
Vision-Based Autonomous Navigation System Using
ANN and FSM Control

Daniel Sales, Patrick Shinzato, Gustavo Pessin, Denis Wolf and Fernando Osório
Mobile Robotics Laboratory

University of São Paulo - USP
São Carlos, Brazil

dsales@icmc.usp.br, shinzato@icmc.usp.br, pessin@gmail.com, denis@icmc.usp.br, fosorio@gmail.com

Abstract— Autonomous mobile robot navigation is a very
relevant problem in robotics research. This paper proposes a
vision-based autonomous navigation system using artificial
neural networks (ANN) and finite state machines (FSM). In the
first step, ANNs are used to process the image frames taken
from the robot´s camera, classifying the space, resulting in
navigable or non-navigable areas (image road segmentation).
Then, the ANN output is processed and used by a FSM, which
identifies the robot´s current state, and define which action the
robot should take according to the processed image frame.
Different experiments were performed in order to validate and
evaluate this approach, using a small mobile robot with
integrated camera, in a structured indoor environment. The
integration of ANN vision-based algorithms and robot´s action
control based on a FSM, as proposed in this paper,
demonstrated to be a promising approach to autonomous
mobile robot navigation.

Keywords-Mobile Robotics; Autonomous Navigation; Visual
Navigation, ANN, FSM

I. INTRODUCTION
The application of Artificial Intelligence techniques to

Autonomous Mobile Robots and Intelligent Vehicles have
an important role in the international scientific robotics
community [9][13][14]. One of the most desirable features
in a mobile robot is the autonomous navigation capability.
There are many important and well known works in this
domain, as for example the Darpa Challenge (2004 and
2005 Grand Challenges at desert and 2007 Urban
Challenge) [7][8] and the annual ELROB initiative [15][16],
two of the most visible projects in this field of research.
Autonomous mobile robots usually execute three main
tasks: localization, mapping, and navigation [17]. The
localization task is related to estimating the robot’s position
in a known environment, using its sensors data. Mapping is
responsible for creating a model to represent the
environment based on robot’s localization and sensors data.
Navigation is the robot’s capability to obtain information
about the environment through its sensors, process it, and
act, moving safely through this environment. In order to
develop an Intelligent Autonomous Vehicle, capable of
navigating into structured environments composed by roads

and streets, one can assume that the robot already knows its
approximate localization (e.g. using a GPS), the environ-
ment map and the path to be followed (origin/destination).
Navigation in this environment consists basically to follow a
well defined path, considering the road/street borders.

In this paper we focus on the navigation task, following a
path defined by a road (road following task) which has a
navigable area (inside the road) and non-navigable area
(outside the road borders). Our main goal is to reproduce the
control of a vehicle navigating into a road, using a vision-
based system, and following the path defined by the road in a
small scale (using a small robot). This small vehicle should
also be able to decide when/how to proceed in order to turn
left or right, even when the visual information about the road
is out of its field of view.

Our vision-based navigation approach uses a group of
Artificial Neural Networks (ANNs) combined with the
implementation of a Finite State Machine (FSM) to
autonomously control a robot. The mobile robot platform
used is a Surveyor SRV-1 robot with an integrated camera
and wireless connection (Wi-Fi). The experiments were
conducted in an indoor environment reproducing a typical
road following navigation task.

 The next topics of this paper are organized as follows:
Section II presents a review of some related works; Section
III presents the techniques and features used to identify the
navigable region in the image, identify the current state and
act, moving the robot through the environment; Section IV
shows the experimental results obtained from tests in the real
environment; Section V presents the conclusion and future
works

II. RELATED WORKS
Many different approaches were developed for

navigation, using different types of sensors (e.g. laser, sonar,
GPS, IMU, compass), individually or grouped [9][17][18].
One of the currently most studied approaches is the vision-
based navigation methods. These methods adopt cameras as
the main sensor. Cameras proved to be very suitable sensors
for route following and obstacle avoidance because of its
light weight and low energy consumption [1]. Moreover, an
image can give many types of different information about the
environment at the same time, without requiring to work

2010 Latin American Robotics Symposium and Intelligent Robotics Meeting

978-0-7695-4231-7/10 $26.00 © 2010 IEEE

DOI 10.1109/LARS.2010.26

85

fusioning information from several different sensors. It is
also possible to reduce costs using a camera instead of other
sensors [2].

In the implementation of route following and navigation
systems, for structured or semi-structured environments, it
is usual to implement vision-based approaches [3][7][9][10]
[11]. These systems classify the image, segmenting the road
region, and identifying the navigable area in front of the
vehicle. The output of these systems is an image with the
road surface segmented, indicating a safe zone for
navigation.

Although the previously mentioned techniques provide
good results, the field of view of commercial cameras is
very restricted, and many solutions require the fusion of
data from laser sensors (e.g. Sick Lidars, IBEO, Velodyne),
radar sensors, and/or special vision systems (e.g.
omnidirectional cameras) [7][8] [9][18]. These solutions are
very expensive, where in our proposed approach we would
like to use only one single usual/commercial camera.

In order to validate our autonomous navigation system, a
simple reactive image-based system was not adequate,
since, as described above, the camera field of view is very
restricted, and the immediate reaction to the information
provided by the vision system is not enough to guarantee the
correct mobile robot control. A more robust control system
should be implemented.

In Robotics, Finite State Machine (FSM) [19] based
approaches are often used [20][21], as for example, the
“Situated Automata” and the “Reactive Deliberation
Architecture”. FSMs are useful because the system can be
easily described as a sequence of states (context changes),
taking into account: inputs (sensors) that allows changing
from one state (situation) to another one, and also defining
for each state a specific action (motor action) associated to
it. So for each state and state change, the robot is able to
react properly. We chose to implement our control system
based on this main idea that the mobile robot control system
can be described by a FSM, using as inputs the route
detection information obtained from images..

III. METHODOLOGY
In order to safely navigate through the environment, it

was needed a method to identify the navigable areas. In the
work proposed by Shinzato [3], a set of ANNs was used to
identify the navigable region, and its performance was
evaluated, obtaining good results. The system combines the
output of four Multi-Layer Perceptron (MLP) networks,
adopting a group of networks [12] to identify the navigable
region. This combination’s result is a visual navigability
map which can be used as input for the FSM based
navigation control method.
As done in [3], a block-based classification method was
used. It consists on dividing the image in blocks of pixels
evaluated as a single unit. A value is generated to represent
this group, and this value can be the average of the RGB

(Red-Green-Blue color channels), HSV (Hue-Saturation-
Value color attributes), entropy, and other features from the
set of pixels represented in this block. In the image slicing
step, a frame with resolution (M x N) pixels is sliced in
groups with (K x K) pixels, as shown on Fig 1.

The captured image is represented by a matrix I of (M x

N) size and the processed image is represented by a matrix
G of (K x K) size. The element I(m,n) corresponds to the
pixel in row m and column n of image, where (0 m <M)
and (0 n < N). Therefore, group G(i, j) contains all the
pixels I(m, n) in such a way that ((i * K) m < ((i * K) +
K)) and ((j * K) n < ((j * K) + K)). This strategy has been
used to reduce the amount of data, allowing faster
processing.
 After calculating the attributes of all image’s blocks, they
are ready to be classified by an ANN. Four ANNs are used,
each of them classifies the block as navigable or non-
navigable, receiving one block’s attributes as input, and
giving 0.0 or 1.0 as output (0 for non-navigable and 1 for
navigable).
In this work, the used ANNs have one hidden layer with
five neurons, the output layer with one neuron and the input
layer with four or five neurons (Fig 2), according to the
features used as inputs.

The main difference between the four ANNs used is the

attribute set used as input. These attribute sets (see Table 1)
are calculated during the segmentation of the image in
blocks. The attribute choose was made based on results
from work [3]. More information about these attributes can
be found on [4],[5] and [6].
 After obtaining the four outputs for each block, the average
value between these four values is calculated, in order to

Fig. 2. ANN topology. Image attributes as input, and classification as

output: 0 for non-navigable and 1 for navigable

Fig. 1. Frame slicing: 320x240 image sliced into blocks

of 10x10 pixels

86

compose the final value for each position of the navigability
matrix. Figure 3 shows the structure of the classifier which
combines the outputs of the ANNs.

TABLE I. INPUT ATTRIBUTES FOR EACH USED ANN

ANN Input Attributes

ANN1
R average, B average, H average, V entropy and
HSV energy

ANN2 R average, H average, H entropy and V entropy

ANN3 B average, S entropy, V entropy, S energy and
HSV entropy

ANN4 B average, V entropy, S energy, S variance and
RGB entropy

As the final output values vary between 0.0 and 1.0,

several levels of certainty could be set in the navigability
matrix, so in order to avoid this problem, the values were
approximated to:
• 0.0, if output 0.3, representing non-navigable block;
• 1.0, if output 0.7, representing navigable block;
• 0.5 if 0.3 < output < 0.7, representing doubt about the

navigability of the block;

The training phase of the ANNs is done with the first
frame captured. This training is done through an interactive
interface where the user must select the navigable and non-
navigable blocks, thus calibrating the system to current
route visual conditions. Then, the training’s result is shown
and the user can determine if a new training is needed or if
the autonomous navigation can be started.

Once the ANN training process is complete, the system is
able to start the navigation step. The navigation is based on
a FSM control, so is possible to say that the system is not
purely reactive, because it does some kind of planning based
on memory of last state detected (situation context).

This type of planning is needed because there are some
special situations, for example 90º turns, where the system
detects the turn before the point where the robot really needs
to turn. At the turning point the route will not be visible
anymore. To solve this problem, it is necessary to keep the
information about the side of the turn detected and then,
when the route is not visible anymore, make the robot turn
to that side.

This context-dependent task can be easily implemented
using a simple FSM. If we adopt a route map, the FSM can
be also used to decide if the robot should turn to the left, to
the right, or go straight ahead when arriving to an
intersection of roads. The FSM can be easily extended in
order to take care of several different situations.

The first step of the FSM control stage is to extract the
appropriate information from the image containing the
segmented route (navigable area) and use it as input. This
input is evaluated comparing the data with the default values
which define each state.

One peculiarity of structured environments is to show
some kind of pattern in the navigable area. In other words,
different roads may have some similarities when captured
by a camera, as shown on Fig 4, where four different
straight roads pictures have the same shape.

The navigability matrix for most straight route segments

is fulfilled in a similar way, defining an easily recognizable
shape. As defined in straight paths, each route configuration
has a specific pattern associated, so this feature is the basis
of FSM’s state detection. In order to identify the current
state, it was needed to develop a way to evaluate the naviga-
bility matrix, identifying a specific route configuration. This
is done analyzing specific areas of the navigability matrix
which contain the wanted information about the route
configurations as shown on Fig 5. The A0 zone is the area
above the horizon line in the original frame, and does not
affect the result, so it is not processed. A1, A2 and A3 are
the areas of interest, which can help us to determine the
route shape and input parameters for the FSM.

As previously shown, the matrix is fulfilled with 0 (zeros)

for non-navigable blocks, 0.5 for uncertain blocks or 1 (one)
for navigable blocks, so it is easy to deduce that in a straight
path for example, most elements inside A2 are equal to 1’s
and elements inside A1 and A3 are 0’s. Likewise, in a “left
turn” state, A1 has some elements with value 1, A2 has all
elements with value 1, and A3 has most elements with value

Fig. 5. Areas of interest in the navigability matrix.

Fig. 4. Photos of four different straight roads. When processed, all of
them will result in a triangle as the navigable area

Fig. 3. Classifier Structure. Value in navigability map is the average

between the outputs of the ensemble of four ANNs

87

0. Thus, the average between all the values of each area is
calculated, and every state has defined his own typical value
set for A1, A2 and A3. The states and their associated
actions we implemented, in order to execute the experiments
described in the next section, are shown on Table 2.

TABLE II. FSM STATES AND ACTIONS

State Related Action

Straight route Go forward

90º left turn Keep left turn in memory and go forward

90º right turn Keep right turn in memory and go forward

Left turn Smooth turn to the left

Right turn Smooth turn to the right

End of Route If any side turn is in memory pivot 90º to that side,
otherwise smoothly spin to left

After detecting the state, a command is sent to the robot,

in order to move it through the environment. Then, a new
image is captured, and all process is repeated. The full
navigation system’s diagram is shown on Fig 6.

It is important to observe that: (i) the vision system can be
trained to recognize different types of road images, like
asphalt, different pavements, natural soil roads, or even
artificial roads as the one used in our experiments; (ii) the
FSM can be structured in order to recognize different
situations and to execute different types of actions, so we
can easily extent the set of mobile robot behaviors. The
adaptability of our system to different situations and tasks,
demonstrates the flexibility of the proposed method.

IV. EXPERIMENTS AND RESULTS
Experiments were accomplished using a mobile robot,
Surveyor SRV-1Q [22] (Fig. 7). This is a small robot
developed for academic purposes, equipped with a 500 MHz
MIPS processor, 32Mb RAM memory, digital camera with
resolution ranging from 160x128 to 1280x1024 pixels, two
laser pointers and wireless 802.11b/g. It has also
DHCP/HTTP server running on-board. By default, the
connection is established in Ad-Hoc mode, and the robot is
controlled by sending/receiving packets through sockets.

A programming interface (API) in “C” was not provided
by the robot’s manufacturer, so specific high-level functions,
necessary to our implementation and to allow the integration
to the other software modules, were not available. In order to

simplify the programming process and to make it less error-
prone, a library with high-level functions was developed in
C/C++1.

Basically, the set of classes organizes sending and

receiving messages through TCP/IP sockets. This way,
high-level commands can be easily written. In order to
create a “platform-free” code, GNU/Linux’s and Window’s
default libraries (<sys/socket.h> and <winsock.h>
respectively) were not used; instead of using those libraries
we choose to adopt SDL_Net library [23] which is free,
open source and portable. SDL is very commonly used in
multimedia applica-tions, such as network games, and many
operating systems are supported. The ANNs were
implemented using FANN [24], a free open source neural
network library which implements multilayer artificial
neural networks in C. Image processing routines were
implemented in OpenCV [25], a free open source library for
real time computer vision.

The frame size used is 320 x 240 and each block has 10 x
10 pixels size, resulting in a 24 lines x 32 columns naviga-
bility matrix. The frame rate varies, because a new frame is
taken only after moving the robot, as shown previously.

The control program developed executes the steps
presented in the previous section (ANN and FSM) in a
Linux platform. All the main processing is done by a remote
computer, which receives the images from the robot, runs
the program and sends back commands to the robot. It
communicates via Wi-Fi with the robot receiving the
captured frame, and sending the commands to control the
robot’s motors.

The first step is to capture the first frame, and open an
interface where the user may define which are the navigable
and non-navigable blocks. The training is done, and the user
can choose if a new training will be required or if the
autonomous navigation can be started. After this, the robot
starts to move autonomously, whitout any user intervention.
All captured frames are saved at the computer’s disk, and
navigability matrix for each frame too. Each frame is
mapped into a three-color image frame: black for non-
navigable points, white for navigable and grey for uncertain
about the navigability.

1 Source code available at:
 [http://www.lrm.icmc.usp.br/wiki/index.php/SRV-1Q]

Fig. 7. Surveyor SRV-1Q tracked robot.

Fig. 6. Proposed method flowchart.

88

As SRV-1Q is as small indoor robot, the experiments were
realized in a structured indoor environment, made with
similarities to outdoor structured environments in order to
evaluate the technique and validate its results. Fig 8 shows
some scenes of the created environment with the robot
navigating through them. Many situations commonly found
in real outdoor road following tasks were simulated, as “V
turns”, smooth turns, 90º turns and straight paths.

The robot performed well and as expected on all of

presented situtations. Some videos demonstrating the
robot’s navigation following a route based on the ANN and
FSM control are available at youtube, on LRM’s channel
(http://www.youtube.com/watch?v=K1c-6r_-CxY).

In a single straight route, the robot’s behaviour is to
navigate forward from the beginning to the end of route.
Then, the robot turn to left every time it finds the road end,
turning to left until it finds the the route again and aligns to
it, starting to follow the route again.

This also happens when, for any reason, any part of the
road is not detected. For turns with less or more than 90º,
the robot turns slowly until aligning with the road. This way
the robot is able to follow a road, given preference to
turning to left, if no previous context information (memory)
was provided by the FSM.

Fig 9, Fig 10 and Fig 11 show the comparison between
the original frame taken from robot’s camera and the frame
generated representing the navigability map of three
different states. In all of them the detection of the road was
accurate.
Fig 12 and Fig 13 show some error observed during
navigation. Due to the limitations of the vision system initial
training, some objects were wrongly classified as navigable
points (see Fig 12) and could interfere on state detection if
they were inside any of the control areas observed (areas of
interest as indicated in Fig. 5).

Another problem can occur when the local illumination

conditions change. Points in the route with different light
incidence were not classified accurately, as shown on Fig
13. The number of uncertain image blocks, represented by
gray blocks, or even the number of non-navigable blocks in
this scene is higher. Once the uncertain block values does
not affect the areas of interest average (A1,A2,A3 –
representing the route direction), sometimes is possible to
detect a wrong state input, when the ammount of these
points is too large. Consequently, the FSM is not very
robust to noisy inputs.

Fig 9 – Comparison between a straight way frame and the

navigability map generated from it

Fig 10 – Comparison between a 90 º left turn frame and the
navigability map generated from it

Fig 11 - End of route state

Fig 12 - Cabinet wrongly classified as navigable

Fig 13 - Noisy navigability map

 a) 90º left turn b) left turns

 c) 90º left turn after smooth turn d) Right turn with more than 90º

Fig. 8. Some points of the path which simulates situations of outdoor
structured road following environments

89

Despite these problems, the system has been accurate in
almost all test cases. In normal conditions the mobile robot
achieved 100% of correct task executions, only when the
local illumination was not adequate or when the image
proceesing ANN training was not properly executed, the
robot failed in the road following task.

V. CONCLUSION AND FUTURE WORKS
The implemented method obtained very good results,

showing that vision-based navigation strategy integrated to a
FSM control is a very convenient approach for mobile robot
navigation.

Considering the fact that the vision system can be re-
trained to recognize different types of road images, we
expect that this approach could be quickly adapted to be
used by an outdoor vehicle (as suggested also by the
experiments presented in [3]). The FSM can also be quickly
adapted to recognize different types of situations and
execute different types of actions, so we are sure to be able
to easily extent the capabilities of this initial system. The
proposed method demonstrated to be flexible in order to be
adapted to different situations and applications.
On the other hand, there are several ways to improve the
work presented in this paper. In order to avoid the method´s
imprecision issues and simplify the system application even
in more complex environments, more robust techniques
should be investigated: automatically detection of environ-
ment illumination conditions changing with self re-trainable
ANNs; creation of more robust FSMs which may possibly
deal with noisy inputs (improve the FSM control by another
method, based on machine learning for example);
introduction of more complex behaviors in the robot control,
as for example, obstacle detection and avoidance. Our
research group is currently working on these issues.

ACKNOWLEDGMENT
The authors acknowledge the support granted by CNPq

and FAPESP to the INCT-SEC (National Institute of Science
and Technology - Critical Embedded Systems - Brazil),
processes 573963/2008-9 and 08/57870-9. Also
acknowledge CAPES and CNPq for their financial support
of this research (doctoral grant).

REFERENCES

[1] Zingg, S., Scaramuzza, D., Weiss, S., and Siegwart, R. MAV
Navigation through Indoor Corridors Using Optical Flow , IEEE
International Conference on Robotics and Automation (ICRA 2010),
Anchorage, Alaska, May, 2010.

[2] Scaramuzza, D., Siegwart, R. Appearance Guided Monocular
Omnidirectional Visual Odometry for Outdoor Ground Vehicles.
IEEE Transactions on Robotics, vol. 24, issue 5, October 2008.

[3] Shinzato, P. Y, Wolf, D. F. Features Image Analysis for Road
Following Algorithm Using Neural Networks. September, 2010.

Accepted to 7th IFAC Symposium on Intelligent Autonomous Vehicles
2010 (IAV). Lecce, Italy

[4] Shannon, C., E., A mathematical theory of communication, Bell
System Technical Journal, vol27, 1948.

[5] Joblove, G., H., Greenberg, D., Color spaces for computer graphics.
SIGGRAPH, Comput. Graph., v. 12, n.3, p.20-25, 1978.

[6] Reiter, C., With j: image processing 2: color spaces. SIGAPL APL
Quote Quad, v.34, n. 3, p.3-12, 2004.

[7] Thrun, S. et al. (2006) "Stanley: The Robot that Won the DARPA
Grand Challenge," Journal of Field Robotics, Vol. 23, No. 9, June
2006, p.661-692. http://robots.stanford.edu/papers.html (Visited
08/02/2009).

[8] Urmson, Chris et al. (2008). “Autonomous driving in urban
environments: Boss and the Urban Challenge”. In: Journal of Field
Robotics. Vol. 25 , Issue 8 (August 2008). Special Issue on the 2007
DARPA Urban Challenge, Part I. Pages 425-466.

[9] Buehler, Martin; Iagnemma, Karl; Singh, Sanjiv (Editors). The 2005
DARPA Grand Challenge: The Great Robot Race (Springer Tracts in
Advanced Robotics). Springer; 1st. edition (October, 2007).

[10] Nefian, A.V.; Bradski, G.R. (2006) “Detection of Drivable Corridors
for Off-Road Autonomous Navigation”. ICIP-06: Proceedings of the
IEEE International Conference on Image Processing. pp. 3025-3028.

[11] J.M. Álvarez, A. M. López, and R. Baldrich. (2008) “Illuminant
Invariant Model-Based Road Segmentation”. IEEE Intelligent
Vehicles Symposium, Eindhoven, Netherlands, June 2008.
http://www.cvc.uab.es/adas/index.php?section=publications

[12] Bishop, C.M. (1995) Neural Networks for Pattern Recognition,
Oxford: Oxford University Press.

[13] Bishop, R.; (2000) "Intelligent vehicle applications worldwide". IEEE
INTELLIGENT SYSTEMS - Intelligent Systems and their
Applications, Volume: 15, Issue: 1. pp.78-81.

[14] Bishop, Richard. (2000). "A Survey of Intelligent Vehicle
Applications Worldwide". Proceedings of the IEEE intelligent
Vehicles Symposium 2000. pp.25-30.

[15] Kuhnert, K.-D. (2008). "Software architecture of the Autonomous
Mobile Outdoor Robot AMOR". Proceedings of the IEEE Intelligent
Vehicles Symposium, 2008. pp. 889-894.

[16] Schilling, Klaus. (2008) “Assistance Systems for the Control of
Rovers”. SICE Annual Conference, Tokyo, Oct. 2008.

[17] Wolf, Denis F.; Osório, Fernando S.; Simões, Eduardo; Trindade Jr.,
Onofre. Robótica Inteligente: Da Simulação às Aplicações no Mundo
Real. [Tutorial] In: André Ponce de Leon F. de Carvalho; Tomasz
Kowaltowski. (Org.). JAI: Jornada de Atualização em Informática da
SBC. Rio de Janeiro: SBC - Editora da PUC. RJ, 2009, v. 1, p. 279-
330.

[18] Goebl, M.; Althoff, M.; Buss, M.; Farber, G.; Hecker, F.; Heissing,
B.; Kraus, S.; Nagel, R.; Leon, F.P.; Rattei, F.; Russ, M.; Schweitzer,
M.; Thuy, M.; Cheng Wang; Wuensche, H.J.; (2008) "Design and
capabilities of the Munich Cognitive Automobile". IEEE Intelligent
Vehicles Symposium, 2008. Page(s): 1101 – 1107

[19] Hopcroft, J.E., Ullman, J.D. (1979) “Introduction to Automata
Theory, Languages and Computation”. Addison -Wesley, 1979.

[20] Medeiros, Adelardo A. D.. “A survey of control architectures for
autonomous mobile robots”. Journal of the Brazilian Computer
Society - JBCS. 1998, vol.4, n.3.

[21] Sahota, Michael K. “Reactive Deliberation: An Architecture for Real-
Time Intelligent Control in Dynamic Environments”. Proceedings of
the AAAI-94, p. 1303–1308.

[22] Surveyor Corporation, http://www.surveyor.com/SRV_info.html,
Accessed in May, 2010.

[23] Simple DirectMedia Layer, http://www.libsdl.org/projects/SDL_net,
Accessed in May, 2010.

[24] Fast Artificial Neural Network Library, http://leenissen.dk/fann/,
Accessed in May, 2010.

[25] Open Source Computer Vision, http://opencv.willowgarage.com/wiki,
Accessed in May, 2010.

90

