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Abstract: This paper presents the modeling, implementation and evaluation of the Particle
Swarm Optimization (PSO) applied to intelligent vehicles group formation and coordination.
The robotic task discussed in this paper is performed over a natural disaster scenario, simulated
as a forest fire. The intelligent vehicles squad mission should surround the fire and avoid fire’s
propagation. Experiments have been carried out with several PSO parameter’s variation (e.g.
inertia, confidence, social models, swarm size) seeking to get the more efficient optimization for
the formation of the group. This paper describes all performed experiments detailing all sets of
parameters, including positive and negative results. The simulation’s results showed that with
an adequate set of parameters is possible to get satisfactory strategic positions for a multirobotic
system’s operation using PSO.
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1. INTRODUCTION

There are many fields where a single agent is not sufficient
or enough to fulfill a task. Tasks like cleaning nuclear
residuals, cleaning chemical accidents, forest fire combat
or even on constructions, agriculture, hostile environment
exploration, security and critical missions may be better
accomplished when using a group of agents. Using robotic
agents (as intelligent vehicles) instead of human beings
may add security, reliability and efficiency in these tasks.
Multirobotic systems are extremely dependent on control
techniques; they can add mobility, flexibility and robust-
ness to a wide range of new applications (Mondada et al.,
2005), but they also bring a series of new questions to
be solved in collaboration and cooperation. Specialized
algorithms, composed by rules and automats have been
developed seeking to coordinate these physical sets in dy-
namic environments, showing to be an extremely complex
challenge (Go et al., 2004). Due to it, a large number of
researchers are migrating their efforts to several different
approaches (e.g. application of classical intelligent artificial
techniques, social models, market-based models, swarm-
based models).

In the firefighting mission, one of the most important
questions is related to the robot position setting. Accord-
ing to the actuation capability of each robot, weather
condition (wind, rain), topography, and vegetation, several
arrangements can be proposed. These arrangements, when
suggested by a specialist, may not take in account a large
number of variables, which makes it a hard task. In these
cases, machine learning techniques may be succesfully
used. One of the machine learning technique that has been
showing satisfactory results in solving optimization prob-
lems is Particle Swarm Optimization, which is a stochastic
technique inspired by social behaviors (Kennedy and Eber-

hart, 1995). Monitoring and combating of forest fire is an
example of multirobotic system that could considerably
reduces human, material and environmental losses.

In (Pessin et al., 2007) we proposed a simulation envi-
ronment for recognition and combat of forest fire with
rule-based agents. In (Pessin et al., 2010) we presented an
evolution of the simulation environment, using the physical
simulation library Open Dynamics Engine (ODE) (Smith,
2009), where new artificial intelligence techniques were
applied on the agents (Artificial Neural Networks and Ge-
netic Algorithms). The present work’s goal is to describe
experiences with Particle Swarm Optimization performing
a search for optimal acting positions in a multirobotic
system 1 . We evaluate parameters like inertia, confidence,
types of social models and swarm size, considering a total
of 54 different sets of parameters. The PSO evaluation is
done considering a robotic task performed over a natural
disaster, simulated as a forest fire propagation. Experi-
ences with two and four firefighter robots have been done.

This paper has the following structure: Section 2 intro-
duces short theoretical description of robot’s 2 applica-
tions. Section 3 presents concepts and applications of
Particle Swarm Optimization. In section 4 we explain
the developed environment, the proposed fitness and the
particle’s structure. Section 5 describes the evaluation of
all performed experiments. We finalize presenting the con-
clusion of the presented work and the future perspectives.

2. MOBILE ROBOTICS

Several current works demonstrate mobile robotic usage
(individual system) on hostile operations as the rescue

1 Source-code available at http://sites.google.com/site/pessin
2 We use the term robot as a synonym for intelligent vehicles



auxiliary robot Raposa (IdMind, 2009) and SACI robot
(Macedo et al., 2007) developed for acting on fire com-
bat. Moreover, there are robots to perform tasks on
aquatic environments, space, caves and volcanoes explo-
ration, and even to household use. Multirobotic systems
must be formed by robots that are able to effective act
on tasks, so knowledge about robotic control is a very
important field. Works describing intelligent robot nav-
igation can be seen in (Zhao and Collins, 2005; Heinen
et al., 2006). In 2004 and 2005, DARPA Grand Chal-
lenge (Darpa, 2007), financed by the Defense Advanced
Research Projects Agency organized a competition where
the goal was building a completely autonomous vehicle
that could complete a long way on dirt road on limited
time. In 2007 the focus of the competition has changed.
Renamed to DARPA Urban Challenge, had a new goal to
build a vehicle that could be autonomous on urban traffic,
and realize tasks like parking, overtaking and intersection
negotiations. These examples show trends in cooperation
and multiple interactions.

The work with groups adds a great number of possibilities
on tasking-solving but bring a series of new questions to be
solved in collaboration and cooperation. Works using mul-
tirobotic systems like (Yamaguchi, 1997; Balch and Arkin,
1998) uses pre-programmed rules on agents to perform
formation. In (Mondada et al., 2005; Dorigo et al., 2004)
are explored techniques to perform works with collectives
robotics, used mainly for the purpose of applying the con-
cept of self-organization and collective optimization, but
task division is not directed explored. The works described
in this section demonstrate that the application of mobile
robotics in control of incidents is an important and active
topic of research and development. These several compe-
titions also demonstrate that there is still not a definitive
or more adequate solution to the problem, and it is an
open research field. In all consulted documents there is
no consensual form to multirobotic system’s conformation
and actuation. Unpredicted situations with large degree of
autonomy and robustness are still difficult to handle.

3. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) (Kennedy and Eber-
hart, 1995) is a stochastic optimization technique, inspired
by social behavior of bird flocking and fish schooling
(Eberhart et al., 2001; Engelbrecht, 2005). The optimiza-
tion process occurs in two simultaneous ways: through
cooperation (group learning) and competition (individ-
ual learning) among particles (individuals) from a swarm
(population).

PSO shares many concepts with evolutionary computation
techniques such as Genetic Algorithms (GA), where there
is an initial population (where each individual represents
a possible solution) and a fitness function (whose value
represents how far an individual is to an expected prob-
lem’s solution). However, unlike GA, PSO has no explicit
concepts of evolution operators such crossover or mutation.
In the PSO, there is a swarm of randomly created particles.
On each algorithm iteration, each particle is updated fol-
lowing: (i) best population fitness (ii) best fitness found by
the particle (considering past generations of the particle).
Each particle has a position x (or a position vector) and

a velocity v (or velocity vector). The position represents
a solution for the problem and the velocity defines the
particles displacement direction weight.

New particle’s position is given by Eq. 1. Where xi
k is

the position of particle i at instant k and vik is particle’s
i velocity at k moment. Particle’s velocity is updated in
accord to Eq. 2.

xi
k+1 = xi

k + vik+1 (1)

vik+1 = w · vik + c1 · r1(pbest− xi
k) + c2 · r2(gbest− xi

k) (2)

On Eq. 2, vik is particle’s actual velocity, w represents a
particle inertia parameter, pbest is the best position among
all positions found by the individual (particle best), gbest
is the best position among all positions found by the group
(group best), c1 and c2 are trust parameters, r1 and r2 are
random numbers between 0 and 1. Parameters (w, c1, c2,
r1 e r2) are detailed in the sequence.

The velocity is the optimization’s process guide parameter
(Engelbrecht, 2005) and reflects both particle’s individual
knowledge and group knowledge. Individual knowledge is
known as Cognitive Component and group knowledge is
known as Social Component. Velocity consists of a three-
term sum: (i) Previous speed: used like a displacement di-
rection memory and can be seen as a parameter that avoids
drastic direction changes; (ii) Cognitive Component: di-
rects individual to the best particle’s found position so
far, resembles to best position individual memory of the
particle; (iii) Social Component: directs individual to the
best group’s position found.

Parameters c1 and c2, also called trust, are used to
define individual or social tendency importance. Standard
PSO works with static and equal trust values (c1=c2),
that means that the group experience and the individual
experience are equally important (called Full Model).
When c1 parameter is zero and parameter c2 is higher
than zero, PSO uses only group information (called Social
Model). When parameter c2 is zero and parameter c1 is
higher than zero, PSO uses only particle’s information,
disregarding group experience (called Cognitive Model).
Random value introduction (r1 and r2) on velocity adjust
allows PSO to explore on a better way several search
space points (Engelbrecht, 2005). Inertia parameter aims
to balance local search or global search. As the value
approximate to 1.0, search gets close to global search,
while lower values allow local search. Usually this value
is between 0.4 and 0.9. Some authors (Eberhart and Shi,
2001; Kennedy and Eberhart, 1995) suggest value’s linear
decay, but warn that linear decay use is not always the
best solution. Most parameters are problem-dependent
(Engelbrecht, 2005).

PSO is used in general where Evolutionary Computing can
also be used. Examples of works that describe comparison
between the two techniques are (Eberhart and Shi, 1998;
Eberhart et al., 2001; Engelbrecht, 2005). The work (Pugh
and Martinoli, 2006) describes a PSO development for
robot navigation control where distance sensor values
are used as input information. The work (Rong et al.,
2008) describes the development and evaluation of a PSO
for four legs robot walking; the PSO optimize time and
intensity of force application on several joints. Similar
approaches can be found in (Niehaus et al., 2007), but



in this case bipedal robots were the case of study. These
works achieved satisfactory results for static environment.
One work that explores dynamic operations can be seen
on (Burchardt and Salomon, 2006), whose uses a fault
monitor. The system has two phases: planning and action,
when the system is on action mode and identifies a possible
failure, it automatically stops and reactivates the planning
mode. This allow the application of the system in dynamic
environments.

4. GROUP FORMATION

In order to build a real physical implementation of robotic
system, it is highly recommended to test the algorithms on
virtual realistic simulation environments. Robotic system’s
simulation is specially necessary in case of big, expensive or
fragile robots because it is an powerful tool to avoid wast-
ing resources (Go et al., 2004). In our case, the proposed
simulator should be able to reproduce an environmental
disaster for a multirobotic system actuation. We propose
the situation of a forest fire, so, in this case a intelligent
vehicle squad (as road grader) has the purpose of combat
the forest fire acting by creating firebreaks around the
fire. The developed 3D simulation environment uses the
OSG library (OSG, 2009) which is responsible by graphic
output, the Demeter library (Demeter, 2009) that is re-
sponsible by irregular terrain generation and ODE library
(Smith, 2009) which is responsible by physic realism, both
in the robotic morphology as in the collision involving the
objects presents in the environment (e.g. robots, trees, ter-
rain inclination). Using ODE library allows the physically
simulated robots to comply with gravity, inertia and fric-
tion. Also, a 2D simulation environment was build to allow
faster simulations (ignoring physical restrictions on robot
navigation). This 2D prototype is implemented with SDL
(SDL, 2009), as shows Fig. 3. Both the prototypes have
the same fire propagation comportment and use C/C++
as programming language.

The control variables of vegetation simulation and fire
propagation are updated by a hidden matrix under the
terrain. This matrix has the type of present vegetation
for each terrain region; consequently, associating this in-
formation with the wind orientation and intensity we can
build the fire propagation simulation. Regarding the wind,
both its intensity and its orientation can be generated
randomly or configured with parameters defined by the
user. The fire remain in an area related directly to the
present vegetation type and behaves in basis of terrain
type values, terrain slope, wind orientation and intensity.
In this way the fire spreading simulation try to model
the fire propagation as realistic as possible. To implement
the fire spreading, we obtained from (Koproski, 2005) real
velocity measurements. The detailed characteristics about
fire spreading modeled to this work, as well as the forest
fuel models and the real operation techniques are compiled
into (Pessin, 2008). The simulated terrain is based on
topographical maps and on forest fuel maps models that
can also be seen in (Pessin, 2008).

The 3D simulation tool uses a realistic autonomous vehicle
model, defining a 4 wheel vehicle (Fig. 4(d)) with steering
and acceleration/break control (physically simulated: ve-
hicle kinematics and dynamics controlled by ODE tool).

Table 1. Particle structure (group of four ve-
hicles - angle and radius related to the fire’s

starting point).

Sub- Min. Max.

particle Function value value

0 Initial angle of vehicle 0 0.0o 360.0o

1 Final angle of vehicle 0; initial of vehicle 1 0.0o 360.0o

2 Final angle of vehicle 1; initial of vehicle 2 0.0o 360.0o

3 Final angle of vehicle 2; initial of vehicle 3 0.0o 360.0o

4 Final angle of vehicle 3 0.0o 360.0o

5 Initial radius of vehicle 0 10.0m 100.0m

6 Final radius of vehicle 0; initial of vehicle 1 10.0m 100.0m

7 Final radius of vehicle 1; initial of vehicle 2 10.0m 100.0m

8 Final radius of vehicle 2; initial of vehicle 3 10.0m 100.0m

9 Final radius of vehicle 3 10.0m 100.0m

The vehicle was configured with laser simulated sensor
used in order to detect and avoid obstacles. The vehicle
is controlled by an Artificial Neural Network that reads
the sensors (laser), estimaded position/orientation (GPS,
compass) and generates the commands to the actuators
(steering/acceleration). More details about vehicle devel-
opment can be seen in (Pessin et al., 2010).

The PSO algorithm optimizes fire combat position for
each intelligent vehicle on group, specifically: (i) Initial
combat position for each member of the group (beginning
point of firebreak creation); (ii) Final combat position
for each member of the group (final point of firebreak
creation). These positions are send by command messages
used to activate the robots. To perform the simulations is
necessary: (i) Knowing the available number of robots; (ii)
Knowing robot’s operation speed; (iii) Knowing robot’s
initial position; (iv) Having the ability to simulate fire
propagation. To simulate fire propagation is necessary: (i)
Getting initial fire position; (ii) Getting wind direction;
(iii) Getting a simplified copy of the map (land and
vegetation). This set of proposed information can be
obtained by sensors. The proposed particle’s structure has
information about the entire group of robots. Therefore,
we need 10 values to a group of four vehicles. These values
are stored in subparticles (position vector, such as genes in
a GA). In the proposed structure of the particle, the final
position of a robot is the starting position of the next, as
shown on Tab. 1.

The coordinates of operation are calculated applying Eq.
3 and 4 to the best particle. Where (xd, yd) is the robot’s
destination position, (xa, ya) is the starting position of the
fire, ri is the radius (subparticle 5 to 9) and ai is the angle
(subparticle 0 to 4). The radius and the angle are specifics
to each operation of each robot (initial and final coordinate
of firebreaks creation).

xd = xa + ri · cos(ai) (3)

yd = ya + ri · sin(ai) (4)

In the implementation of the algorithm, we used a concept
similar to the alleles on GAs, in order to reduce the search
space. Thus, the radius can be between 10.0 and 100.0
units and the angle can be between 0.0o and 360.0o. The
values stored in the particle are floating-point numbers.
Also, we used star-type social structure; where all particles
have connections to each other, in practical terms, that
means there is a unique gbest for all particles. Star-type
model has faster convergence compared with other struc-
tures (Engelbrecht, 2005; Kennedy, 1999). More details
about parameter’s variation are described in Section 5.



Table 2. Set of PSO initial evaluations.

Set ConfP (c1) ConfG (c2) Inertia (w) Particles

A 0.0 2.0 0.4 80

B 0.0 2.0 0.8 80

C 0.0 2.0 1.2 80

D 0.0 2.0 0.4 160

E 0.0 2.0 0.8 160

F 0.0 2.0 1.2 160

G 2.0 0.0 0.4 80

H 2.0 0.0 0.8 80

I 2.0 0.0 1.2 80

J 2.0 0.0 0.4 160

K 2.0 0.0 0.8 160

L 2.0 0.0 1.2 160

M 2.0 2.0 0.4 80

N 2.0 2.0 0.8 80

O 2.0 2.0 1.2 80

P 2.0 2.0 0.4 160

Q 2.0 2.0 0.8 160

R 2.0 2.0 1.2 160

The fitness function guides PSO optimization. The pro-
posed fitness is related with saved vegetation area and
combat units usage rate; therefore, the fitness accumulates:
(i) Total burned area: trying to minimize burned area, (ii)
Firebreak total area: trying to minimize robot’s work area,
avoiding to create firebreak on non-risk areas, (iii) Trying
to minimize the difference among general average of useful
firebreaks in relation to each individual useful firebreak,
equalizing worked areas. The PSO tries to minimize the
fitness function value, this at means less burned vegeta-
tion, less created firebreaks, and less difference between
the size of firebreaks of each robot.

5. EXPERIMENTS AND RESULTS

Considering that convergence speed is one of the most im-
portant aspects for the proposed system, evaluations have
been done to verify and find the best parameter set for
the proposed PSO. Tab. 2 presents the initial parameter
variation list. We fixed the climatic characteristics of the
fire simulation and the initials robot positions in order
to make the evaluations. Six simulations were executed
for each parameter set, which implies on a total of 108
simulations. We made visual observations on 20% of the
simulation results to verify the ideal fitness for fire combat.

Sets {A..F} have only confidence on group (social model,
c1=0.0 and c2=2.0). Sets {G..L} have only confidence
on particle (cognitive model, c1=2.0 and c2=0.0). Sets
{M..R} have confidence on group and on particle (full
model, c1=2.0 and c2=2.0). The Fig. 1 presents some
simulation’s visual results. Fig. 1(a) and 1(b) presents
simulations sequences with a fitness of 3800 units; the
fire is stopped but the firebreak is poorly optimized.
Fig. 1(c) presents a fitness of 3480 units and Fig. 1(d)
presents a fitness of 2643 units. The last two figures present
visual-efficient operations but in mathematical terms the
resulting particle analysis shows that on Fig. 1(c) the
standard deviation over actuation areas average is of 6.05
degrees and 2.37 radius units and Fig. 1(d) standard
deviation over actuation areas average of 3.38 degrees and
0.23 radius units. Both teams extinguished the fire but
Fig. 1(c) shows more equalized work areas among robots.
Thus, from visual observations, fitness under 3500 units
were defined as ideal for this experiment.

From initial evaluations (Tab. 2) only {B,E} (social model
with w=0.8) and {M,P} (full model with w=0.4) had at
least 50% of results with fitness under 3500 units. No

(a) (b)

(c) (d)

Fig. 1. (a) and (b) Sequences of a simulation which result in
a fitness equal to 3800 units; the fire is stopped but the
firebreak is poorly optimized. (c) Simulation which
result in a fitness equal to 3480 units; (d) Simulation
which result in a fitness equal to 2643 units.

Table 3. New set of evaluations (social model).

Set Swarm Inertia Results with

size fitness < 3500

S0 20 0.7 0%

S1 20 0.8 40%

S2 20 0.9 0%

S3 50 0.7 40%

S4 50 0.8 70%

S5 50 0.9 0%

S6 100 0.7 60%

S7 100 0.8 70%

S8 100 0.9 0%

S9 200 0.7 80%

S10 200 0.8 80%

S11 200 0.9 0%

Table 4. New set of evaluations (full model).

Set Swarm Inertia Results with

size fitness < 3500

F0 20 0.3 40%

F1 20 0.4 40%

F2 20 0.5 40%

F3 50 0.3 40%

F4 50 0.4 30%

F5 50 0.5 50%

F6 100 0.3 80%

F7 100 0.4 80%

F8 100 0.5 80%

F9 200 0.3 70%

F10 200 0.4 80%

F11 200 0.5 100%

configuration had more than 70% of solutions with fitness
under 3500 units. Thus a new evaluation set (Tab. 3 and
4) was performed considering the four types of variations
that had the best results, with an increase on number of
generations (from 500 to 800), particle amount (20, 50,
100 and 200) and inertia (+/- 0.1). The simulations using
the cognitive model results significantly poorly values in
relation to social models and full model. So, no evaluation
with the cognitive model was made in the second round of
evaluations.

Tab. 3 and 4 also presents 10 simulations results for each
parameter set. The tables show that the only configuration



that had 100% of the fitness results under 3500 units was
the set F11. The parameter set used on F11 is c1=2.0,
c2=2.0 (full model), w=0.5, 800 generations and 200
particles. We can see on tables that the experiences with 20
and 50 particles presents weak results, in comparison with
the experiences with 100 and 200 particles. This happens
in full model as in social model. Also, we can see on social
model (Tab. 3) that the experiments that use inertia=0.9
show unsatisfactory results, regardless of the amount of
particles present in the system. Other information that
can be seen from tables is that the experiments with the
full model (Tab. 4) showed better results compared to the
experiments on the social model (Tab. 3). The Fig. 2(a)
presents best fitness average graphic from Tab. 4 (average
of 10 simulations +/- standard deviation). In accord with
presented on Tab. 4 set F11 had the lower average and
lower standard deviation.

(a)

(b)

Fig. 2. (a) Results of the evaluations described in Tab. 4.
The x-axis shows the description of the experiment as
(inertia; swarm size). (b) Evolution of fitness accord-
ing to number of generations and different swarm size
(w=0.5).

Fig. 2(b) presents fitness evolution graphic for four combat
robots (10 simulations average - full model and inertia of
0.5). Fire spread simulation considered East-West wind
direction and relative wind speed at 7km/h; robot nav-
igation speed of 35km/h; robots positioned on 2km far
from fire threshold base. Fig. 2(b) shows that the best
fitness obtained is with a particle amount of 200. From
150 generations fitness optimization is almost stabilized.

Table 5. Best particles (resultant of three sim-
ulations).

Simulation

Subparticle A B C

0 226.60 225.71 227.21

1 202.46 204.55 202.91

2 176.87 178.78 175.79

3 161.13 163.21 161.12

4 138.14 137.58 138.17

5 26.51 26.84 29.83

6 29.20 28.79 30.34

7 30.03 29.88 28.98

8 30.12 26.27 28.21

9 32.33 28.69 32.11

Best particles resulting from three simulations using de-
scribed parameters can be seen on Tab. 5. Fig. 3 and 4
presents some simulations scenes results with satisfactory
and unsatisfactory results.

(a) (b)

Fig. 3. Unsatisfactory results. (a) 20 particles, w=0.7 and
social model: the fire is not contained by the firebreak.
(b) 50 particles, w=0.3 and full model: the firebreak
are too large relative to what would be necessary and
are not well distributed among the robots.

(a) (b)

(c) (d)

Fig. 4. Satisfactory results of the PSO (set F11). (a) and
(b) Four vehicles creating a firebreak. (c) Two vehicles
creating a firebreak. (d) Detailed view of navigation
with obstacles avoidance.

Fig. 4 presents satisfactory evolution result applied on 3D
virtual simulation environment. The 3D prototype showed
that robots completely surround the fire and create the
firebreaks on a satisfactory way. It’s important to mention
that some simulations using different navigation speed and



fire propagation were performed but on a small number
of rounds. So, they are not detailed on this text but
also presented satisfactory results. For navigation in the
irregular terrain (including obstacles avoidance using laser
sensors) the robots use Artificial Neural Networks detailed
in (Pessin et al., 2010).

6. CONCLUSIONS AND FUTURE WORK

This paper presents the modeling, implementation and
evaluation of the Particle Swarm Optimization (PSO) ap-
plied to intelligent vehicles group formation and coordina-
tion. The robotic task discussed in this paper is performed
over a simulated forest fire. Simulations have been carried
out with several PSO parameter’s variation (e.g. inertia,
confidence, social models, swarm size) seeking to get the
more efficient optimization for the formation of the group.
The simulation’s results showed that with an adequate set
of parameters it is possible to get satisfactory strategic
positions for a multirobotic system’s operation using PSO.

Some approaches are planned as future work: (i) a detailed
study on others methods for robot coordination, such as
Swarm-Based Models and Market-Based Approaches; (ii)
comparison of the efficiency of PSO with Genetic Algo-
rithms and Simulated Annealing; (iii) the improvement of
the fire simulation model. After the evaluations of these
approaches, real robots should be used in the experiments.
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