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Abstract— Evolutionary algorithms are very common tech-
niques used in computational intelligence and robotics field
applications. Some algorithms need a large amount of memory
and processing power, making them difficult to implement into
embedded systems. In this work a profile-based approach is
proposed and applied in an evolutionary algorithm with some
characteristics that allow it’s use on embedded systems and
robotics: the µGA. The main goal is to implement a new
hardware-software co-design architecture for this genetic algo-
rithm with better execution time than algorithms implemented
in software (using general purpose hardware solutions). The
presented results show a comparison between different co-
design implementations and discussion about new architecture
advantages.

I. INTRODUCTION

In recent years some computational intelligence meth-
ods gained researcher’s attention, specially Artificial Neural
Networks and Evolutionary Algorithms [1][2]. One specific
implementation of evolutionary algorithms is the Genetic
Algorithm (GA), proposed in 70’s by Holland and his
students, and largely diffused in 1989 by Goldberg [1]. In
this algorithm, the descendants are generated by operations
between individuals of the population, and one of the most
important is the crossover operator.

The algorithm executes two basic steps: create an ini-
tial population and begin the main loop that evolves this
population. The main loop consists of making interactions
with individuals (with crossover and mutation operators) and
evaluating them, evolving/selecting the best individuals ac-
cording to a fitness function. This loop is repeated until reach
the stopping criteria, which may be a maximum number of
generations, or finding an individual that achieve the desired
fitness value. With this procedure, the algorithm is able to
keep the best solutions and explore the search space at the
same time.

Evolutionary algorithms have been presenting good results
in many computational fields. Robotics is one of them.
Evolutionary robotics is an area that is receiving increasing
attention from robotics researchers last years. There are many
possible applications for this kind of algorithms in robotics
from robot’s physical configuration to control systems and
navigation [2].

Control systems for autonomous robots are often pro-
grammed by researchers or designers. As the complexity of
the environment and tasks for autonomous robots increases,
the difficulty of designing control systems by hand becomes
a limiting factor, considering the degree of functional com-
plexity that should be achieved [2]. One possible solution

for this problem is to use automatic learning methods as
evolutionary computing.

Robots can be seen as embedded systems or systems
composed by a group of embedded systems. In most cases
embedded systems have limited capacity of processing and
memory. Develop embedded systems for robotics is a com-
plex task because these systems share resources with sensors
and actuators. The combination of these facts justifies the
adoption of more robust techniques for embedded robotic
system’s design considering performance, costs, energy con-
sumption, processing and execution time.

The first and most intuitive solution for embedded systems
design is to implement algorithms directly in hardware.
Hardware implementation projects nowadays have been re-
placed by hardware/software co-designs mainly on embed-
ded systems design. Hardware/software co-design is a design
method that proposes hardware and software concurrent
development. Decide which part of the system will be
implemented in hardware and which will be implemented
in software is a classic problem on co-design called hard-
ware/software partitioning.

This choice for hardware/software co-design is based on
increasing complexity of embedded systems, reduction of
time-to-market for embedded systems design and increased
availability of hardware due to lower costs.

Co-design methods usually require flexible development
tools that allows rapid prototyping. One way to achieve
desired flexibility level is to develop hardware with recon-
figurable computing devices such as FPGA’s.

Reconfigurable computing can be defined as the study of
computing with reconfigurable devices [3]. This paradigm
tends to achieve high performance with high flexibility. To
implement reconfigurable computing is necessary to use
reconfigurable devices. Reconfigurable devices are devices
that allow the process of changing its structure at run-time.
There are various types of reconfigurable devices and one of
them is specially interesting for this work, the FPGA’s.

Field Programmable Gate Arrays (FPGA’s) are pro-
grammable devices consisting of three main parts: pro-
grammable logic cells, configurable logic blocks and I/O
cells [3]. FPGA’s are flexible devices because, among various
features, allow hardware to be described using Hardware
Description Languages (HDL’s) and several reconfigurations.
In this work specifically, there is a free soft-processor pro-
vided by FPGA’s manufacturer that can be used for co-design
development.

A soft processor is an Intellectual Property (IP) core which
is 100% implemented using the logic primitives of the FPGA.
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Other definition: a programmable instruction processor im-
plemented in the reconfigurable logic of the FPGA [4]. Soft
processors have several advantages and one of the most
relevant for actual designs is the possibility to implement the
exact number of soft-processors required by the application.
Since it is implemented in configurable logic, a soft processor
can be tuned by varying its implementation and complexity
to match the exact requirements of an application [4].

This work proposes to implement, on a reconfigurable
hardware (FPGA), an optimized Genetic Algorithm (µGA)
that should be able to respect ”soft” real-time embedded
systems requirements. To achieve system requirements, a
profile-based hardware/software co-design method was se-
lected and after system profiling analysis most critical func-
tions were implemented in hardware. The proposed architec-
ture for the chosen algorithm consists on a Nios II processor
with custom instruction crossover hardware and a floating
point unit (FPU) hardware for fitness optimization.

Section II presents some recent hardware development for
GA works. In section III, concepts of µGA are presented
followed by hardware/software co-design description. Sec-
tion IV contains proposed method description followed by
the results section. In results section (V), proposed hardware
development is presented jointly with a comparison between
different co-design implementations and discussion about
new architecture advantages. At last section (VI) presents
authors’ conclusions based on achieved results followed by
selected references.

II. RELATED WORKS

Evolutive algorithms are widely applied to solve problems
in many fields including robotics. Due to this fact, hardware
researchers have been working on efficient implementations
for these algorithms. Large amounts of solutions were pre-
sented in the last years but some problems are common for
these solutions and exemplified on following analysis.

Zhu et. Al. [5] proposed a 100% hardware implementation
of a genetic algorithm to optimize memory requirement and
access speed. The algorithm is partitioned on a global search
and a local search. The problem in this case is that the results
presented are from a MATLAB simulation, so there is no
physical hardware implementation.

Fitness functions are usually the main problem of ge-
netic algorithms, even in case of hardware implementations,
since they are hard to implement on hardware once these
functions can vary from application to application. Nedjah
and Mourelle[6] proposed another hardware implementation
for GA where fitness function was implemented as an
artificial neural network. The work has a lack of details about
hardware implementation of the neural network and no real
implementation results of the GA.

Recent works present some interesting hardware architec-
tures. Chen et. Al.[7] presented an IP (intellectual property)
for GAs. The idea is to provide a flexible hardware imple-
mentation with four types of crossover (with tournament se-
lection), a good range of population possible sizes, mutation
rates, individual and fitness value bit length. Fitness function

in this case can be implemented in two ways: a look-up table
or an user defined circuit. The look-up table option is limited
to the proposed IP structure so the flexibility is sacrificed in
this case. Developing hardware implementations for fitness
functions is usually a non-trivial task so the second option
has problems either.

Oliveira and Junior[8] proposed a complete hardware
implementation for a compact genetic algorithm that is
only capable of solving first order problems. Furthermore,
individual evaluation was not implemented in hardware. Kher
et. Al.[9] developed a dynamic crossover hardware, that
means, crossover dynamically changes the number of cut-
points during execution. On presented results, the problem of
dynamic crossover is that the algorithm should stop once the
expected value is achieved and stabilized but the result starts
to toggle between the achieved value and a lower bound.
This problem is caused by the crossover.

The common problems of this section’s presented works
are: (i) the implementations are not completely self-contained
embedded systems, that means, hardware needs informa-
tion coming from another hardware structure [7] or from
a general-purpose computer [9] to work; (ii) there is no
physical implementation [5][6]; or (iii) the algorithm cannot
solve complex problems [8].

The architecture proposed here were developed in order
to be an alternative to previous works and solve the main
problems.

III. µ GENETIC ALGORTITHM

Micro Genetic Algorithm (µGA) is a genetic algorithm
with very small population and simple genetic parameters,
used for solving function optimization problems. It was
proposed by Krishnakumar in 1989 [10] as a faster alternative
to Simple GA [1] and other usual implementations of GA’s.

The result achieved in Krishnakumar’s work with non-
linear functions shows that its implementation is quicker
than big population approaches in spite of its simplicity
and achieves the same results. As the number of individuals
is small, it is possible to evaluate the fitness function and
perform the genetic operators more rapidly.

It is known that small populations converge to non-optimal
results sometimes, due to insufficient information processing
and low diversity between individuals. The solution for this
problem is: (i) to transfer the best individual to a new
population using elitism; (ii) to select the best individuals
with a higher probability for crossover; and (iii) to gen-
erate from time-to-time a set of new individuals randomly
avoiding early convergence. In (iii) approach, a small size
population is generated randomly, and genetic operations are
performed until reach the nominal convergence. Then, the
best individual is transferred to a new population and the
remaining individuals are generated randomly and after that
the algorithm goes back to the second step and repeat until
reach the stopping criteria.

Unlike in other GA implementations, the solution can be
found by evaluating the fitness of the best individual, not only
when all individuals converge to a single value. This is also
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an advantage which makes µGA end faster. The crossover
rate is usually 1, and mutation rate must be near to 0, because
enough diversity is introduced every time the population is
re-initialized (epidemic operator).

Micro-Genetic Algorithms are useful in many applications,
for example Real-Time Systems, and particularly in Evolu-
tionary Robotics. In some applications each robot can be
represented as one individual instead of having many robots
used to optimize/find the problem solution, which can usually
be unfeasible.

IV. HARDWARE/SOFTWARE CO-DESIGN

Electronic systems nowadays have become more com-
plex because of the rising number of functionalities that
are requested on projects. As electronic circuits become
more complex, technical challenges in co-design will also
increase [11]. These circuit systems can be classified as a
joined operation component group developed for some task
resolution [12] and, this components, can be implemented in
hardware or in software depending on what are the system’s
constraints.

Hardware/Software co-design means the union of all sys-
tem goals exploring interaction between hardware and soft-
ware components during development [13]. Fig. 1 presents
a simplified co-design flow. This method tries to increase
the predictability of embedded system design by providing
analysis methods that tell designers if a system meets its
performance, power, size and synthesis methods that let
researchers and designers rapidly evaluate many potential
design methodologies [11].

Fig. 1. Co-design Flow.

Hardware/Software co-design is a hard task and com-
putational tools appeared to make this work faster and
increases system’s degree of optimization. The introduction
of programmable devices like FPGA’s (Field Programmable
Gate Arrays) on circuit co-design enabled flexibility and
made prototyping easier. This fact is really important because
the circuit can be developed and tested before be manu-
factured, reducing costs and design time. This flexibility
opens new digital circuit applications and the rise of new
Hardware/Software co-design problems [14].

Hardware/software partitioning problem has a first level
impact on system’s performance because a wrong choice
can result in an increased development time and a final
product out of specification. A good partitioning that fit

all implementation requirements optimizes operation and
minimizes costs usually resulting on an efficient project.

First, partitioning problem was solved by developers with
their experience and previously released works. In case of
complex systems, this work became arduous and this fact
inducted this research field interest on automating the process
using techniques like evolutionary computing and artificial
neural networks [15]. This automation can be achieved with
EDA (electronic design automation) tools or methods that
allow a fast search for good solutions on search space.
Among existing methods, the profiling-based methods are
being widely used nowadays.

A. Profiling-Based Methods

There are many methods for hardware/software co-design
and the most commonly used methods nowadays are the
profiling-based methods [16].

TABLE I
PROFILING TOOL’S COMPARISON.

Memory Power Per Funct Per Line Call Grph
Gprof - - x x x
HDL Profiling x x - - -
ATOMIUM x - x - x
MEMTRACE x x x x -

The increasing complexity of codes raised the need for
profiling tools. Profiling tools make code analysis and indi-
cate several system features like functions execution time
and memory usage. Each tool gives a specific group of
information and most of them have clock cycle information
and table I presents some other relevant information [16].

Fig. 2. General Profile-Based Method [17].

After obtaining profiling information, system can be mod-
ified to achieve expected performance. Usually the critical
parts of the system (intensive processing and time consuming
routines) start been optimized with code modification and
improvement, followed by hardware development on extreme
cases. This is a cyclic refinement process and usually stops
when co-design performance constraints or maximum time-

45



to-market are achieved. Fig. 2 illustrates general profile-
based method design flow.

One of the most important features of this kind of methods
is that the critical part of the co-design, hardware/software
partitioning, is performed during a practical refinement pro-
cess. Due to this fact there is a high probability that the
final system has one of the best partitioning contained in the
search space.

Nowadays hardware/software co-design is using soft-
processors because they allow software execution and de-
signed hardware to be included as custom instructions for
validation.

V. METHOD IMPLEMENTATION

Previous sections presented the context that this work
is inserted. Considering these concepts the main idea is
to implement µGA in an embedded platform and achieve
an acceptable execution time for ”soft” real time robotic
applications. First the co-design method will be applied in
order to select the configuration of the soft-processor that
fits better system constraints as area consumption, execution
time, development time. After that hardware components will
be developed according to profile results and execution time
will be compared.

Fig. 3. Modified Profile-Based Method.

Fig. 3 illustrates flowchart of proposed hardware/software
co-design method. There are two main cycles, the first one
of software development and the second one of hardware
development. Sometimes system requirements can be sat-
isfied only doing software optimizations. When software
optimizations reach the limit without satisfying requirements,
hardware development starts. On embedded systems design
hardware development is a costly task comparing to software

development, so a large amount of time can be saved
choosing this modified method. Together with this fact the
final solution can be more interesting in many characteristics
like cost, performance and energy because only the portion
of the system that needs acceleration will be implemented in
hardware.

To evaluate proposed hardware some fitness function had
to be chosen. µGA is an algorithm with interesting char-
acteristics for robotics due to it’s small population and a
robotic fitness function to evaluate this algorithm seems to be
an interesting choice. Any fitness function would serve the
purpose and a reactive LIDAR-based function for reactive
control was chosen.

The chromosome is coded with six bits (b0-b5), one for
left, one for left-center, two for center, one for center-right
and one for right. The chromosome gives the robot direction.
This codification is easily transformed on robot actuator
instructions when coded on Player/Stage environment [18],
mapping each state into a set of actuator function parameters.
LIDAR range is divide into six quadrants (q0-q5) selecting
the minor measured value as quadrant correspondent value.
Fig. 4 illustrates these considerations.

Fig. 4. Genetic Codification.

Fitness function, that is a maximization function presented
by equation (1), calculated finding the max value of the
multiplications bn * qn and subtracting other values form it.
The idea of this algorithm is to control the navigation of the
robot avoiding obstacles, so it needs to run in real-time while
laser values change. The algorithm follows a basic cycle
of reading sensor values, execute µGA algorithm and send
actuator function parameters. It’s a simple fitness functions
but the main goal of this work is to define and validate a
hardware architecture for µGA not to propose innovative
fitness functions, or to find other genetic programming based
algorithms to use for many reasons explained on previous
sections.

findividual = fmax(bn ∗ qn|n ≤ 5)−
5∑
0

(bn ∗ qn|n ≤ 5, 6= nmax) (1)

In order to accelerate crossover function, a new way
to do selection is proposed. Krishnakumar [10] suggested
crossover rate on 100%, mutation rate on 0%, epidemic
operator and elitism. There are many selection methods, but
finding possible individuals to cross is always a hard task
with many verifications. The idea of this work’s proposed
crossover (figure 5) is to create a new vector filled with the
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number of individuals (0,1,2,3..) and shuffling this vector,
respecting elitism (the best individual on the first position
of population vector and never substituted). In the end of
this operation the vector has the pairs for crossover ready.
Crossover results on two new individuals composed by, after
choosing the cut-point (floor((#bits in chromosome)/2), first
part of the first individual followed by second part of second
individual and second part of first individual followed by first
part of second individual. For odd number of individuals the
last part is taken from the best, it happened to this work since
the number of individuals is five. The number of generations
was set to 50. This static crossover keeps the size of the
population, applies the crossover for all individuals, keep
the best individual. The shuffle function is faster than other
selection methods because time is not wasted on testing
and selecting individuals. Local minima are avoided by the
fact that not only the higher fitness function individuals do
crossover, together with epidemic operator usage.

Fig. 5. Crossover example.

After using the proposed crossover, hardware crossover
implementation became easier. The shuffle vector, described
in section IV, stored population vector with the new order of
individuals. Chosen soft-processor has custom instructions
templates with two inputs of 32 bits and one output of 32 bits,
and only these I/Os are needed in this case. A hardware for
crossover was build based on this specific implementation’s
crossover, but on a way that is easy to think about higher
number of individual bits and higher number of individuals.
Custom instruction implementation is better for this hardware
because there’s no communications costs since it will be
considered an extension of Nios II ALU unit. For more
information about how custom instructions are implemented
in Nios II see the Altera documentation [19].

It’s a simple hardware implemented on Nios II /ff because
of the better execution time and acceptable area consumed.
Reordered vector is the input of the hardware with two extra
positions to complete 32 bits and the output is another 32-bit
vector after crossover. Inside this hardware the signals only
take their new places based on one cut-point crossover. This
operation takes only one clock cycle and, in this case, five
individuals only need onde hardware call.

There are many features that can be evaluated on a
hardware/software co-design. In this case the most important
is execution time, but together with execution time hardware

developments should achieve good values on: hardware
area; maximum system clock for critical path; presence
of pipelined or not microprocessor; dedicated modules for
specific operations and energy consumption. Development
time is also important on co-design specially when associated
with time-to-market.

Several available development environments and toolboxes
could be used in this work’s experiments. Due to researches
experience, experiments were realized on Altera Quartus II
IDE + Nios II EDS and implemented on DE2-70’s Cyclone
II family FPGA manufactured by Altera. This family is
composed by hierarchy-based FPGA’s, that means, there
are basic logic blocks that are grouped to form larger
blocks and so on. Blocks are connected by programmable
interconnections and the chip is rounded by input/output
pins. Nios II EDS supports Altera’s soft processor Nios II
that can be configured on Quartus II SOPC Builder. IDE’s,
information and manuals can be downloaded in [19]. Nios
II soft-processor has three types of implementations with
different degrees of complexity and supports hardware to be
integrated as processor’s custom instructions. So developed
hardware was included as custom instruction for evaluation.
Analyzed profiles were obtained with GProf (Gnu Profiler)
[20] that is integrated with Nios II EDS, that has also a gcc
compiler for Nios II processors so software development was
made on C language.

VI. RESULTS

To evaluate the influence of soft-processor feature chang-
ing and achieve good results on co-design methodology,
the experiments have been done with ten different types of
hardware (soft-processor + custom instructions) and each one
executing the µGA described in previous sections. Before
doing any hardware development some code modifications
have been done. Basically parameters were adjusted on pc
coded algorithms to reach the minimum number of genera-
tions that return the expected results with precision of two
decimal places. Before executing on the soft-processor all
benchmark function solutions were programmed to execute
instantaneously on a dual-core Intel Pentium’s.

Starting with pipelined processor influence on execution
time and area consumption, three processors have been
configured for these experiments initially: Nios II economic
(e), fast (f) and standard (s). Soft-processors had the same
basic configuration with the CPU, 100K of on-chip memory,
timer for clock and JTAG interface for communication. The
main difference between these three processors is that Nios
II /e doesn’t have pipeline and embedded multipliers, and
Nios II /f has hardware improvements on execution time like
dedicated hardware for functions and acceleration between
pipeline stages. It’s important to know that these results are
valid for any soft-processor, and this specific choice has to
do with researches experience with these tools and IDE’s.

After initial experiments, the profile of the algorithm
showed that the main problem is the fitness function followed
by crossover function. To solve the initial problem, another
six processors (Nios II /xf - FPU, Nios II /xfd - FPU+HW
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Divisor) were configured and tested. Table II contains all
information of the processors (Logic Elements(LE), Pins
(P), Memory Bits (MB), Maximum Clock in MHz (Clock))
together with µGA execution time in seconds (ET) for each
one.

TABLE II
COMPARING DEVELOPED HARDWARE

ET LE MB P Clock
Nios II /e 0,40 3% 72% < 1% 108.80
Nios II /s 0,09 4% 75% < 1% 97.54
Nios II /f 0,07 5% 77% < 1% 113.06
Nios II /ef 0,29 4% 72% < 1% 106.26
Nios II /sf 0,07 6% 75% < 1% 89.66
Nios II /ff 0,06 7% 77% < 1% 116.21
Nios II /efd 0,29 11% 72% < 1% 107.70
Nios II /sfd 0,07 13% 75% < 1% 93.39
Nios II /ffd 0,06 14% 77% < 1% 113.34

Execution time was significantly reduced after including
FPU unit without division hardware, but still the same
including division hardware. In this case division hardware
only increased the total area of the hardware and reduced
processor clock performance.

TABLE III
CROSSOVER FUNCTION NUMBERS.

calls % of Total Time Function Time
Nios II /ff 51 6,49 0,10ms
Nios II /ff + hw 51 0,00 0,03ms

The second problem is the crossover function. This func-
tion is called once for each generation and is a good function
to have a hardware version. Using hardware implementa-
tion described in previous section as custom instruction of
Nios II /ff soft-processor, the results are presented on table
III. Developed hardware transformed one ’for’ loop inside
crossover routine into one macro call to the new hardware
structure. For 51 calls of the function the time for crossover
decreased from 0,10ms to 0,03ms. Final time only 30% of
software time. For a high number of executions, this values
are extremely significant with a 70% reduction on execution
time of the function.

VII. CONCLUSIONS

The results presented on previous section show that the
proposed architecture achieve the expected results meeting
requirements of ”soft” real-time hardware. Comparing to
related works on section II, this work is a self-contained
embedded system, because all data and information need
for execution is implemented; the hardware is physically
implemented on FPGA and µ can solve non-linear problems
too [10]. Together with cited contributions, the proposed
crossover with ”shuffle” selection achieve good results for
µGA.

This crossover hardware shows how simple is to imple-
ment ”shuffle” selection with one cut-point crossover and
Nios II custom instructions have another operand, and an-
other templates. This fact allows implementations with larger

individuals or large number of individuals with significative
reduction on execution time keeping the need of few clock
cycles. Moreover Nios II soft-processor allow 255 custom
instructions to be add.

Future works tends to more complex fitness functions
implementation and evaluation together with more hardware
development, for the other operand (epidemic) for example,
and real robot tests.
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