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Abstract—The main goal of this paper is to describe
the modeling, implementation and evaluation of the Genetic
Algorithm’s (GA) efficiency when applied to robotic group
formation and coordination. The robotic task in this paper
is performed over a natural disaster, simulated as a forest fire;
the simulator is detailed in [1]. The robot squad mission is
to surround the fire and avoid fire’s propagation. Experiments
have been made with different chromosome models and several
parameter’s variation. This paper describes all performed
experiments detailing all sets of parameters, including positive
and negative results. The simulation’s results1 showed that with
an adequate set of parameters is possible to get satisfactory
strategic positions for a multi-robotic system’s operation; fur-
thermore, this GA solution can be applied on similar activities.
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I. INTRODUCTION

The continuous evolution provided by mobile robotics
research area has made even more efficient robots for se-
veral functions. Research about controlling complex motor
functions are developed on several research centers around
the world, encompassing studies about sensors and actua-
tors, positioning, navigation and localization in addiction
to many other requirements related to robotic hardware,
as demonstrated by [2], [3], [4]. Specialized algorithm
development composed by rule based systems and automats
have been developed in order to coordinate these physical
sets in a dynamic environment. This is an extremely complex
challenge [5]. Giving to autonomous mobile robots the
ability of intelligent reasoning and ways to interact with the
environment is a research challenge which has attracted the
attention of a great number of researchers [2].

One of the primary goals of robotic systems usage is
that they can help in tasks extremely dangerous to human
beings, like cleaning nuclear residuals, cleaning chemical
accidents, forest fire combat or even on constructions,
agriculture, hostile environment exploration, security and
critical missions. There are many fields where a single
robotic agent is insufficient or inefficient to complete a task,
and in several activities the better idea is to use multi-
robotic systems. Multi-robotic systems are systems where
autonomous mobile robots work cooperatively to complete

1Souce-code and videos availables at http://pessin.googlepages.com

a mission with robots interaction or not [6]. These systems
are extremely dependent on control techniques. Related to
the applicability, multi-robotic systems can add mobility,
flexibility and robustness of a new way to a wide range
of new applications [7].

In [8] we proposed a simulation environment for recog-
nition and combat of forest fire with rule based agents. In
[9] we presented an evolution of the virtual environment,
using the physical simulation library Open Dynamics Engine
(ODE) [10], where new artificial intelligence techniques
where applied on the agents. This present work’s goal is
to describe experiences with genetic algorithms doing a
searching for optimal acting (strategic) positions in a multi-
robotic system. The GA evaluation is made considering a
robotic task performed over a natural disaster, simulated as
a forest fire propagation. Experiences with two and four
firefighter robots where made.

In section 2 of this paper mobile robotics concepts and
applications are presented. In section 3 some Genetic Al-
gorithm applications and related concepts are presented.
Section 4 describes the simulator, the proposed fitness and
the chromosome, concluding with detailed description of
results and experiments.

II. MOBILE ROBOTICS

The problem-solving task capabilities of multi-robotics
system depend on higher developed capacities of each single
robot; they can count including with different robots capaci-
ties (such as heterogeneous systems). Several current works
demonstrates mobile robotic usage (individual system) on
hostile operations as the rescue auxiliary robot Raposa [11]
and SACI robot [12] designed for acting on fire combat. The
militaries prototypes Boeing X-45 [13] and nEUROn [14]
that, under human-landed supervising (without embedded
pilot) are being tested for combat missions. Moreover, there
are robots to perform tasks on aquatic environments, to
space, caves and volcanoes exploration, and even to house-
hold use. There are also competitions [15], [16] that uses
small autonomous mobile robots that have missions like find
and put out a candle (as a simulated fire).

Multi-robotic systems must be formed by robots that
are able to effective acting on tasks, so knowledge about
robotic control is a very important field. Works describing
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intelligent robot navigation can be seen in [17], [18], [19]. In
2004 and 2005, DARPA Grand Challenge [20], financed by
the Defense Advanced Research Projects Agency organized
a competition where the goal was building a completely
autonomous vehicle that can complete a long way on dirt
road on limited time. In 2007 the focus of the competition
has changed. Renamed to DARPA Urban Challenge, had
a new goal to build a vehicle that can be autonomous on
urban traffic, and realize tasks like parking, overtaking and
intersection negotiations. These examples show trends in
cooperation and multiple interactions.

The main motivation on multi-robotic systems usage is
that they add extra capacity on solving problems. The
work with groups adds a great number of possibilities on
tasking-solving but bring a series of new questions to be
solved in collaboration and cooperation. Works using multi-
robotic systems like [21], [22] uses pre-programmed rules
on agents to perform formation. In [7], [23] are explored
techniques to perform works with collectives robotics, used
mainly for the purpose of applying the concept of self-
organization and collective optimization, but task division is
not directed explored. The works described demonstrate that
the application of mobile robotics in control of incidents is
an important and active topic of research and development.
These several competitions also demonstrate that there isn’t
a definitive or more adequate solution to the problem, and
it’s an open research field. In all consulted documents there’s
no consensual form to multi-robotic system’s conformation
and actuation. Unpredicted situations with large degree of
autonomy and robustness are still difficult to handle.

III. GENETIC ALGORITHMS

Genetic Algorithms [24], [25] are global optimization
techniques that use parallel and structured search strategy
[26]. It allows multi-criteria search on a multi-dimensional
space. These techniques are classified as non-supervised
because they don’t need any initial information database.
Genetic Algorithms use interactive procedures that simulate
evolutionary process. The evolutionary process is guided
by selections based on individual’s fitness. In each algo-
rithm iteration (one generation) a new set of structures
is created thought the exchange of information (bits and
blocks) between structures previously selected from previous
generation [27]. New structures are generated randomly
with some probability and included in the population. The
result tends to be an increasing on individual’s fitness. This
algorithm is structured in a way that a system’s information
can be codified like a biological chromosomes. Each value
on the sequence usually represents a system variable.

As an example of application [28] uses a GA to evolve
satisfactorily the power, direction and time to control motors
of a robotic arm. The work on [29] presents a GA that evolve
values of power and time to perform robotic walk. The work
on [30] presents a GA to evolve the way a single mobile

robot explores an unknown environment. These works show
satisfactory results for static environments, [31] describes a
possible solution to the problem of operating in dynamic
environments where a robot navigates using GA, the robot
has sensors for identification of obstacles and when a
possible collision is detected the robot stops and reactivates
planning mode using GA.

IV. GROUP FORMATION

A. Simulator

In order to build a real physical implementation of this
system, we must do the development and test before on re-
alistic simulation environments. Robotic system’s simulation
is specially necessary in case of big, expensive or fragile
robots because it’s a extremely powerful tool to eliminating
resources waste [5]. A large number of simulators has
been evaluated, where the motivation to a new simulator
development’s choice can be seen in [1]. We use C++ as
the programming language. A 2D version was developed
with SDL [32] library and a 3D version was developed to
support physically simulated robots on irregular land using
OSG [33] (3D graphics), ODE [10] (physical realism) and
Demeter [34] (irregular land). The simulator should be able
to reproduce disaster environment for multi-robotic system’s
perform. We propose the situation of a forest fire, so, in this
case a robot squad has the purpose of combat the forest fire
acting by creating firebreaks around the fire. The Figure 3(a)
represents the operation.

The implementation of the prototypes initiated with the
creation of a map that combines information on vegetation,
topography and behavior of fire. A detailed description of
this simulator can be seen in [1], [8]. Study about forest
models and residuals are very important for simulation
models improvements [8]. The creation of maps was based
on topographic charts and the forests fuel model of Ministry
of Agriculture of Brazil. We uses a hidden matrix under
land for vegetation simulation and correct fire propagation.
This matrix has, for each land area, the present kind of
vegetation. Considering wind orientation and the kind of
vegetation is possible to build fire propagation’s simulation.
Fire propagation speed respects the model from [35].

B. GA description

The GA application for robotic group formation used
GAlib library [36]. The algorithm optimizes fire combat
position for each robot on group, specifically: (i) Initial
combat position for each member of the group (beginning
point of firebreak creation); (ii) Final combat position for
each member of the group (final point of firebreak creation).
These positions are send by command messages to activate
the robots. To make the simulation is necessary: (i) Know-
ing the available number of robots; (ii) Knowing robot’s
operation speed; (iii) Robot’s initial position; (iv) Having
the ability to simulate fire propagation. To simulate fire
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Table I
CHROMOSOME STRUCTURE (GROUP OF FOUR ROBOTS).

Min. Max.
Gene Function value value

0 Initial angle of robot 0 0,0o 360,0o

1 Final angle of robot 0; initial of robot 1 0,0o 360,0o

2 Final angle of robot 1; initial of robot 2 0,0o 360,0o

3 Final angle of robot 2; initial of robot 3 0,0o 360,0o

4 Final angle of robot 3 0,0o 360,0o

5 Initial radius of robot 0 10,0m 100,0m
6 Final radius of robot 0; initial of robot 1 10,0m 100,0m
7 Final radius of robot 1; initial of robot 2 10,0m 100,0m
8 Final radius of robot 2; initial of robot 3 10,0m 100,0m
9 Final radius of robot 3 10,0m 100,0m

propagation is necessary: (i) Getting the initial fire position;
(ii) Getting wind direction; (iii) Getting a simplified copy
of the map (land and vegetation). This set of proposed
information can be totally obtained by sensors. Initially a
chromosome was proposed where each robot position where
independent, as no satisfactory results where found with
some simulations, we proposed a new chromosome where
a final robot position is the next robot’s initial position, as
presented in Table I.

The coordinates of operation are calculated applying Eq. 1
and 2 to the chromosome. Where (xf , yf ) is the robot’s final
position, (xa, ya) is the starting position of the fire, ri is the
radius (gene 5 to 9) and ai is the angle (gene 0 to 4). The
radius and the angle are specifics to each operation of each
robot (initial and final coordinate of firebreaks creation).

xf = xa + ri · cos(ai) (1)

yf = ya + ri · sin(ai) (2)

Related to GAs parameters, we use overlapping popula-
tions model (GASteadyStateGA) proposed by [37] and al-
leles (GARealAlleleSetArray) that limit value set generated
for each attribute (radius between 10 and 100 and angles
between 0 and 360 degrees). The use of alleles reduces the
search space. Also, we used real genome (GARealGenome)
optimized for float point numbers. Comparative analysis
involving binary and float point representations showed that
floating point representations has significally advantages
principally related to precision and convergence speed [38],
[39]. Selection scheme used was Stochastic Remainder Sam-
pling Selector (GASRSSelector) that has a better perfor-
mance compared with roulette scheme [38]. Subsection IV-D
describes evaluations with genetic parameter changes.

C. Fitness

The fitness function guides genetic algorithm’s optimiza-
tion. The proposed model has a fitness function that is related
with saved vegetation area and combat units usage rate (fire-
fighters robots). The developed fitness accumulates: (i) Total
burned area: try to minimize burned area, (ii) Firebreak total

area: try to minimize robot’s work area, avoiding firebreak
building on non-risk areas, (iii) Try to minimize difference
between general average of useful firebreaks in relation to
each individual useful firebreak, equalizing worked areas.
The GA tries to minimize the fitness function value, that
means less burned vegetation, less created firebreaks, and
less difference between the size of firebreaks of each robot.

D. Experiments and results

Gaussian mutation (GARealGaussianMutator) and uni-
form mutation (GARealUniformMutator) where used. In the
first case, when a reasonable chromosome is identified, small
adjustments are realized (genes are changed by gaussian
distribution). Second case changes a number for another
random one, providing abrupt changes on values. All cases
presented satisfactory results. The parameter that has bigger
impact on fitness calculation is the Total Burned Area, so is
an abrupt fitness fall on graphics when the simulation can
already put out the fire. Simulations with 2 and 4 robots
have been made. These simulations demonstrate that AG
can obtain adequate solutions for the proposed problem.
Many simulations have been made for the purpose of fitness
evolution graphics observation.

Figure 1. Evolution of fitness according to number of generations and
individuals (group of four robots).

The evolution of fitness, to four firefighter’s robots, can be
seen in Figure 1, presenting the average of three simulations
(gaussian mutation, 90% crossover rate, 10% mutation rate).
Wind propagation simulation considered west-east wind
(270o) and relative speeds 7km/h, robot navigation speed
35km/h and robot positioning on a base that is 2km far from
fire’s initial position. Figure 1 shows that the best fitness is
obtained with a 150 individuals population. Between 400
and 700 generations, fitness is almost stabilized. Table II
shows the best chromosomes resultant of three simulations
using the described parameters. Genetic algorithm’s best
individual is selected to be applied the Eq. 1 and 2, so
each robot performance’s initial and final position is given.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. (a) and (b) satisfactory results of the AG (150 individuals and
700 generations). (c), (d), (e) and (f) unsatisfactory results (less individuals).

This position is send by message to firefighters robots that
navigate to initial coordinate and make a firebreak until the
final coordinate.

The Figures 2(a) and 2(b) presents 2D visualization of
satisfactory results. Using 20, 50, 100 and 700 population
individuals the evolution generated unsatisfactory results;
Figures 2(c), 2(d), 2(e) and 2(f) present these visualization
(with unsatisfactory results). Figures 2(c) and 2(d) uses 20
population individuals and 700 generetion, in Figure 2(c)
the fire is not stopped by the firebreak. Figure 2(e) uses 50
population individuals and 700 generetion, but the firebreak
is is not well distributed among the robots. Figure 2(f)
uses 100 population individuals and 700 generetion, but the
firebreaks of the area is too large in relation to what would

Table II
BEST CHROMOSOMES (RESULTANT OF THREE SIMULATION).

Simulation
Gene A B C

0 225.72 224.89 134.82
1 199.26 200.77 142.65
2 174.12 177.86 172.33
3 155.20 160.68 196.14
4 136.38 136.64 244.84
5 27.35 28.05 54.94
6 30.45 29.75 42.95
7 33.94 30.58 35.84
8 38.08 31.12 30.37
9 35.96 33.24 26.33

be necessary.
The Figure 3 shows the satisfactory result applicated on

3D prototype. It can be seen that firefighter’s robots surround
perfectly the fire and create firebreaks on a satisfactory
way. Fire propagation speed was arbitrarily reduced for
this simulation because the ability of sending delay notices
between robot’s isn’t developed, it occurs on irregular land
navigation and it’s necessary to deviate from obstacles which
ends up navigation. Experiences with 2 robot groups has
been realized either with chromosome adaptation (Table
I shows the chromosome for four robots). Gaussian and
uniform mutation achieved 100% satisfactory results. Max-
imum, medium and minimum fitness convergence appeared
for all cases of 2 and 4 robots using as parameters 150
individuals and at least 400 generations. In all 20 simulations
we have been performed with suggested parameters, 100%
of the simulations could surround the fire in a satisfactory
way. Some simulations using different navigation speed and
fire propagation have been made and achieved good results
but are not detailed on this paper. For navigation (Figure 4)
robots use artificial neural networks detailed in [9]. More
details can be found in [40].

V. FUTURE WORK

Some approaches may be considered as future work: (i)
a detailed study on fail-tolerance methods for the combat o-
peration, (ii) the development of heuristics to make evolution
faster; (iii) studies of other techniques of group formation,
such the swarm based models [7], [23] and the Market-based
Approaches [41], (iv) the sophistication of the fire simulation
model. After the evaluation of these approaches, the system
must be built using real robots.

VI. CONCLUSION

This paper detailed the model, the implementation and
evaluation of the Genetic Algorithm’s (GA) efficiency when
applied to robotic group formation and coordination. The
robotic task in this paper is performed over a natural disaster,
simulated as a forest fire; the simulator is detailed in [1]. The
robot squad mission is to surround the fire and avoid fire’s
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(a)

(b)

Figure 3. Satisfactory results of the GA (150 individuals and 700
generations). (a) Four mobile robots creating a firebreak. (b) Two mobile
robots creating a firebreak.

propagation. Experiments have been made with different
chromosome models and several parameter’s variation. This
paper describes all performed experiments detailing all sets
of parameters, including positive and negative results. The
simulation’s results showed that with an adequate set of
parameters is possible to get satisfactory strategic positions
for a multi-robotic system’s operation; furthermore, this GA
solution can be applied on similar activities.
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Figure 4. Detailed view of navigation with obstacles avoidance.
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in Anais do IX Symposium on Virtual and Augmented Reality
(SVR’07), Petrópolis, RJ, Brasil, 2007, pp. 236–245.

145173173173
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