) [8] to control the robot joints. This
approach has some important and speci�c limitations: it is

1LegGen � http://www.inf.ufrgs.br/~mrheinen/leggen
2Open Dynamics Engine (ODE) � http://www.ode.org

quite di�cult to have a priory information about the gen-
eration of the control parameters [11, 12]. Since we do not
have available the exact and correct sequence of values that
should be sent to control the actuators, then it is usually not
possible to apply traditional supervised learning algorithms,
like back-propagation and other similar ones. This was the
main reason to adopt GA to evolve the synaptic weights.
GA can adjust synaptic weights with the advantage that

they do not need any local information or local error mea-
sure in order to adapt the weights, and so we do not need
a training dataset (supervised learning). The weights can
be coded into the chromosomes and evolved, using a �t-
ness function to evaluate the robot performance controlled
by this evolved ANN. On the other hand, ANN have some
advantages when used to control robot legs: they are more
robust to noise, i.e., continue to perform well even when
faced to unseen situations; and they usually can obtain a
good generalized behavior.
The ANN inputs are the present robot joint angles values

(angles at time t, normalized in the range from -1 (αmim)
to +1 (αmax). In the ANN outputs are obtained the joint
angles in the next time step t + 1, also normalized in the
range [-1:+1]. After some preliminary tests, we choose the
Elman model of recurrent ANN, which was very satisfactory
when applied in this problem where we need to predict a
temporal behavior (sequencing joint angles). The Elman
networks are MLP nets with feedback connections from and
back to the hidden layer. These connections allow the Elman
nets to learn temporal sequences of patterns and then, from
the joint angles patterns in time t, they can generate the
next joint angles pattern in their outputs. We adopted the
hyperbolic tangent function as the ANN activation function,
and also the synaptic weights were limited ranging from -1
to +1, which simplify the GA weights optimization. This
ANN model and parameters setup was empirically tested
and showed to be well suited to the problem in question.

3.3 Evolution
In our model, the control parameters are evolved using

genetic algorithms. The GA implementation used in our
system was based on the GAlib software library3, developed
by Matthew Wall of Massachusetts Institute of Technology
(MIT). In the LegGen simulator, a GA as described in [6]
was used, and a �oating point type genome was adopted. In
order to reduce the search space, alleles were used to limit
generated values only to possible values for each parameter.
Table 1 shows the parameter values used by GA.

Table 1: Parameters of the LegGen simulator

Par-ID Parameter Value

1 One point crossover 0.80
2 Mutation rate 0.08
3 Population size 350
4 Number of generations 700

The �tness evaluation uses the following sensory informa-
tion that must be calculated: (a) the distance D = x1 − x0

covered by the robot in the x axis, where x0 is the x start
position and x1 is the end x position; (b) the instability
measure G, calculated using the robot position variations in
the x, y and z axis. These variations are collected during the

3GAlib � http://www.lancet.mit.edu/ga/
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physical simulation, simulating a gyroscope sensor, which is
a sensor present in some modern robots [4]. The instability
measure G (Gyro) is then calculated by [7]:

G =

√∑N
i=1(xi − xx)2 +

∑N
i=1(yi − xy)2 +

∑N
i=1(zi − xz)2

N
(2)

where N is the number of sample readings, xi, yi and zi are
the data collected by the simulated gyroscope in the time i,
and xx, xy and xz are the gyroscope reading means:

xx =

∑N
i=1 xi

N
, xy =

∑N
i=1 yi

N
, xz =

∑N
i=1 zi

N
(3)

After �nishing the sensory information processing, the �t-
ness function F = D/(1 +G) is then calculated. Analyzing
this �tness function, we see that the individual better qual-
i�ed will be the one that has the best relationship between
velocity and stability, so the best solutions are those that
move fast, but without losing the stability.

3.4 Modeled robot
The robot model used in great part of the experiments is

shown in Figure 2. Its dimensions are approximately the di-
mensions of a medium sized dog. The joint restrictions used
in the simulated robot are similar to its biological equivalent,
with the following values: Hip=[-60◦;15◦]; Knee=[0◦;120◦];
Ankle=[-90◦;30◦]. All legs have these same joint restrictions.

Figure 2: Modeled robot

3.5 Morphology evolution
According to Pfeifer [19], in the nature the evolution of

the control (nervous system) does not occurs independently
of the body morphology evolution. Instead, this is a process
that happens at same time. This strategy is used a lot in
the arti�cial life area [5, 22]. In the previous section, the
robot model used in our previous work was described. This
robot was modeled in an empirical way, inspired in four
leg animals, but with some simpli�cations. But when the
morphology and the control parameters are evolved at same
time, this makes it possible to discover new robot models,
without a biological equivalent, but equally or more e�cient
[19]. Thus, LegGen was extended to allow the evolution of
the robot morphology at the same time that the evolution
of the control parameters. To make this possible, new genes
were included in the GA, which encodes the robot segments
using three �oating point values (x, y and z dimensions).

4. RESULTS
This section describes two set of experiments accomplished

with the proposed model to: (i) compare the control based
on FSM and the control based on ANN (Subsection 4.1; (ii)
compare the evolution of just the control parameters and the

evolution of the robot morphology and control parameters
at the same time (Subsection 4.2. The following sections
describe these experiments.

4.1 FSM control x ANN control
This subsection describes the experiments accomplished

in order to evaluate the robot behavior in both control strate-
gies (FSM and ANN), as described in the previous sections.
For each control strategy, we executed 10 di�erent experi-
ments, which are presented here. Table 2 shows the obtained
results, where we can see each control strategy (FSM and
ANN) and the values of the �tness, distance and gyro in-
stability measure respectively (F , D, G) indicated for each
experiment (E) in both strategies. The last two rows in
Table 2 show the mean (µ) and the standard deviation (σ)
computed over these 10 experiments.

Table 2: Evaluation of the control strategies

FSM ANN

E F D G F D G
1 14.04 32.17 0.128 16.27 29.19 0.079
2 14.28 32.38 0.126 16.63 28.31 0.070
3 13.18 30.33 0.129 16.99 27.85 0.063
4 15.87 26.81 0.069 16.68 27.91 0.067
5 16.64 36.60 0.120 16.16 28.20 0.074
6 16.48 27.69 0.068 15.97 31.13 0.093
7 14.88 31.69 0.112 17.33 29.63 0.070
8 13.77 29.02 0.110 16.65 29.04 0.074
9 15.33 34.41 0.124 16.29 30.15 0.085
10 15.80 37.01 0.134 16.23 29.81 0.083
µ 15.03 31.81 0.112 16.52 29.12 0.076

σ 1.19 3.48 0.024 0.42 1.08 0.009

In the experiments using the FSM, we �xed the number of
states to four. In the experiments using the neural network
we adopted a network with three neurons in the hidden layer.
These parameters were de�ned after a careful preliminary
study based on experiments. Figure 3 shows the boxplot
graph and the 95% con�dence interval (CI) of the �tness
values obtained in Table 2 experiments.

(a) Boxplot (b) Con�dence interval

Figure 3: Evaluation of the control strategies
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According to Figure 3 we can a�rm that the results ob-
tained by the ANN are clearly superior to those obtained
using the FSM, since the con�dence intervals are not su-
perposed. Besides, the results obtained using the FSM are
more unstable with a large variability. Figure 4 compares
the �tness improvement of the population during the evolu-
tion (best and mean �tness) obtained for each control strat-
egy. The experiments showed in this �gure are those that
achieved the best results in our simulations.

Figure 4: Evolution progress

It is clear that the evolution of the neural control parame-
ters need more generations (epochs) in order to achieve good
results. This is due to the ANN search space (44 synaptic
weights) larger than the FSM search space (3 parameters).
Figure 5 shows a robot controlled by a FSM and Figure 6
shows a robot controlled by an ANN.

Figure 5: FSM robot control

Figure 6: ANN robot control

4.2 Morphology evolution x just control
This section describes the experiments accomplished in or-

der to evaluate the morphology evolution importance. We

executed 10 di�erent experiments with the ANN controller
(i) evolving just the control parameters and (ii) evolving
the robot morphology and control parameters at the same
time. Table 3 shows the results obtained in these experi-
ments. The �rst column (E) describes the individual ex-
periment index. The next columns show the values of the
�tness function (F ), distance (D) and gyro instability mea-
sure (G), respectively. The last two rows in Table 3 show the
mean (µ) and the standard deviation (σ) indicated over the
10 experiments. We spent a total of 149.22 hours processing

Table 3: Importance of morphology evolution

Just control Morphology and control
E F D G F D G
1 16.26 29.19 0.079 18.80 38.03 0.101
2 16.64 28.31 0.070 17.90 32.96 0.075
3 16.99 27.85 0.063 19.84 39.52 0.099
4 16.68 27.92 0.067 17.80 37.86 0.112
5 16.16 28.20 0.074 20.09 27.41 0.031
6 15.96 31.13 0.093 15.90 32.80 0.105
7 17.34 29.63 0.070 18.87 41.13 0.117
8 16.65 29.04 0.074 18.50 36.22 0.095
9 16.29 30.15 0.085 19.08 39.16 0.105
10 16.23 29.81 0.083 15.57 37.40 0.140
µ 16.52 29.12 0.076 18.24 36.25 0.098

σ 0.42 1.08 0.009 1.50 4.10 0.029

the �nal experiments of Table 3. Figure 7 shows the box
plot graph and the con�dence interval (CI) of 95%, related
to the �tness values obtained in Table 3 experiments.

(a) Boxplot (b) Con�dence interval

Figure 7: Importance of morphology evolution

According to Figure 7, the results obtained by the mor-
phology and control evolution are clearly superior to those
obtained using just the control evolution, since the con�-
dence intervals are not superposed. Figure 8 shows a walk-
ing accomplished by an evolved robot. Figure 9 shows the
morphologies evolved in Table 3 experiments. Observing
Figure 9, it is noticed that the large state space allows the
evolution of di�erent e�cient solutions, in a similar manner
that was occurred in the natural evolution.
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Figure 8: Robot evolved in the 6th experiment

Figure 9: Robot morphologies evolved

5. CONCLUSIONS AND PERSPECTIVES
The main goal of this paper was to describe our research

and experiments with autonomous robots, in which were
evolved stable gaits of simulated legged robots in a phys-
ically based simulation environment. These experiments
were accomplished using the LegGen simulator, which was
developed in order to study the automatic con�guration of
parameters used to control the gait of legged robots. In the
LegGen simulator, the robot joints are controlled using two
di�erent strategies: (i) GA evolved a �nite state machine
and (ii) GA evolved an arti�cial neural network. Several
experiments were achieved, comparing both approaches and
demonstrating (with a valid statistical analysis) that the
neural controller is superior to the FSM controller, obtain-
ing a better performance (more stable, better displacement).
Besides, the experiments demonstrate that morphology evo-
lution is better than evolution of control parameters only.
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