
A Profile-Based Method for Hardware/Software Co-design
Applied in Evolutionary Robotics Using Reconfigurable Computing

Mauricio A Dias , Daniel O Sales and Fernando S Osorio
Institute of Mathematical Science and Computation - ICMC

Mobile Robotics Laboratory - University of Sao Paulo - USP
Sao Carlos - Sao Paulo

macdias, dsales, fosorio @ icmc.usp.br

Abstract—Evolutionary algorithms are a very common tech-
nique on computational intelligence field. Some algorithms need
a huge amount of memory, making them not so trivial to apply
on embedded systems. In this work a profile-based approach
is proposed and applied in an evolutionary algorithm with
some characteristics that allow its use on embedded systems:
the micro-GA. The main goal is to improve the execution
time compared to other software algorithms obtaining also
an acceptable design time. The results presents comparisons
between implementations and discussions about soft-processor
features influence on this type of algorithm.
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I. INTRODUCTION

In recent years some heuristic methods gained researcher’s
attention, specially Artificial Neural Networks [1] and Evo-
lutionary Algorithms [2]. One specific implementation of
evolutionary algorithm is the Genetic Algorithm (GA), pro-
posed in 70’s by Holland and his students, and diffused in
1989 by Goldberg [3]. In this algorithm, the descendants
are generated by operations between individuals of the
population, and the most important operator is crossover.

The algorithm is divided in two basic steps: create initial
population and execute the main loop. The main loop
consists of making interactions with individuals (crossover
and mutation) and evaluating them, until reach the stopping
criteria, which may be a maximum number of generations,
or obtaining an individual with determinate fitness value.
With this proceeding, the algorithm is able to keep the best
solutions and explore the search space at the same time.

Evolutionary algorithms have been presenting good results
in many computational fields. Robotics is one of them. Evo-
lutionary robotics is an area that is receiving an increasing
attention from roboticss researchers recently. There are many
possible applications for this kind of algorithms on robotics
field from robot’s physical configuration to control systems
and navigation [2].

Control systems for autonomous robots are often pro-
grammed by researchers or designers. As the complexity of
an environment and task for an autonomous robot increases,
the difficulty of designing control systems by hand becomes

a limiting factor in the degree of functional complexity that
can be achieved[2]. One possible solution for this problem
is to use an automatic learning method as evolutionary
computing.

Robots can be seen as embedded systems or systems
composed by a group of embedded systems. In most cases
embedded systems have limited capacity of processing and
memory, and developing embedded systems for robotics
is a complex task because these systems share resources
with sensors and actuators. The combination of these factors
justifies the usage of more robust techniques for embedded
robotic system’s design considering performance, costs, en-
ergy consumption, processing and execution time.

At first, the solution for embedded systems design was
to implement algorithms directly in hardware. Hardware
implementation projects nowadays have been replaced by
hardware/software co-designs mainly on embedded systems
design. This choice is based primarily on increasing com-
plexity of embedded systems, reduction of time-to-market
for embedded systems design and increasing availability of
hardware with lower costs. With more available hardware
designers are more concerned with functionalities than hard-
ware optimization resulting on more successful and complex
projects in the same design time.

Co-design methods usually require flexible development
tools that allows rapid prototyping. One way to achieve
this desired flexibility level is to develop hardware with
reconfigurable computing devices such as FPGA’s.

Reconfigurable computing can be defined as the study of
computing with reconfigurable devices [4]. In essence this
definition means: reconfigurable computing is a paradigm
that has the flexibility of general purpose processors com-
bined with the performance of application specific inte-
grated circuits. Of course this characteristics are present
on reconfigurable computing in less expressive ways but
this paradigm tends to achieve high performance with high
flexibility one day. To implement reconfigurable computing
it’s necessary to use reconfigurable devices. Reconfigurable
devices are devices that allow the process of changing its
structure at run-time. There are various types of reconfig-
urable devices and one of them is specially interesting for
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this work, the FPGA’s.
Field Programmable Gate Arrays (FPGA’s) are pro-

grammable devices consisting of three main parts: pro-
grammable logic cells, configurable logic blocks and I/O
cells[4]. FPGA’s are flexible devices because, among various
features, allow hardware to be described using using high-
level Hardware Description Languages (HDL’s) and several
reconfigurations. In this work specifically, there is a free
soft-processor provided by FPGA’s manufacturer that was
used for co-design development.

A soft processor is an Intellectual Property (IP) core
which is 100% implemented using the logic primitives of
the FPGA. Other definition: a programmable instruction
processor implemented in the reconfigurable logic of the
FPGA [5]. Key benefits of using a soft processor include
configurability to trade between price and performance,
faster time to market, easy integration with the FPGA fabric,
and avoiding obsolescence. Soft processors have several
advantages and a designer can implement the exact number
of soft-processor cores required by the application. Since it
is implemented in configurable logic, a soft processor can
be tuned by varying its implementation and complexity to
match the exact requirements of an application [5].

So, this work proposes a profile-based method for hard-
ware/software co-design and presents results of applying the
proposed method for a µGA hardware implementation.

II. µ GENETIC ALGORTITHM

Micro Genetic Algorithm (µGA) is a genetic algorithm
with very small population and simple genetic parameters,
used for solving function optimization problems. It was
proposed by Krishnakumar in 1989 [6] as a faster alternative
to Simple GA [3] and other usual implementations of GA’s.

The result achieved in Krishnakumar’s work shows that
its implementation is quicker than big population approaches
in spite of its simplicity. As the number of individuals is
small, the time penalty involved in evaluating the fitness
functions and performing the genetic operators generation
after generation is smaller.

It is known that small populations generally converge to
non-optimal results, due to insufficient information process-
ing and low diversity between individuals. This problem
is solved transferring only the best individual to a new
population, and generating all other individuals randomly
avoiding early convergence. In this approach, a small size
population is generated randomly, and genetic operations
are performed until reach the nominal convergence. Then,
the best individual is transferred to a new population and
the remaining individuals are generated randomly. So, the
algorithm repeat this process until reach the stopping criteria.

Unlike in other GA implementations, the solution can be
found by evaluating the fitness of the best individual, not
only when all individuals converge to a single value. This
is also an advantage which makes µGA finish faster. The

crossover rate is usually 1, and mutation rate must be near
to 0, because enough diversity is introduced every time the
population is re-initialized.

Micro-Genetic Algorithms are useful in many applica-
tions, for example Real-Time Systems, and particulary Evo-
lutionary Robotics, where each robot can be represented as
one individual, and to have many robots is unfeasible.

III. HARDWARE/SOFTWARE CO-DESIGN

Electronic systems nowadays have become more complex
because of the rising number of functionalities that are
requested on projects. As electronic circuits become more
complex, the technical challenges in co-design will also
increase [7]. Engineering systems can be classified as a
joined operation component group developed for some task
resolution [8]. These components can be implemented in
hardware or in software, depending on what are the system’s
constraints.

Hardware/Software co-design tries to increase the pre-
dictability of embedded system design by providing analysis
methods that tell designers if a system meets its per-
formance, power, size and synthesis methods that let re-
searchers and designers rapidly evaluate many potential de-
sign methodologies [7]. Hardware/Software co-design means
the union of all system goals exploring interaction between
hardware and software components during development [9].
Figure 1 presents simplified co-design flow.

Figure 1. Co-design Flow.

Co-design is a methodology that explores the synergism
of hardware and software focusing optimization of interested
parts of the system and tries to increase the predictability
of the system design by providing method analysis that
shows to the designer if the system meets it’s performance
constraints [10]. This method really improve development in
cases that the system is designed jointly,eliminating system’s
unnecessary components.

Hardware/Software co-design is a hard task and com-
putational tools appeared to make this work faster and
increases system’s degree of optimization. The introduction
of programmable devices like FPGA’s (Field Programmable
Gate Arrays) on circuit co-design enabled flexibility and
made prototyping easier. This fact is really important be-
cause the circuit can be developed and tested before be
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manufactured reducing costs and design time. This flexibility
opens new digital circuit applications and the rise of new
Hardware/Software co-design problems [11].

Hardware/software partitioning problem has a first level
impact on system’s performance because a wrong choice can
result in an increased develop time and a final product out
of specification. A good partitioning that fit all implementa-
tion requirements optimizes operation and minimizes costs
usually resulting on an efficient project.

Initially, partitioning problems were solved by developers
with their experience and previously released works. In case
of complex systems, this work became arduous and this
fact inducted the interest on automating the process using
techniques like evolutionary computing and artificial neural
networks[12]. This automation can be achieved with EDA
(electronic design automation) tools or methods that allow
a fast search for good solutions on search space. Among
existing methods, the profiling-based methods are being
widely used nowadays [13].

A. Profiling-Based Methods

There are many methods for hardware/software co-design
and the most commonly used methods nowadays are the
profiling-based methods.

Memory Power Per Funct Per Line Call Grph
Gprof - - x x x
HDL Profiling x x - - -
ATOMIUM x - x - x
MEMTRACE x x x x -

Table I
PROFILING TOOL’S COMPARISON [13].

The performance of embedded systems is dominated
by accompanying application code[13]. The increasing
complexity of codes raised the need for profiling tools.
Profiling tools make code analysis and indicate several
system features like functions execution time and memory
usage. Each tool gives a specific group of information and
most of them have clock cycle information and table I
presents some other relevant information[13].

After obtaining profiling information, system can be mod-
ified to achieve expected performance. Profile-based meth-
ods propose code modification and improvement followed
by hardware development on extreme cases. This is a cyclic
refinement process and usually stops when co-design perfor-
mance constraints or maximum time-to-market are achieved.
Figure 2 illustrates general profile-based method design flow.

One of the most important features of this kind of methods
is that the critical part of the co-design, hardware/software
partitioning, is performed during a practical refinement pro-
cess. Due to this fact there is a high probability that the

Figure 2. General Profile-Based Method [14].

final system has one of the best partitioning contained in
the search space.

Nowadays hardware/software co-design is using soft-
processors to run developed software and to include de-
signed hardware as custom instructions for testing.

IV. METHOD IMPLEMENTATION

Previous sections presented the context that this work
is inserted. Considering these concepts the main idea is
to implement µGA in an embedded platform and achieve
an acceptable execution time for robotic applications. To
validate the implementation, some benchmark functions
were tested with many hardware configurations to evaluate
area consumption, system clock, execution time and soft-
processor pipeline influence.

Analyzing basic profile-based method implementation
presented in figure 2, some improvements can be done to
reduce co-design time and find a better final system. Figure
3 contains new method’s flowchart.

A deep analysis of figure 3 flowchart shows that there
is an improvement on development time. There are two
main cycles, the first one of software development and the
second one of hardware development. Sometimes system
requirements can be satisfied only doing software optimiza-
tions. When software optimizations reach the limit with-
out satisfying requirements, hardware development starts.
On embedded systems design, hardware development is a
costly task comparing to software development, so a large
amount of time can be saved choosing this modified method.
Together with this fact the final solution can be more
interesting in many characteristics like cost, performance
and energy because only the portion of the system that needs
acceleration will be implemented in hardware.

Some fitness functions were chosen to evaluate developed
systems during profiling-based co-design method. There are
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Figure 3. Modified Profile-Based Method.

many benchmark fitness functions available and analyzing
functions commonly used on robotics applications presented
in [2]. Some benchmark functions based on [15] were
selected.

The benchmark functions used to evaluate the perfor-
mance are some classical benchmark functions found in
literature [16],[17]. They are: (f1) Alpine, (f2) sphere, (f3)
f6schaffer and (f4) griewank. F6Schaffer is a bi-dimensional
function, which has several local minimum. Sphere function
is continuous, convex and uni-modal. Alpine and Griewank
are multi-modal, and also have several local minimum.
Figure 4 shows the plotted graphics of these functions:
Alpine (top left), sphere (top right), f6schaffer (bottom left)
and griewank (bottom right)[15].

There are many features that can be evaluated on a
hardware/software co-design. In this case the most important
is execution time, but together with execution time hard-
ware developments should achieve good values on hardware
area, maximum system clock, if there is a microprocessor
the presence of execution pipeline, dedicated modules and
energy consumption. Development time is also important on
co-design specially when associated with time-to-market.

Several available development environments and tool-
boxes could be used in this work’s experiments. Due to
researches experience, experiments were realized on Altera
Quartus II IDE and Nios II EDS and implemented on DE2-
70’s Cyclone II family FPGA manufactured by Altera. This
family is composed by hierarchy-based FPGA’s, that means,

Figure 4. Benchmark Functions.

there are basic logic blocks that are grouped to form larger
blocks and so on. Blocks are connected by programmable
interconnections and the chip is surrounded by input/output
pins. Nios II EDS supports Altera’s soft processor Nios II
that can be configured on Quartus SOPC Builder. IDE’s,
information and manuals can be downloaded in [18]. Nios
II soft-processor has three types of implementations with
different degrees of complexity and supports hardware to
be integrated as processor’s custom instructions. So devel-
oped hardware were included as custom instructions for
evaluation. Analyzed profiling were obtained with GProf
(Gnu Profiler)[19] that is integrated with Nios II EDS, that
has also a gcc compiler for Nios II processors so software
development was made on C language.

The stop criteria for all implementations of µGA is the
number of generations (f1 - 150, f2 - 200, f3 - 50, f4
- 2000). Stopping these algorithms based on fitness value
would cause different execution times and the experiments
would not be comparable. So the only difference between
algorithms occurs only from function to function not from
hardware to hardware and mainly on rates.

V. RESULTS

To evaluate the influence of changing soft-processor fea-
tures, hardware features and achieve a good result on co-
design methodology, the experiments have been done with
nine different types of hardware (soft-processor + custom
instructions) and each one executing benchmark functions
described in section 4. Before doing any hardware develop-
ment some code modifications have been done. Basically,
parameters were adjusted on pc execution of algorithms to
reach the minimum number of generations that return the ex-
pected results with precision of two decimal places. Before
executing on the soft-processor all benchmark function’s
solution were tested being almost instantaneously executed
on a dual-core Intel Pentium.

Experiments were started observing the pipelined
processor influence on execution time and area consumption.
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LE MB P Execution Time
Nios II /e 3% 72% < 1 % t1
Nios II /s 4% 75% < 1% 0.15 * t1
Nios II /f 5% 77% < 1% 0.12 * t1

Table II
PIPELINE AND AREA

Three processors have been configured for these experiments
initially, Nios II economic (e), fast (f) and standard (s).
Soft-processors had the same basic configuration with the
CPU, 100K of on-chip memory, timer for clock and JTAG
communication interface. The main difference between
these three processors is that Nios II /e doesn’t have
pipeline and embedded multipliers, and Nios II /f has
hardware improvements on execution time like dedicated
hardware for functions and acceleration between pipeline
stages. It’s important to know that these results are valid
for any soft-processor, and this specific choice (NIOS II)
is related to our research group experience with these
particular tools and IDEs. Table 1 shows the results of the
first developed hardware considering: area consumption of
the FPGA (Logic Elements (LE), Pins (P), Memory Bits
(MB)) and the comparison between mean execution time
for benchmark functions defined on section 4.

These execution times show that Nios II /f processor has
the best time but the higher area consumption. In this case,
is interesting to evaluate if a simple pipelined processor exe-
cutes the software on acceptable time to save some chip area.
Execution time difference between non-pipelined processors
and pipelined processors is remarkable. Execution profiles
showed that, as expected, the main bottleneck of µGA is the
fitness function. Crossover and mutation are also problems
but 2 orders of magnitude below and this fact proves that
the change of parameters does not invalidate comparisons
between benchmark functions results.

Benchmark functions used had basically the same char-
acteristic: they work with floating point numbers. There are
two basic ways to accelerate floating point based functions:
build dedicated hardware to execute exactly that fitness
function or uses a floating point unit (FPU). Dedicated
hardware will certainly achieve the best execution time. In
this case, is necessary to maintain the maximum of flexibility
as possible, because these hardwares will be applied in
robotic applications and should be able to execute different
code, whenever possible, with the best available hardware
configuration. Some functions didn’t need floating point
division hardware but experiments considered the adoption
of this hardware to analyze the influence of this hardware
presence for all executions.

Firstly, all hardware characteristics were analyzed. Table
3 shows the results of all developed hardware systems
(Nios II /xf - FPU, Nios II /xfd - FPU+HW Divisor) area

LE MB P Clock(MHz)
Nios II /e 3% 72% < 1% 108.80
Nios II /s 4% 75% < 1% 97.54
Nios II /f 5% 77% < 1% 113.06
Nios II /ef 4% 72% < 1% 106.26
Nios II /sf 6% 75% < 1% 89.66
Nios II /ff 7% 77% < 1% 116.21
Nios II /efd 11% 72% < 1% 107.70
Nios II /sfd 13% 75% < 1% 93.39
Nios II /ffd 14% 77% < 1% 113.34

Table III
COMPARING DEVELOPED HARDWARE

Alpine Sphere F6schaffer Griewank
Nios II /e 33.66 2.60 4.01 1404.23
Nios II /s 3.90 0.39 0.52 363.26
Nios II /f 3.04 0.31 0.41 273.32
Nios II /ef 28.28 1.59 3.48 1419.64
Nios II /sf 3.24 0.24 0.47 351.93
Nios II /ff 2.37 0.18 0.36 281.49
Nios II /efd 28.69 1.56 3.41 1367.09
Nios II /sfd 3.28 0.21 0.48 338.54
Nios II /ffd 2.51 0.18 0.39 248.84

Table IV
ALL EXECUTION TIMES

consumption and maximum clock achieved. It’s important to
say that no compilation optimization has been set on Quartus
II IDE to make results the most generical as possible.

Table 3 contains important information. The chosen pro-
filing tool doesn’t have energy consumption information
but with this results is possible to find indicatives of this
feature. LUT function implementations on FPGA’s have the
problem that sometimes structures are not totally used and
even partially used, consuming the same amount of energy of
a fully utilized structure. Other thing that impacts directly on
energy consumption is the clock frequency. Then analyzing
all these features, in all cases standard processor balanced
area consumption with clock frequency. Other thing to notice
is that FPU + HW Divisor increases significantly logic
element’s allocations so execution time has to be analyzed
to show whether is justifiable to use this hardware.

After hardware development, execution time (in seconds)
for benchmark functions are presented on table 4.

All these execution times are the result of GProf flat pro-
file on Nios II IDE. These numbers present some interesting
results. Functions that doesn’t need floating point hardware
division had an increase on their execution time when
it was included. Soft-processor without pipeline presented
the worst times compared with pipelined processors. With
clock values of table 3, execution times of the first three
functions are acceptable for both pipelined processors and
the difference between them was minimal.

VI. CONCLUSIONS

Results presented in previous section’s tables allowed ad-
vantages and disadvantages analysis of each hardware struc-
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ture developed in this work. The results of table 3 are ordered
by co-design phase. Proposed methodology achieve great
results on each phase: first with software development part
when codes reached instantaneous execution time on PC,
second with pipeline inclusion on a simple soft-processor
then optimizing this pipeline and third with FPU inclusion
as custom instruction of soft-processor. All implementations
final execution time presented a great speedup compared to
all-software soft-processor implementation.
µGA proved to be a great alternative to embedded sys-

tems because of the small amount of memory spent and
good reached results. Hardware solution with soft-processors
achieved acceptable execution time for simple and medium-
complexity functions. Complex functions like Griewank
need some specific hardware development to achieve ac-
ceptable execution time to be embedded in a robot system.

As future works, some benchmark functions use trigono-
metric functions inside them and these functions can be
implemented in hardware as tables, decreasing execution
time. It is also possible to develop specific hardware for
complex fitness functions in order to achieve acceptable
execution time and embed this developed hardware on a
real robot system.
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