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ABSTRACT 
This paper describes a three-dimensional terrain mapping and 
classification technique to allow the operation of mobile 
robots in outdoor environments using laser range finders. We 
propose the use of a multi-layer perceptron neural network to 
classify the terrain into navigable, partially navigable, and 
non-navigable. The maps generated by our approach can be 
used for path planning, navigation, and local obstacle 
avoidance. Experimental tests using an outdoor robot and a 
laser sensor demonstrate the accuracy of the presented 
methods. 
 
Keywords 
Terrain and environment mapping, terrain segmentation, 
mobile robots, laser range finders. 
 
1. INTRODUCTION 

Mobile robotics is a field of robotics focused on the 
development of devices capable of moving autonomously to 
perform predetermined tasks. In order to navigate safely, 
robots use perception sensors like lasers and cameras to get 
information from the environment and detect potential 
obstacles. Usually, these sensors are also used to create 
internal models of the environment (maps), which allow 
localization and path planning. In mobile robots navigation, 
maps are widely used to create terrain computer 
representations. Therefore, using terrain classification 
methods, it is possible to identify navigable portions of the 
land, allowing the robot to use the safest routes when 
navigating [11]. 
 

Most robotic mapping algorithms in the literature represent 
the environment with either two or three-dimensions. In 3D 
maps, the models are more detailed and usually applied to 

represent complex spaces like urban modeling. Among the 
most used 3D representation 
methods, we can cite point clouds, triangular meshes, and 
planar structures. The disadvantage of this representation is 
the requirement for a considerable storage space for modeling 
large environments. 

On the other hand, 2D maps require less computational 
resources, since they are generally represented by grids of 
cells. Thus these can be easily used to represent traversable 
paths [11]. One of the most important applications of maps in 
mobile robotics is navigation. In most cases, the robot uses a 
model of the environment to plan routes to a specific location 
avoiding obstacles. When working on outdoor, it is also 
necessary to avoid regions of the environment 
that are not appropriate for navigation like gravel, rocks 
and holes. In most 2D mapping approaches these features are 
not identified by the range sensors, once they usually only 
scan a horizontal plane in front of the robot. In these cases, a 
3D map of the terrain can be used to correctly represent the 
details of the environment. This paper shows a 3D terrain 
mapping technique and an artificial neural network-based 
classification approach. Our algorithm 
is capable of converting the 3D map of the environment into 
a 2D grid, where each cell is further classified into navigable, 
partially navigable, or non-navigable. The classification is 
performed by a multi-layer perceptron neural network that 
use the map information as input and generate the terrain 
classification output. Comparing to other works in the 
literature, most other approaches 
classify each 3D point, which demands a high computational 
load to perform. As we classify grid cells, the number of cells 
to be classified is considerably lower than the number of 
points of the 3D map, considerably improving the 
computational demand during the classifications process. 
 
1.1 Related Works 

Due to its importance in robotics, environmental mapping 
has motivated the publication of several works by the 
scientific community. 
Among them we can cite the technique proposed by [14] to 
generate accurate maps of terrain using a 2D LRF. To remove 
noises in generated maps, a filter that removes corrupted 
pixels and lost data has been developed. In another approach, 
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[10] presents a multi-robotic system equipped with a laser 
sensor to allow the construction of three-dimensional maps of 
cyclic environments in real time. To create 3D maps of urban 
structures with high precision, the method proposed by [2], 
associates images captured by a camera with data given by a 
LRF. Consequently, it could estimate the motion of the robot 
and allow the construction of detailed 3D maps. 

Besides these works, there are others devoted to 
identification of navigable areas by extracting information of 
mapped terrains. Determine which ways are safe is essential 
for outdoor navigation. In [13], the mapping task is done 
using a 2D laser sensor that combines information acquired 
by an odometer and an IMU. In this technique, flat terrain 
(e.g. walkways) is classified as navigable and 
irregular terrain (e.g. grass, gravel) is classified as non-
navigable. This classification algorithm is based on Hidden 
Markov Model. The work presented in [9] investigates a 
mapping technique that uses 3D laser range finder to make 
possible robot navigation in vegetated terrains. The work by 
[5] applies a 3D laser sensor to perform classification of the 
whole environment. The elements of the scene are segmented 
into three classes, which are, surface (e.g.ground), linear 
structures (e.g. cables and trunks) and dispersed structures 
(e.g. grass). The segmentation algorithm uses a Bayesian 
classifier. 

Video cameras have also been widely employed in terrain 
classification. In [7] is presented a method for terrain 
segmentation that combines information obtained from a LRF 
and the image captured by a camera. Colors and textures 
extracted from the images are used to classify the land as ill-
structured, gravel and asphalt. Finally, in [12] a camera and a 
vibration sensor have been used to classify terrain covered by 
the robot. 

 
2. MAPPING 

Mapping is a fundamental task to allow robot automation 
[10] [13]. Through the maps robots are able to estimate their 
own position in the environment and plan a path to a 
particular location [6], which are the basic functionalities to 
navigate autonomously. 

The mapping process consists on generating computer 
models of the real scenarios from data collected by sensors. 
Most mapping techniques are based on either distance 
sensors (e.g. laser range finders and sonar) or video cameras. 

The work presented in this paper is based on a laser range 
finder data. This type of sensor has the advantage of having 
high accuracy, ability to directly acquire the distance to 
obstacles, and their readings are little influenced by variation 
of environmental conditions. 

Part of the mapping techniques focus on creating a 
computational model of the terrain. It is particularly useful 
when the robot navigates in outdoor environments, where the 
ground is not flat. In these cases, it is necessary to identify 
the regions that can be safely traversed by the robot. 
Therefore, besides the map of the terrain, it is also necessary 
to classify the terrain according to its navigability. 

 
2.1 Terrain Mapping 

In our terrain mapping experiments we have used a 2D 
laser sensor with -10 o

Besides the data provided by the LRF, the mapping 
algorithm requires robot motion information in order to build 
the map. This information has been provided by the internal 
odometer of the robot in our tests.  

 inclination to the ground. In this 

configuration, the sensor was able to detect the ground 
approximately 2 meters ahead of the robot. The LRF has been 
configured to perform 181 points measurements at 10Hz. 
Each measurement is represented by a value that corresponds 
the distance from the laser sensor to the detected obstacle in a 
particular direction. This sensor is equipped in a Pioneer AT 
robot, which can operate on outdoors (figure 1). 

The first step to build the map is the analysis of the 
components that form the laser beam in the zx surface (figure 
2)). Based on H and D values, it is possible to determine the 
longitudinal distance d and the height of the point lz detected 
by laser. Through trigonometric calculations, we find:  

 

 
 

Figure 1: Pioneer AT Robot used in the experiments. 
 

 
Figure 2: Laser beam decomposition in zx surface. 

 
d = D • cos(10 o

lz = H – D • sin(10

).             (1) 
o

 
).            (2) 

The x and y coordinate values are directly obtained from 
robot position information. Figure 3 shows the same laser 
scanning model of the figure 2 seen above. With the ABC 
triangle, we can determine the obstacle coordinate values lx 

and ly that has the following expression: 
 

lx = px + D • cos(θ + α).         (3) 

ly = py + D • sin(θ + α).         (4) 
 

The lx, ly and lz coordinates refer only to one laser reading. 
Thus, transformations are done in all subsequent scanned 
points to obtain a dense map of the environment. In this 
manner, the mapping algorithm is capable to obtain the 
values of lx, ly and lz for all points obtained at each laser 
reading. 
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Figure 3: Laser beam decomposition in xy surface. 
3. ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANNs), are mathematical 
models inspired by the way biological nervous systems 
process information. Several different approaches of neural 
networks have been proposed in the literature for more than 4 
decades [4] [1]. Most of them are composed by a large 
number of highly interconnected processing elements called 
neurons. Among applications, neural networks have been 
widely applied to extract patterns and detect trends that are 
too complex to be identified by either humans or other 
computer techniques. In robotics, this approach has been 
successfully used in control systems. The major advantage of 
ANN is the capability of generalization and handle large 
number of data. In this work, we have used a multilayer 
perceptron (MLP), which is of a feed forward neural network 
model that maps sets of input data onto specific outputs. The 
MLP model consists of input, output and one or more hidden 
(intermediate) layers [3]. Every neuron of each layer is 
connected to every other neuron of the previous and the next 
layers with a certain weight. 

In order to correctly map the input data to an expected 
output, it is necessary to appropriately set the connection 
weights of the neurons. This task is usually known as 
learning. As MLP consists of a supervised learning technique, 
it is necessary to use previously classified examples to train 
the neural network, so it can adapt the weights (learn) and 
correctly classify other data that follow the same pattern. A 
MLP learning algorithm is the back propagation technique 
[8], which estimates the weights based on the amount of error 
in the output compared to the expected results. 

 
3.1 Map Classification 
In this work, ANNs were applied to classify terrain portions 
into one of three categories: navigable (e.g. ground, 
pathways), nonnavigable (e.g. walls, curbs) and partially 
navigable (e.g. grass). To facilitate this process, the terrain 
map was represented by 2D grids, so each cell corresponds a 
small fragment of the land. The neural network used to 
classification has three layers (input, hidden and output). The 
input layer has two units, where one represents absolute 
height of grid cells and the other one characterizes the 
relative hight between neighbouring cells. Consequently this 
ANN depends only on altitude and slope of the land. In order 
to analyze the neural network performance, the hidden layer 
was configured with different numbers of units. Finally, the 
last layer is organized with three binary outputs, which each 
unit represents one terrain category. The JavaNNS 
framework was used to build and train the networks for 
classification. Figure 4 illustrates a classifier network with 

four hidden units used in the experiments. 

 
(a) 

 
(b) 

Figure 4: Neural networks used in terrain classification. 
(a)ANN with 4 hidden units; (b)ANN with 32 hidden units. 
4. RESULTS 

In order to validate the approaches proposed in this paper, 
we performed experimental tests in outdoor environments 
using a Pioneer 3 AT robot and a SICK LMS200 laser range 
finder (Figure 5(a)). As it can be seen in Figure 5(b) that the 
3D terrain mapping algorithm could generate a precise 
representation of the environment. The columns and the grass 
can be easily identified in the 3D model.  

After building the 3D map, a 2D grid map has been 
generated based on the absolute altitude (difference between 
the altitude of the robot and the terrain point) and the 
maximum altitude difference between the 3D points in a 
given cell. These two values had been used as input of the 
ANN for terrain classification. In order to know which ANN 
configuration best fits in the terrain classification of the 2D 
maps, it was tested neural network classifiers with 4, 8, 16 
and 32 hidden units. In the learning process, each network 
configuration was trained with 628 training patterns and 363 
validating patterns. The learning algorithm was set to execute 
8000 learning cycles and 1000 update steps. In the 
experiments, all three networks obtained very similar 
performance. Table 1 shows the percentage of wrong, right 
and unknown patterns matches for the three networks. Figure 
5 illustrates the terrain map of figure 5 classified with 4 and 
32 hidden neurons, respectively. It is also relevant to mention 
that the classification results obtained with 8 and 16 hidden 
neurons were also very similar. Comparing these results, we 
can evidence that the differences in the classification are 
minor, therefore, an ANN with four units is enough for 
correct terrain classification. Nevertheless, considering the 
learning error graph (Figure 6), we can noticed that the 
topology with 4 hidden units presented a larger MSE (Mean 
Squared Error) than the 32 hidden neurons topology. 
Although the numerical difference of the error is considerable, 
the final classification of the cells used for validation were 
exactly the same. We can also notice that the classification of 
the entire map (Figures 5(c) and (d)) is very similar.  
 

 
Table 1: Statistics for classification results 

 
5. CONCLUSION 

Terrain mapping is a important capability to allow mobile 
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robots to operate in outdoor environments. This paper 
presented a 3D map technique based on a laser range finder 
information. The 3D maps are capable to represent fine 
details in the environment, as can be seen in the results 
presented. We also proposed a terrain classification technique 
based on artificial neural networks. More precisely, we 
converted the 3D map into a 2D grid representation and used 
the information of each 2D cell as input of a multi-layer 
perceptron neural network that classify that cell according to 
the navigability of the terrain. 

The terrain mapping and classification techniques have 
been validated through experimental tests and the results 
obtained confirm the efficiency of our approaches. Four 
neural network topologies have been tested and more than 99% 
of the cells in the environment have been correctly classified. 

Future work includes the use of other machine learning 
techniques to improve the terrain classification results and the 
integration of the terrain classification techniques to path 
planning algorithms. 
 

 
(a)                    (b) 

 

 
           (c)                     (d) 
Figure 5: Mapping a path with low grass in the side. 
(a)Environment picture; (b)3D map of the environment; 
(c)Classified network using 4 hidden units and (d)using 32 
units. Green color corresponds to navigable terrain, red 
color corresponds to the non-navigable terrain, and blue 
color corresponds to partially navigable terrain. 

 

 
 

(a) 
 

 
(b) 

Figure 6: MSE error graphs for learning process of 
neural network with (a) 4 hidden units and (b) 32 hidden 
units. The red line corresponds to validation set error and 

the black line corresponds to training set error. 
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