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Abstract— Autonomous mobile robot navigation is a very 
relevant problem in robotics research. This paper proposes a 
vision-based autonomous navigation system using artificial 
neural networks (ANN) and finite state machines (FSM). In the 
first step, ANNs are used to process the image frames taken 
from the robot´s camera, classifying the space, resulting in 
navigable or non-navigable areas (image road segmentation). 
Then, the ANN output is processed and used by a FSM, which 
identifies the robot´s current state, and define which action the 
robot should take according to the processed image frame. 
Different experiments were performed in order to validate and 
evaluate this approach, using a small mobile robot with 
integrated camera, in a structured indoor environment. The 
integration of ANN vision-based algorithms and robot´s action 
control based on a FSM, as proposed in this paper, 
demonstrated to be a promising approach to autonomous 
mobile robot navigation. 

Keywords-Mobile Robotics; Autonomous Navigation; Visual 
Navigation, ANN, FSM 

I.  INTRODUCTION 
The application of Artificial Intelligence techniques to 

Autonomous Mobile Robots and Intelligent Vehicles have 
an important role in the international scientific robotics 
community [9][13][14]. One of the most desirable features 
in a mobile robot is the autonomous navigation capability. 
There are many important and well known works in this 
domain, as for example the Darpa Challenge (2004 and 
2005 Grand Challenges at desert and 2007 Urban 
Challenge) [7][8] and the annual ELROB initiative [15][16], 
two of the most visible projects in this field of research. 
Autonomous mobile robots usually execute three main 
tasks: localization, mapping, and navigation [17]. The 
localization task is related to estimating the robot’s position 
in a known environment, using its sensors data. Mapping is 
responsible for creating a model to represent the 
environment based on robot’s localization and sensors data. 
Navigation is the robot’s capability to obtain information 
about the environment through its sensors, process it, and 
act, moving safely through this environment. In order to 
develop an Intelligent Autonomous Vehicle, capable of 
navigating into structured environments composed by roads 

and streets, one can assume that the robot already knows its 
approximate localization (e.g. using a GPS), the environ-
ment map and the path to be followed (origin/destination). 
Navigation in this environment consists basically to follow a 
well defined path, considering the road/street borders. 

In this paper we focus on the navigation task, following a 
path defined by a road (road following task) which has a 
navigable area (inside the road) and non-navigable area 
(outside the road borders). Our main goal is to reproduce the 
control of a vehicle navigating into a road, using a vision-
based system, and following the path defined by the road in a 
small scale (using a small robot). This small vehicle should 
also be able to decide when/how to proceed in order to turn 
left or right, even when the visual information about the road 
is out of its field of view. 

Our vision-based navigation approach uses a group of 
Artificial Neural Networks (ANNs) combined with the 
implementation of a Finite State Machine (FSM) to 
autonomously control a robot. The mobile robot platform 
used is a Surveyor SRV-1 robot with an integrated camera 
and wireless connection (Wi-Fi). The experiments were 
conducted in an indoor environment reproducing a typical 
road following navigation task. 

 The next topics of this paper are organized as follows: 
Section II presents a review of some related works; Section 
III presents the techniques and features used to identify the 
navigable region in the image, identify the current state and 
act, moving the robot through the environment; Section IV 
shows the experimental results obtained from tests in the real 
environment; Section V presents the conclusion and future 
works 

II. RELATED WORKS 
Many different approaches were developed for 

navigation, using different types of sensors (e.g. laser, sonar, 
GPS, IMU, compass), individually or grouped [9][17][18]. 
One of the currently most studied approaches is the vision-
based navigation methods. These methods adopt cameras as 
the main sensor. Cameras proved to be very suitable sensors 
for route following and obstacle avoidance because of its 
light weight and low energy consumption [1]. Moreover, an 
image can give many types of different information about the 
environment at the same time, without requiring to work 
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fusioning information from several different sensors. It is 
also possible to reduce costs using a camera instead of other 
sensors [2]. 

In the implementation of route following and navigation 
systems, for structured or semi-structured environments, it 
is usual to implement vision-based approaches [3][7][9][10] 
[11]. These systems classify the image, segmenting the road 
region, and identifying the navigable area in front of the 
vehicle. The output of these systems is an image with the 
road surface segmented, indicating a safe zone for 
navigation.  

Although the previously mentioned techniques provide 
good results, the field of view of commercial cameras is 
very restricted, and many solutions require the fusion of 
data from laser sensors (e.g. Sick Lidars, IBEO, Velodyne), 
radar sensors, and/or special vision systems (e.g. 
omnidirectional cameras) [7][8] [9][18]. These solutions are 
very expensive, where in our proposed approach we would 
like to use only one single usual/commercial camera.  

In order to validate our autonomous navigation system, a 
simple reactive image-based system was not adequate, 
since, as described above, the camera field of view is very 
restricted, and the immediate reaction to the information 
provided by the vision system is not enough to guarantee the 
correct mobile robot control. A more robust control system 
should be implemented.  

In Robotics, Finite State Machine (FSM) [19] based 
approaches are often used [20][21], as for example, the 
“Situated Automata” and the “Reactive Deliberation 
Architecture”. FSMs are useful because the system can be 
easily described as a sequence of states (context changes), 
taking into account: inputs (sensors) that allows changing 
from one state (situation) to another one, and also defining 
for each state a specific action (motor action) associated to 
it. So for each state and state change, the robot is able to 
react properly. We chose to implement our control system 
based on this main idea that the mobile robot control system 
can be described by a FSM, using as inputs the route 
detection information obtained from images.. 

III. METHODOLOGY 
In order to safely navigate through the environment, it 

was needed a method to identify the navigable areas. In the 
work proposed by Shinzato [3], a set of ANNs was used to 
identify the navigable region, and its performance was 
evaluated, obtaining good results. The system combines the 
output of four Multi-Layer Perceptron (MLP) networks, 
adopting a group of networks [12] to identify the navigable 
region. This combination’s result is a visual navigability 
map which can be used as input for the FSM based 
navigation control method.  
As done in [3], a block-based classification method was 
used. It consists on dividing the image in blocks of pixels 
evaluated as a single unit. A value is generated to represent 
this group, and this value can be the average of the RGB 

(Red-Green-Blue color channels), HSV (Hue-Saturation-
Value color attributes), entropy, and other features from the 
set of pixels represented in this block. In the image slicing 
step, a frame with resolution (M x N) pixels is sliced in 
groups with (K x K) pixels, as shown on Fig 1. 

 
The captured image is represented by a matrix I of (M x 

N) size and the processed image is represented by a matrix 
G of (K x K) size. The element I(m,n) corresponds to the 
pixel in row m and column n of image, where (0  m <M) 
and (0  n < N). Therefore, group G(i, j) contains all the 
pixels I(m, n) in such a way that ((i * K)  m < ((i * K) + 
K)) and ((j * K)  n < ((j * K) + K)). This strategy has been 
used to reduce the amount of data, allowing faster 
processing. 
 After calculating the attributes of all image’s blocks, they 
are ready to be classified by an ANN. Four ANNs are used, 
each of them classifies the block as navigable or non-
navigable, receiving one block’s attributes as input, and 
giving 0.0 or 1.0 as output (0 for non-navigable and 1 for 
navigable). 
In this work, the used ANNs have one hidden layer with 
five neurons, the output layer with one neuron and the input 
layer with four or five neurons (Fig 2), according to the 
features used as inputs. 

 
The main difference between the four ANNs used is the 

attribute set used as input. These attribute sets (see Table 1) 
are calculated during the segmentation of the image in 
blocks. The attribute choose was made based on results 
from work [3]. More information about these attributes can 
be found on [4],[5] and [6]. 
 After obtaining the four outputs for each block, the average 
value between these four values is calculated, in order to 

 
Fig. 2.  ANN topology. Image attributes as input, and classification as 

output: 0 for non-navigable and 1 for navigable 

 
Fig. 1.  Frame slicing: 320x240 image sliced into blocks  

of 10x10 pixels 

86



compose the final value for each position of the navigability 
matrix. Figure 3 shows the structure of the classifier which 
combines the outputs of the ANNs. 

TABLE I.  INPUT ATTRIBUTES FOR EACH USED ANN 

ANN Input Attributes 

ANN1 
R average, B average, H average, V entropy  and  
HSV energy 

ANN2 R average, H average, H entropy and V entropy 

ANN3 B average, S entropy, V entropy, S energy and  
HSV entropy 

ANN4 B average, V entropy, S energy, S variance and  
RGB entropy 

 
As the final output values vary between 0.0 and 1.0, 

several levels of certainty could be set in the navigability 
matrix, so in order to avoid this problem, the values were 
approximated to: 
• 0.0, if output  0.3, representing non-navigable block; 
• 1.0, if output  0.7, representing navigable block; 
• 0.5 if  0.3 < output < 0.7, representing doubt about the 

navigability of the block; 

The training phase of the ANNs is done with the first 
frame captured. This training is done through an interactive 
interface where the user must select the navigable and non-
navigable blocks, thus calibrating the system to current 
route visual conditions. Then, the training’s result is shown 
and the user can determine if a new training is needed or if 
the autonomous navigation can be started. 

Once the ANN training process is complete, the system is 
able to start the navigation step. The navigation is based on 
a FSM control, so is possible to say that the system is not 
purely reactive, because it does some kind of planning based 
on memory of last state detected (situation context). 

This type of planning is needed because there are some 
special situations, for example 90º turns, where the system 
detects the turn before the point where the robot really needs 
to turn. At the turning point the route will not be visible 
anymore. To solve this problem, it is necessary to keep the 
information about the side of the turn detected and then, 
when the route is not visible anymore, make the robot turn 
to that side.  

This context-dependent task can be easily implemented 
using a simple FSM. If we adopt a route map, the FSM can 
be also used to decide if the robot should turn to the left, to 
the right, or go straight ahead when arriving to an 
intersection of roads. The FSM can be easily extended in 
order to take care of several different situations. 

The first step of the FSM control stage is to extract the 
appropriate information from the image containing the 
segmented route (navigable area) and use it as input. This 
input is evaluated comparing the data with the default values 
which define each state.  

One peculiarity of structured environments is to show 
some kind of pattern in the navigable area. In other words, 
different roads may have some similarities when captured 
by a camera, as shown on Fig 4, where four different 
straight roads pictures have the same shape. 

 
The navigability matrix for most straight route segments 

is fulfilled in a similar way, defining an easily recognizable 
shape. As defined in straight paths, each route configuration 
has a specific pattern associated, so this feature is the basis 
of FSM’s state detection. In order to identify the current 
state, it was needed to develop a way to evaluate the naviga-
bility matrix, identifying a specific route configuration. This 
is done analyzing specific areas of the navigability matrix 
which contain the wanted information about the route 
configurations as shown on Fig 5. The A0 zone is the area 
above the horizon line in the original frame, and does not 
affect the result, so it is not processed. A1, A2 and A3 are 
the areas of interest, which can help us to determine the 
route shape and input parameters for the FSM. 

 
As previously shown, the matrix is fulfilled with 0 (zeros) 

for non-navigable blocks, 0.5 for uncertain blocks or 1 (one) 
for navigable blocks, so it is easy to deduce that in a straight 
path for example, most elements inside A2 are equal to 1’s 
and elements inside A1 and A3 are 0’s. Likewise, in a “left 
turn” state, A1 has some elements with value 1, A2 has all 
elements with value 1, and A3 has most elements with value 

 
Fig. 5.  Areas of interest in the navigability matrix. 

 
 

Fig. 4.  Photos of four different straight roads. When processed, all of 
them will result in a triangle as the navigable area 

 
Fig. 3.  Classifier Structure. Value in navigability map is the average 

between the outputs of the ensemble of four ANNs 
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0. Thus, the average between all the values of each area is 
calculated, and every state has defined his own typical value 
set for A1, A2 and A3. The states and their associated 
actions we implemented, in order to execute the experiments 
described in the next section, are shown on Table 2. 

TABLE II.  FSM STATES AND ACTIONS 

State Related Action 

Straight route Go forward 

90º left turn Keep left turn in memory and go forward 

90º right turn Keep right turn in memory and go forward 

Left turn Smooth turn to the left 

Right turn Smooth turn to the right 

End of Route If any side turn is in memory pivot 90º to that side, 
otherwise  smoothly spin to left 

 
After detecting the state, a command is sent to the robot, 

in order to move it through the environment. Then, a new 
image is captured, and all process is repeated. The full 
navigation system’s diagram is shown on Fig 6. 

 
It is important to observe that: (i) the vision system can be 
trained to recognize different types of road images, like 
asphalt, different pavements, natural soil roads, or even 
artificial roads as the one used in our experiments; (ii) the 
FSM can be structured in order to recognize different 
situations and to execute different types of actions, so we 
can easily extent the set of mobile robot behaviors. The 
adaptability of our system to different situations and tasks, 
demonstrates the flexibility of the proposed method. 

IV. EXPERIMENTS AND RESULTS 
Experiments were accomplished using a mobile robot, 
Surveyor SRV-1Q [22] (Fig. 7). This is a small robot 
developed for academic purposes, equipped with a 500 MHz 
MIPS processor, 32Mb RAM memory, digital camera with 
resolution ranging from 160x128 to 1280x1024 pixels, two 
laser pointers and wireless 802.11b/g. It has also 
DHCP/HTTP server running on-board. By default, the 
connection is established in Ad-Hoc mode, and the robot is 
controlled by sending/receiving packets through sockets.  

A programming interface (API) in “C” was not provided 
by the robot’s manufacturer, so specific high-level functions, 
necessary to our implementation and to allow the integration 
to the other software modules, were not available. In order to  

simplify the programming process and to make it less error-
prone, a library with high-level functions was developed in 
C/C++1. 

 
Basically, the set of classes organizes sending and 

receiving messages through TCP/IP sockets. This way, 
high-level commands can be easily written. In order to 
create a “platform-free” code, GNU/Linux’s and Window’s 
default libraries (<sys/socket.h> and <winsock.h> 
respectively) were not used; instead of using those libraries 
we choose to adopt SDL_Net library [23] which is free, 
open source and portable. SDL is very commonly used in 
multimedia applica-tions, such as network games, and many 
operating systems are supported. The ANNs were 
implemented using FANN [24], a free open source neural 
network library which implements multilayer artificial 
neural networks in C. Image processing routines were 
implemented in OpenCV [25], a free open source library for 
real time computer vision. 

The frame size used is 320 x 240 and each block has 10 x 
10 pixels size, resulting in a 24 lines x 32 columns naviga-
bility matrix. The frame rate varies, because a new frame is 
taken only after moving the robot, as shown previously. 

The control program developed executes the steps 
presented in the previous section (ANN and FSM) in a 
Linux platform. All the main processing is done by a remote 
computer, which receives the images from the robot, runs 
the program and sends back commands to the robot. It 
communicates via Wi-Fi with the robot receiving the 
captured frame, and sending the commands to control the 
robot’s motors. 

The first step is to capture the first frame, and open an 
interface where the user may define which are the navigable 
and non-navigable blocks. The training is done, and the user 
can choose if a new training will be required or if the 
autonomous navigation can be started. After this, the robot 
starts to move autonomously, whitout any user intervention. 
All captured frames are saved at the computer’s disk, and 
navigability matrix for each frame too. Each frame is 
mapped into a three-color image frame: black for non-
navigable points, white for navigable and grey for uncertain 
about the navigability. 

                                                           
1 Source code available at: 
 [http://www.lrm.icmc.usp.br/wiki/index.php/SRV-1Q] 

 
Fig. 7.  Surveyor SRV-1Q tracked robot. 

 
Fig. 6.  Proposed method flowchart. 
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As SRV-1Q is as small indoor robot, the experiments were 
realized in a structured indoor environment, made with 
similarities to outdoor structured environments in order to 
evaluate the technique and validate its results. Fig 8 shows 
some scenes of the created environment with the robot 
navigating through them. Many situations commonly found 
in real outdoor road following tasks were simulated, as “V 
turns”, smooth turns, 90º turns and straight paths. 

 
The robot performed well and as expected on all of 

presented situtations. Some videos demonstrating the 
robot’s navigation following a route based on the ANN and 
FSM control are available at youtube, on LRM’s channel 
(http://www.youtube.com/watch?v=K1c-6r_-CxY). 

In a single straight route, the robot’s behaviour is to 
navigate forward from the beginning to the end of route. 
Then, the robot turn to left every time it finds the road end, 
turning to left until it finds the the route again and aligns to 
it, starting to follow the route again.  

This also happens when, for any reason, any part of the 
road is not detected. For turns with less or more than 90º, 
the robot turns slowly until aligning with the road. This way 
the robot is able to follow a road, given preference to 
turning to left, if no previous context information (memory) 
was provided by the FSM. 

Fig 9, Fig 10 and Fig 11 show the comparison between 
the original frame taken from robot’s camera and the frame 
generated representing the navigability map of three 
different states. In all of them the detection of the road was 
accurate.  
Fig 12 and Fig 13 show some error observed during 
navigation. Due to the limitations of the vision system initial 
training, some objects were wrongly classified as navigable 
points (see Fig 12) and could interfere on state detection if 
they were inside any of the control areas observed (areas of 
interest as indicated in Fig. 5). 
 

 
Another problem can occur when the local illumination 

conditions change. Points in the route with different light 
incidence were not classified accurately, as shown on Fig 
13. The number of uncertain image blocks, represented by 
gray blocks, or even the number of non-navigable blocks in 
this scene is higher. Once the uncertain block values does 
not affect the areas of interest average (A1,A2,A3 – 
representing the route direction), sometimes is possible to 
detect a wrong state input, when the ammount of these 
points is too large. Consequently, the FSM is not very 
robust to noisy inputs. 

 
Fig 9 – Comparison between a straight way frame and the 

navigability map generated from it 

 

Fig 10 – Comparison between a 90 º left turn frame and the 
navigability map generated from it 

 

Fig 11 - End of route state 

 

Fig 12 - Cabinet wrongly classified as navigable 

 

Fig 13 - Noisy navigability map 

 
   a) 90º left turn             b)  left turns                      

  c) 90º left turn after smooth turn        d)  Right turn with more than 90º 
 

Fig. 8. Some points of the path which simulates situations of outdoor 
structured road following environments 
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Despite these problems, the system has been accurate in 
almost all test cases. In normal conditions the mobile robot 
achieved 100% of correct task executions, only when the 
local illumination was not adequate or when the image 
proceesing ANN training was not properly executed, the 
robot failed in the road following task.  

V. CONCLUSION AND FUTURE WORKS 
The implemented method obtained very good results, 

showing that vision-based navigation strategy integrated to a 
FSM control is a very convenient approach for mobile robot 
navigation.   

Considering the fact that the vision system can be re-
trained to recognize different types of road images, we 
expect that this approach could be quickly adapted to be 
used by an outdoor vehicle (as suggested also by the 
experiments presented in [3]). The FSM can also be quickly 
adapted to recognize different types of situations and 
execute different types of actions, so we are sure to be able 
to easily extent the capabilities of this initial system. The 
proposed method demonstrated to be flexible in order to be 
adapted to different situations and applications. 
On the other hand, there are several ways to improve the 
work presented in this paper. In order to avoid the method´s 
imprecision issues and simplify the system application even 
in more complex environments, more robust techniques 
should be investigated: automatically detection of environ-
ment illumination conditions changing with self re-trainable 
ANNs; creation of more robust FSMs which may possibly 
deal with noisy inputs (improve the FSM control by another 
method, based on machine learning for example); 
introduction of more complex behaviors in the robot control, 
as for example, obstacle detection and avoidance. Our 
research group is currently working on these issues. 
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