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Abstract—This paper describes the modeling, implementation,
and evaluation of RoBombeiros1 multirobotic system. The robotic
task in this paper is performed over a natural disaster, simulated
as a forest fire. The simulator supports several features to allow
realistic simulation, like irregular terrains, natural processes (e.g.
fire, wind) and physical constraint in the creation and application
of mobile robots. The proposed system relies on two steps:
(i) group formation planning and (ii) intelligent techniques to
perform robots navigation for fire fighting. For planning, we used
genetic algorithms to evolve positioning strategies for firefighting
robots performance. For robots operation, physically simulated
fire-fighting robots were built, and the sensory information of
each robot (e.g. GPS, compass, sonar) was used in the input of
an artificial neural network (ANN). The ANN controls the vehicle
(robot) actuators and allows navigation with obstacle avoidance.
Simulation results show that the ANN satisfactorily controls the
mobile robots; the genetic algorithm adequately configures the
fire fighting strategy and the proposed multi-robotic system can
have an essential hole in the planning and execution of fire
fighting in real forests.

I. INTRODUCTION

Like in nature, there are many fields where a single
agent is not sufficient or efficient to fulfill a task. Tasks
like cleaning nuclear residuals, cleaning chemical accidents,
forest fire combat or even on constructions, agriculture, hostile
environment exploration, security and critical missions may
be better accomplished using a group of agents. The use of
robotic agents instead of human beings, in these applications,
may add security, reliability and efficiency. The multirobotic
systems are extremely dependent on control techniques; they
can add mobility, flexibility and robustness of a new way to
a wide range of new applications [1], but bring a series of
new questions to be solved in collaboration and cooperation.
Specialized algorithms, composed by rules and automats have
been developed seeking to coordinate these physical sets in
dynamic environments, showing to be an extremely complex
challenge [2]; due to it, a great number of researchers are
migrating their efforts to several different approaches (e.g.
application of classical intelligent artificial techniques, social
models, market base models, swarm based models).

Navigation is a fundamental problem of robotics. Traversing
from a place to other depends of three fundamental aspects:
localization, orientation and motion controlling. To know both

1Source-code and videos availables at http://pessin.googlepages.com

localization and orientation, the mobile robot must hold sen-
sors (e.g. GPS, compass). For motion control, it must have an
appropriate number of motors. Sensors and actuators normally
are subjected to errors and interferences, thus the robot action
control must always take into account the imprecision of
involved sensors and motors. A robust system must allow, even
with imprecise sensors and actuators, the robot to establish
its objective. One machine learning technique appropriate for
this task are artificial neural networks, given its capability of
learning from examples, and generalization and adaptation of
the outputs. This is a method largely used in reactive systems
navigation controlling [3].

In the firefighting mission, one of the most important ques-
tions is related to the robot position setting. According to the
actuation capacity of each robot, the weather condition (wind,
rain), the topography, and the vegetation, varied arrangements
can be proposed. These arrangements, when suggested by a
specialist, may not take in account a large number of variables,
in this manner, for this task we can use machine learning
techniques. A machine learning method recommended for
these cases is genetic algorithms (GA) [4], [5], which consists
in a global optimization algorithm that employs parallel and
structured search strategies, directed to fitness points seeking.
Allowing the multi-criteria search in a multidimensional space
and being unsupervised, don’t make necessary any previous
information database.

In [6] we describe a simulation environment for wildfires
identification and combat with robots controlled only by rules.
In this paper we present the evolution of that work, which
has been redesigned using the physical simulation library
Open Dynamics Engine [7] and where the navigation and
the formation of the group count with machine learning
techniques.

This paper has the following structure: Section II introduces
short theoretical description of robot’s applications. Section
III presents concepts of machine learning. In section IV we
explains the developed environment. Section V describes the
multirobot operation for identification and firefighting, the
robot morphology, the building and evaluation of artificial
neural network and the building and evaluation of genetic algo-
rithms performing group formation. We finalize presenting the
conclusion of the presented work and the future perspectives.
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II. MOBILE ROBOTICS

The problem-solving task capabilities of multi-robotics sys-
tem depend on higher developed capacities of each single
robot; they can count including with different robots capac-
ities (such as heterogeneous systems). Several current works
demonstrates mobile robotic usage (individual system) on
hostile operations as the rescue auxiliary robot Raposa [8]
and SACI robot [9] designed for acting on fire combat. The
militaries prototypes Boeing X-45 [10] and nEUROn [11] that,
under human-landed supervising (without embedded pilot) are
being tested for combat missions. Moreover, there are robots
to perform tasks on aquatic environments, to space, caves
and volcanoes exploration, and even to household use. There
are also competitions [12], [13] that uses small autonomous
mobile robots that have missions like find and put out a candle
(as a simulated fire).

Multirobotic systems must be formed by robots that are able
to effective act on tasks, so knowledge about robotic control
is a very important field. Works describing intelligent robot
navigation can be seen in [14], [3]. In 2004 and 2005, DARPA
Grand Challenge [15], financed by the Defense Advanced
Research Projects Agency organized a competition where the
goal was building a completely autonomous vehicle that could
complete a long way on dirt road on limited time. In 2007 the
focus of the competition has changed. Renamed to DARPA
Urban Challenge, had a new goal to build a vehicle that could
be autonomous on urban traffic, and realize tasks like parking,
overtaking and intersection negotiations. These examples show
trends in cooperation and multiple interactions.

The work with groups adds a great number of possibilities
on tasking-solving but bring a series of new questions to be
solved in collaboration and cooperation. Works using multi-
robotic systems like [16], [17] uses pre-programmed rules
on agents to perform formation. In [1], [18] are explored
techniques to perform works with collectives robotics, used
mainly for the purpose of applying the concept of self-
organization and collective optimization, but task division is
not directed explored. The works described demonstrate that
the application of mobile robotics in control of incidents is
an important and active topic of research and development.
These several competitions also demonstrate that there isn’t
a definitive or more adequate solution to the problem, and
it’s an open research field. In all consulted documents there’s
no consensual form to multirobotic system’s conformation
and actuation. Unpredicted situations with large degree of
autonomy and robustness are still difficult to handle.

III. MACHINE LEARNING

Machine learning is an artificial intelligence field that has
with objective develop computational learning and knowledge
acquisition techniques [19]. These techniques try to achieve
an intelligent behavior and perform complex tasks with com-
petence level equal or higher than a human specialist [20].
To build the system proposed in this paper we used neural
networks and genetic algorithms, in this way, we described
briefly its features below.

Artificial neural network (ANN) are universal approxima-
tors that make mappings in multi-variable function space [21].
The capacity of learning and generalization of ANNs are
one of the greatest attractive. The information processing in
an ANN is done by artificial neural structures [19]. These
structures, as well as the artificial neuron itself are biological
analogies to the brain behavior. The backpropagation algo-
rithm [22] is a supervised learning algorithm of ANNs. The
learning training basis is a set of data that must present for each
input, the provided output for the system. The ANN training
must involve several simulation runs, initializing the weights
randomly. Other important question is the generalization level
that is usually measured through a validation base used in
parallel to the training base.

Genetic algorithms (GA) [4], [5] are global optimization
techniques that employ parallel and structured search strate-
gies. Allow the multi-criteria search in a multi-dimensional
space. They are methods classified as unsupervised, being
unnecessary any previous information database. The GAs use
iterative procedures that simulate the evolution process of
a population constituted by candidate solutions of a certain
problem. The evolution process is guided by a selection
mechanism based on fitness of individual structures. For each
algorithm iteration (single generation), a new structure set
is created by information changing (bit or blocks) between
selected structures of the previous generation [23]. The result
of this conduces to the increasing in the individual fitness.
A GA is structured in a way that the information about a
determined system can be coded similarly to a biological
chromosome, like a value array, where usually each sequence
fragment represents a variable.

When dealing with applications, [24] uses a GA to sat-
isfactorily optimize trajectory planning for a robot arm. In
[25], a GA model correctly evolves values for force and time
application to allow a robot to walk. The work [26] presents a
GA model to evolve the exploration method of a mobile robot
in an unknown environment. These works presents acceptable
results for static environments; [27] describes a possible solu-
tion for operation in dynamic places, where the robot perform
the navigation using GA. This robot is equipped with obstacle
sensors and when identifies a possible collision, it stops and
executes again the planning module using GA. In this way,
the system becomes suitable for dynamic environments.

IV. PROTOTYPE IMPLEMENTATION

In order to better understand how to proceed in wildfires
combat, and plan the strategies to be implemented in mobile
robots, we elaborated a study about real operation techniques.
This study was based on works of [28], [29], [30], [31]. To
implement the fire spreading, we obtained by [32] real velocity
measurements. Research about forest models and residues
is very important to improve the simulation models to be
reproduced in virtual environments [6]. For vegetation simu-
lation and correct fire propagation, there is a hidden matrix
under the terrain. This matrix has for each terrain region,
the type of present vegetation, consequently, associating this
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information with the wind orientation and intensity we can
build the fire propagation simulation. Regarding the wind, both
its intensity and its orientation can be generated randomly or
configured with parameters defined by the user. The time of
permanence of the fire in an area is related directly to the
present vegetation type and behaves in basis of terrain type
values, terrain slope, wind orientation and intensity. In this
way the fire spreading simulation try to model as realistic
as possible the fire propagation in the real environment. The
detailed characteristics about fire spreading modeled to this
work, as well as the forest fuel models and the real operation
techniques are compiled into [33]. The simulated terrain is
based on topographical maps and on forest fuel maps models
that can also be seen in [33].

The proposed operation model depends essentially of two
steps, planning and action, so it were implemented specific
prototypes for each step. The prototype where is executed the
action of fire-fighting robots, controlled by artificial neural
network can be seen in Fig. 3 and 4. This tridimensional
prototype uses the OSG library [34] which is responsible by
graphic output, the Demeter library [35] that is responsible
by irregular terrain generation and ODE library [7] which
is responsible by physic realism, both in the robotic mor-
phology as in the collision involving the objects presents in
the environment (e.g. robots, trees, terrain inclination). Using
ODE library allows the physically simulated robots to respect
questions like gravity, inertia and friction. The prototype where
is accomplished the planning uses a genetic algorithm and
does not needs visualization, however it is implemented with
the possibility of a 2D graphic output developed in SDL [36],
as shows Fig. 3(b). The integration between the prototypes
is done by a text file, after the evolution, the responsible
prototype builds a file with operations positions that is read in
the action prototype initialization.

V. IDENTIFICATION AND COMBAT OPERATION

We have used the environment to simulate the following
operation: a monitor agent checks the forest terrain, when
identifies an area with fire focus, it activates the strategy
evolution module (detailed in the Subsection V-B). After
getting the operation coordinates through GA, the monitor
agent sends messages to the combat robots informing its
operation positions. The agent behavior is hybrid (it has a
plan to execute the navigation and also has a sensorial-motor
reaction system), moving in direction to its specific target
and avoiding obstacles. For simulated fire-fighting we used
the indirect method [31]. The simulated fire-fighting robots
are graders that have as purpose surround the fire and create
firebreaks (area without vegetation where the fire put out due
to lack of fuel). This operation can be understood with the
Fig. 3.

A. Mobile Robots Morphology

The mobile robots were developed with the ODE library that
supports the simulation of articulated rigid bodies. The Fig. 1
shows the developed vehicle. Given the existence of physic

restrictions, the only way to control this vehicle is by applying
forces in its two simulated motors that are: an angular motor
(for steering wheel spinning) and a linear motor (for torque).
Besides the GPS, responsible to localization obtaining, each
robot has also a compass, necessary for vehicle orientation
achievement.

(a) (b)

Fig. 1. Developed mobile robots with distance sensors.

The azimuth (target angle) is obtained from current position
(GPS) and from target position (received by message). The
distance sensors are simulated sonar, bringing the features of
capacity to measure distance between 15cm and 11m, like
Polaroid 6500 (www.senscomp.com).

B. Positioning Evolution Strategy

The planning mechanism uses a GA to define the initial
and final operation positions of each robot for fire-fighting,
which is developed using GAlib library [37]. Considering
that the combat agents are graders which have the finality to
create firebreaks, we require that the GA returns the following
information: initial and final angle, and initial and final radius
for each robot, both related to the fire starting point. The
proposed chromosome can be seen in the Tab. I. In this, it
is presented information of all group of involved agents, thus,
the chromosome size depends on the number of robots in the
system. We executed simulations considering the existence of
4 combat agents.

The coordinates of operation are calculated applying Eq. 1
and 2 to the chromosome. Where (xf , yf ) is the robot’s final
position, (xa, ya) is the starting position of the fire, ri is the
radius (gene 5 to 9) and ai is the angle (gene 0 to 4). The
radius and the angle are specifics to each operation of each
robot (initial and final coordinate of firebreaks creation).

TABLE I
CHROMOSOME STRUCTURE (GROUP OF FOUR ROBOTS).

Min. Max.
Gene Function value value

0 Initial angle of robot 0 0.0o 360.0o

1 Final angle of robot 0; initial of robot 1 0.0o 360.0o

2 Final angle of robot 1; initial of robot 2 0.0o 360.0o

3 Final angle of robot 2; initial of robot 3 0.0o 360.0o

4 Final angle of robot 3 0.0o 360.0o

5 Initial radius of robot 0 10.0m 100.0m
6 Final radius of robot 0; initial of robot 1 10.0m 100.0m
7 Final radius of robot 1; initial of robot 2 10.0m 100.0m
8 Final radius of robot 2; initial of robot 3 10.0m 100.0m
9 Final radius of robot 3 10.0m 100.0m
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xf = xa + ri · cos(ai) (1)

yf = ya + ri · sin(ai) (2)

Regarding the GAs parameters, we use overlapping popu-
lations model proposed by [38] and alleles that limit value set
generated for each attribute (radius between 10 and 100 and
angles between 0 and 360 degrees). The use of alleles reduces
the search space. Also, we used real genome, optimized for
float point numbers. Comparative analysis involving binary
and float point representations showed that floating point rep-
resentations has significally advantages principally related to
precision and convergence speed [39], [40]. Selection scheme
used was stochastic remainder sampling selector that has a
better performance compared with roulette scheme [39].

Fig. 2. Evolution of fitness according to number of generations and
individuals (group of four robots).

TABLE II
BEST CHROMOSOMES (RESULTANT OF THREE SIMULATION).

Simulation
Gene A B C

0 225.72 224.89 134.82
1 199.26 200.77 142.65
2 174.12 177.86 172.33
3 155.20 160.68 196.14
4 136.38 136.64 244.84
5 27.35 28.05 54.94
6 30.45 29.75 42.95
7 33.94 30.58 35.84
8 38.08 31.12 30.37
9 35.96 33.24 26.33

The developed fitness accumulates the following final values
for each simulation: (i) Amount of burned area: seeks for
burned area minimization; (ii) Amount of area with firebreak:
seeks minimize the robots working area, and; (iii) Absolute
average error: seeks minimize the difference between the over-
all average of useful firebreaks related to the useful firebreak
created by each agent, so, the working area tends to equalize.
In the simulations we looked for fitness value minimization.

The graphic for fitness evolution for 4 robots can be seen in the
Fig. 2, presenting the average for 3 simulations. We can verify
the fitness reduction by the generations. The simulation with
150 individuals was the one that reached the lower fitness.
The satisfactory result of this simulation can be checked in
the Figs. 3(a) and 3(b). Resulting chromosomes of simulation
using 700 generations and 150 individuals is described in the
Tab. II.

(a)

(b) (c)

Fig. 3. (a) Planning result using GA with 150 individuals and 700
generations, (b) Same result in 2D visualization and (c) Theoretical sample.

Experiments with groups of 2 robots were also performed,
with chromosome adaptation (Tab. I presents the chromosome
structure for 4 robots). Both using Gaussian as Uniform
mutation we obtained 100% satisfactory results. It was pos-
sible to notice the maximum, average and minimum fitness
convergence for 2 and 4 robots cases using 150 individuals
and, at least, using 400 generations. At all we executed 20
simulations for each parameter set; for the suggested GA
parameters, 100% of simulations were able to cover the fire
in a satisfactory way. It is important to mention that we has
conduced some simulations using different navigation velocity
and fire spreading, although, with fewer experiments. These
experiments are not detailed in this paper, but also present
satisfactory results. More details can be seen in [33].

C. Navigation Control

At the beginning of combat operation, each robot receives a
message of type displace autonomously to (x,y). It makes each
robot to start navigating in direction to a requested position;
being controlled only by the ANN. The intelligent navigation
control was developed with an multilayer perceptron ANN,
trained with resilent bakpropagation learning algorithm. This
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ANN was developed and trained using SNNS [41]. The in-
telligent control performed by the ANN allows the navigation
and obstacle avoidance in a dynamic environment, using only
the locally available information obtained by the sensors of
mobile robots.

The ANN has as input the following information: (i) Vehicle
orientation acquired from a simulated compass; (ii) Vehicle
azimuth, obtained using the GPS and the message containing
the target coordinate; (iii) Five distance sensor values (sonar).
The ANN outputs are: (i) Force to be applied in the angular
motor (steering wheel, from -1.5 to 1.5); (ii) Force to be
applied on the linear motor (torque, from 0.0 to 6.0). Initial
experiments show that it is indispensable that the vehicle
decreases the speed in curves, mainly when it is closed. We
used a single ANN that controls both the steering wheel as the
torque, being able to guide the vehicle and navigate without the
necessity of a human control or a previously coded automaton
that instruct when must deviate an obstacle or how to navigate.
The final database obtained presented 4.985 registries, being
divided in 70% for training and 30% for validation.

Once obtained data for training and validation, we started
the ANN topology definition. We tested 6 different ANN
topologies, with 4, 9, 18, 24, 30 e 36 neurons in the hidden
layer. The analysis and selection of the best ANN was made
by the Mean Absolute Error (MAE) and the Mean Squared
Error (MSE). We executed 3 trainings for each ANN topology
in order to analyze the MAE, using a different random seed
in each train. The MAE used in this validation was obtained
from results analysis of ANN tests with 5.000, 10.000, 20.000,
40.000, 60.000, 80.000 and 100.000 cycles. The ANN with
4 and 9 neurons in the hidden layer not presented learning
capacity, however, the ANN training with 18, 24, 30 and 36
neurons in the hidden layer showed that all of these ANN
presents learning capacity, being the ANN with 24 neurons
in the hidden layer the one that showed the smaller error. In
the training cycle with the number 32.500 occurs the training
and test error curve inversion (Generalization Optimum Point).
This was the chosen ANN to be applied in the simulator. After
implementing the selected ANN in the mobile robot control
and inserting in the control system the ANN code, we evalu-
ated if the control provided by the ANN is efficient to perform
the traversing between the initial and final points given by the
monitor agent. In this way, we made numerous experiments
with different terrain topologies. We also measured the error
(imprecision) in the sensors and actuators supported by the
ANN, maintaining the navigation correct. Given the initial
and final points for an agent group, the navigation system
developed for the environment can be seen in the Fig. 4. The
environment was parameterized with 4 occupancy level for
trees. We calculated the total occupation area of trees related
to the terrain area. The occupation is approximately 10%;
5%; 2.5% and 0.625%. Results are considered satisfactory in
the following form: each vehicle must be able to traverse a
simulated region that represents an area of approximately 1
km using different tree occupation rates. Vehicles shouldn’t
collide with trees neither with other vehicles.

(a) (b)

(c) (d)

Fig. 4. Paths generated by simulation using an ANN: (a) 2.5% occupation;
(b), (c) and (d) 10% of occupation.

The simulation results, considering different types of occu-
pation with trees can be seen in the Tab. III. We can see, in this
Table, that for environments with 5% of occupation, or fewer,
the ANN was able to perform the navigation with obstacle
avoidance in 98% and 100% of the cases. This error occurs
when the vehicles entry in vegetated bottlenecking regions; a
preliminary way to treat this error would be the attribution of
a reverse gear to the vehicle, that isn’t yet implemented in our
model.

TABLE III
NAVIGATION RESULTS USING THE ANN.

Number of
navigation Area covered Satisfactory results
simulation with trees using the ANN

50 10.00% 42 (84.00%)
50 5.000% 49 (98.00%)
50 2.500% 49 (98.00%)
50 0.625% 50 (100.0%)

Other experiments were executed with the application of a
noise in the vehicle sensors and actuators. The noise applica-
tion of up to 10% maintained the network functionality, but
the noise application of 20% presented serious failures. More
details can be seen in [33].

VI. FUTURE WORKS

Some approaches are planed as future work: (i) evaluation
of fault-tolerance methods for the proposed operation; (ii)
comparing GA with other group formation techniques, like
swarm based models [1], [18] and Market-based Approaches
[42]; (iii) comparing ANN with other navigation techniques,
possibly using map characteristics; (iv) sophistication of the
fire simulation model and the robotic actuation. After analyz-
ing these new approaches, the system must be built using real
robots.
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VII. CONCLUSION

This paper presented the modeling, the implementation,
and the evaluation of a multirobotic system. The robotic task
was performed over a natural disaster, simulated as a forest
fire. The simulator supports several features to allow realistic
simulation, like irregular terrains, natural processes (e.g. fire,
wind) and physical restrictions. The proposed system relies on
two steps: (i) planning, for group formation and (ii) intelligent
techniques to perform robots navigation for fire fighting. For
planning, we used genetic algorithms to evolve positioning
strategies for firefighting robots performance. For robots oper-
ation, physically simulated fire-fighting robots were built, and
the sensory information of each robot (e.g. GPS, compass,
sonar) was used in the input of an artificial neural network
(ANN). The ANN controls the vehicle (robot) actuators and
allows navigation with obstacle avoidance. Simulation results
show that the ANN satisfactorily controls the mobile robots;
the genetic algorithm adequately configures the fire fighting
strategy and the proposed multi-robotic system can have an
essential hole in the planning and execution of fire fighting in
real forests.
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