
Hardware/Software Co-design for Image
Cross-Correlation

Mauricio A Dias? and Fernando S Osorio

University of Sao Paulo - USP
Institute of Mathematics and Computer Science - ICMC

Mobile Robotics Lab - LRM
Sao Carlos, Sao Paulo, Brazil

{macdias,fosorio}@icmc.usp.br

http://www.lrm.icmc.usp.br

Abstract. Cross-correlation is an important image processing algorithm
for template matching widely used on computer vision based systems.
This work follows a profile-based hardware/software co-design method to
develop an architecture for normalized cross-correlation coefficient cal-
culus using Nios II soft-processor. Results present comparisons between
general purpose processor implementation and different customized soft-
processor implementation considering execution time and the influence
of image and sub-image size. Nios II soft-processors configured with
floating-point hardware acceleration achieved a 8.31 speedup.

Keywords: Cross-Correlation, Hardware/Software Co-Design, Profile-
Based Method

1 Introduction

Cross-correlation is a widely used algorithm for image processing, computer vi-
sion [10] [25] [24] and visual robotic navigation fields [20]. The main goal of this
algorithm is to find the portion of an image that is most similar to a sub-image.
This process can be extremely time-consuming depending on the size of the im-
age and sub-image because the method calculates the coefficient for each pixel
of the image using a sliding window that sweeps across the whole image search-
ing for a match. Coefficient values indicate the degree of similarity between the
sub-image and the current portion of an image.

Normalized cross-correlation (NCC) is a modification of the original algo-
rithm that normalizes the coefficient values between -1 and 1. In this case, co-
efficient normalization makes the algorithm invariable to image and sub-image
changes on brightness and scale. Visual navigation for mobile robotics is an

? The authors acknowledge the support granted by CNPq and FAPESP to the INCT-
SEC (National Institute of Science and Technology of Critical Embedded Systems
Brazil), processes 573963/2008-8 and 08/57870-9. Also acknowledge CNPq for finan-
cial support of this research.



2 Mauricio A Dias and Fernando S Osorio

example of current researching area that uses cross-correlation algorithms for
visual-based navigation methods[15]. Researchers[24] suggested that the speedup
of execution can be obtained using a specific hardware for this purpose.

In these work we have particular interest in the usage of the NCC algorithm
applied to visual navigation for mobile robotic. Some facts should be considered
in this type of application, once mobile robots are embedded systems which
have some particularities and constraints. In most cases embedded systems have
limited capacity of processing and memory. Embedded systems development for
robotics is a complex task because these systems share computational resources
with sensors data acquisition and processing, decision and actuators control.
The combination of these facts justifies the adoption of more robust techniques
considering performance, costs, energy consumption, processing and execution
time.

The first and most intuitive solution for embedded systems design is to imple-
ment algorithms directly in hardware. Entire hardware designs solutions nowa-
days have been replaced by hardware/software co-designs [16]. Hardware/software
co-design is a design method that proposes a hardware and software concurrent
development. This method is used to decide which part of the system will be im-
plemented in hardware and which will be implemented in software. This classic
problem is called hardware/software partitioning.

Choice for adopting hardware/software co-design is based on increasing com-
plexity of embedded systems and reduction of time-to-market for embedded sys-
tems design. Also the increasing availability of complex hardware with lower
costs is creating a phenomenon known as the SoC (System on a Chip) design
gap [1]. Complexity of available hardware and embedded systems projects is the
cause of this gap that can be softened by new approaches as hardware/software
co-design [1]. Co-design methods usually require flexible development tools that
allow rapid prototyping. One way to achieve desired flexibility level is to develop
hardware with reconfigurable computing[3] using devices such as FPGA’s[3].

FPGA’s are flexible devices because, among various features, allow hardware
to be described using Hardware Description Languages (HDL’s) and several
hardware reconfigurations (custom hardware design). In this work specifically,
there is a free soft-processor [31] provided by FPGA’s manufacturer that can be
used for co-design development.

A soft-processor is an Intellectual Property (IP) core which is 100% im-
plemented using the logic primitives of the FPGA. Other definition is: a pro-
grammable instruction processor implemented in the reconfigurable logic of the
FPGA [31]. Soft-processors have several advantages and one of the most relevant
for actual designs is the possibility to implement multi-core solutions defining
the exact number of soft-processors required by the application. Since it is imple-
mented in configurable logic (FPGA), a soft-processor can be tuned by customiz-
ing its implementation and complexity, by changing its internal configuration,
processor functional blocks or even adding new instructions to the processor, in
order to match the exact requirements of an application [31].



Hardware/Software Co-design for Image Cross-Correlation 3

The remainder of the paper is organized as follows: section 2 presents some re-
cent hardware development using NCC. In section 3, concepts of hardware/software
co-design and profiling-based methods are presented. Section 4 contains proposed
method description followed by the results section (5). At last section 6 presents
authors’ conclusions based on achieved results, followed by selected references.

2 Related Works

This work is related to hardware/software co-design, profile-based methods,
image processing, reconfigurable computing and vision navigation for mobile
robotics areas. In these areas there are important recent works and some of
them are presented in this section.

Birla & Vikram [2] presents an architecture that uses partial reconfiguration
for computer vision algorithms. Hardware is developed for people detection and
the reconfiguration is used to choose between using the whole image or select
some specific features extracted from the image. In [17] Kalomiros & Lygouras
developed a reconfigurable architecture used to select important features for
robot navigation. These features are points selected on images by an image
consistency verification system. Visual vocabularies were used online in [22] to
detect already visited regions. These vocabularies associate images that have
similar characteristics.

Lee et. Al. [18] analyzes the future of hardware and software technologies
related to visual computing. Main areas of their analysis are video coding, video
processing, computer vision and computer graphics. Authors’ conclusions indi-
cate that algorithms and architectures optimization should consider concurrent
operations, demonstrating the importance of parallel processing in this type
of application. Lu et. Al. [19] also presents the use of GPU solutions for real-
time image-based rendering. This kind of hardware is usually placed on general
purpose computers but can also be used when a huge amount of processing is
needed.

Other works present different cross-correlation coefficient calculus [8][28][5].
These works have poor comparisons between the proposed method and the com-
mon NCC coefficient. The proposed algorithm, FNCC (Fast normalized cross-
correlation), is an implementation that uses a table of values that consumes
additional significant amount of memory, usually not available on embedded
systems.

Recent works, [32] and [27], present dedicated hardware architecture solu-
tions (not programmable) for NCC algorithm, that achieved acceptable execu-
tion time. In this case some parts of proposed architectures are not detailed. Re-
cent results of other applications for NCC algorithm can be found in [9][12][23].
Next sections presents some important concepts related to this work’s develop-
ment.



4 Mauricio A Dias and Fernando S Osorio

3 Hardware/Software Co-Design

Electronic systems nowadays have become more complex because of the rising
number of functionalities that are requested on projects. As electronic circuits
become more complex, technical challenges in co-design will also increase [29].
These circuit systems can be classified as a joint operation component group de-
veloped for some task resolution [13] and, this components, can be implemented
in hardware or in software depending on what are the system’s constraints.

Hardware/Software co-design means the union of all system goals exploring
interaction between hardware and software components during development [26].
This method tries to increase the predictability of embedded system design by
providing analysis methods that tell designers if a system meets its performance,
power, size and synthesis methods that let researchers and designers rapidly
evaluate many potential design methodologies [29].

Hardware/Software co-design is a hard task and computational tools ap-
peared to make this work faster, and also increase the system’s degree of op-
timization. The introduction of programmable devices like FPGA’s (Field Pro-
grammable Gate Arrays) on circuit co-design enabled flexibility and made proto-
typing easier. This fact is really important because the circuit can be developed
and tested before be manufactured, reducing costs and design time. This flexibil-
ity opens new digital circuit applications and the rise of new Hardware/Software
co-design problems [21].

Hardware/software partitioning problem has a first level impact on system’s
performance because a wrong choice can result in an increased development
time and a final product out of specification. A good partitioning that fit all
implementation requirements optimizes operation and minimizes costs usually
resulting on an efficient project.

Firstly, partitioning problem was solved by developers with their experience
and previously released works. In case of complex systems, this work became
arduous and this fact inducted this research field interest on automating the
process using techniques like evolutionary computing and artificial neural net-
works [7]. This automation can be achieved with EDA (electronic design au-
tomation) tools or methods that allow a fast search for good solutions on search
space. Among existing methods, the profiling-based methods are being widely
used nowadays.

3.1 Profiling-Based Methods

There are many methods for hardware/software co-design and the most com-
monly used nowadays are the profiling-based methods [14].

The increasing complexity of codes raised the need for profiling tools. Profil-
ing tools make code analysis and indicate several system features like functions
execution time and memory usage. Each tool gives a specific group of informa-
tion and most of them are based on clock cycle information. Table 1 presents
some other relevant information about profiling tools [14].



Hardware/Software Co-design for Image Cross-Correlation 5

Table 1. Profiling Tool’s Comparison.

Memory Power Per Funct Per Line Call Grph

Gprof - - x x x
HDL Profiling x x - - -
ATOMIUM x - x - x
MEMTRACE x x x x -

After obtaining profiling information, system can be modified to achieve ex-
pected performance. Usually the critical parts of the system (intensive processing
and time consuming routines) start been optimized with by modifications and
improvements, then followed by hardware development on extreme cases. This
is a cyclic refinement process and usually stops when co-design performance
constraints or maximum time-to-market are achieved.

One of the most important features of this kind of method is that the crit-
ical part of the co-design, hardware/software partitioning, is performed during
a practical refinement process. Due to this fact there is a high probability that
the final system has one of the best system partitioning of the search space.
Nowadays hardware/software co-design is using soft-processors because they al-
low software execution, and also designed hardware to be included as custom
instructions for validation.

4 Method

Previous sections presented this work’s development context. Considering this,
the main goal is to implement normalized cross-correlation coefficient calculus
in an embedded platform and achieve acceptable execution time using a profile-
based hardware/software co-design development method.

4.1 NCC Coefficient Calculus

The computational cost of the cross-correlation coefficient calculus without nor-
malization is lower then normalized, but the results are sensible to image and
sub-image brightness and scale changes [10]. So the normalization of this coef-
ficient solves these two important image processing problems. As presented in
Section 2 there are other ways to calculate cross-correlation coefficient but they
have disadvantages for hardware implementation. Presented facts justified the
choice for NCC algorithm implementation.

γ(s, t) =

∑∑
[f(x, y)− f̄]

∑∑
[w(x− s, y − t)− w̄]

{
∑∑

[f (x, y)− f̄]2
∑∑

[w(x− s, y − t)− w̄]2} 1
2

(1)

Equation 1 presents the normalized cross-correlation coefficient. f represents an



6 Mauricio A Dias and Fernando S Osorio

Fig. 1. Modified Profile-Based Method.

image of M x N size, w represents a sub-image of m x n where m ≤ M and
n ≤ N . Values s and t represents the position of the sub-image center. In this
equation, w̄ and f̄ are respectively the mean value of the sub-image (that is cal-
culated only once) and the mean value of the image region where the sub-image
is placed. In this case of template matching w̄ refers to what region has to be
discovered on in image f̄.

4.2 Method Implementation

NCC algorithm was implemented and testes on a general purpose processor (Intel
Core i3). After that the proposed hardware/software co-design method (figure 1)
was applied. This previous implementation allowed the evaluation of image and
sub-image size changes impacts on coefficient calculus. Considering that Nios II
soft-processor can be programmed in C language, this procedure will generate
a program that can be used on proposed method’s first step without increasing
development time.



Hardware/Software Co-design for Image Cross-Correlation 7

It’s important to know the effects of larger images and sub-images in the
total computational cost, so general purpose processors were used to evaluate
the execution times before porting the program to the soft-processor. This anal-
ysis will show what sizes of images run considerably fast on a general purpose
processor and these sizes will be the references for soft-processor’s algorithm
evaluation. General purpose processor implementation allow also software opti-
mization evaluation before being used on the soft-processor.

After this initial step, the proposed co-design method will be applied in
order to select the configuration of the soft-processor, aiming to fit system con-
straints as area consumption, execution time and development time. Selected
soft-processor will receive modifications on the software and hardware compo-
nents according to profile results aiming better execution time. This method is
interesting because partitioning, that is considered one of the most important
parts of hardware/software co-design, is done implicitly during method execu-
tion.

Figure 1 illustrates the flowchart of proposed profile-based method. There are
two main cycles were the first one refers to software development and the second
one to hardware development. Sometimes system requirements can be satisfied
only doing software optimizations. When software optimizations reach the limit
without satisfying requirements, hardware development starts. On embedded
systems design hardware development is a costly task comparing to software
development, so a large amount of time can be saved choosing this modified
method. Together with this fact the final solution can be more interesting con-
sidering cost, performance and energy consumption because only the portion of
the system that needs acceleration will be implemented in hardware.

Basically this method needs the definition of two important things: the profile
tool and the soft-processor. In this project the profile tool used was GNU Profiler
[11] and the soft-processor was Altera Nios II. The Altera’s Nios II [6] soft-
processor has a lot of interesting characteristics and the most importants are: (i)
the processor can be programmed on C programming language, using tools like
GCC compiler and Grpof; (ii) there are three different ways to include custom-
designed hardware into the FPGA-based system [16]; (iii)we have two different
development platforms available in our lab based on Altera FPGAs (Terasic
DE2-70 and Arrow BeMicro).

Nios II has three basic soft-processor configurations: (i) economic (e); (ii)
fast (f) and (iii) standard (s). Soft-processors for this work had the same basic
configuration with the CPU, on-chip memory, two timers (system timer for clock
and another one), JTAG interface for communication. The BeMicro needs extra
RAM configured in the FPGA for data storage and a PLL 50 MHz clock and
other small features. The main difference between these three processors is that
Nios II /e doesn’t have instruction pipeline and embedded multipliers, and Nios
II /f has hardware improvements on execution time like dedicated hardware for
functions and acceleration between pipeline stages. None of them have floating-
point unit. It’s important to know that these results, except for execution times,
are valid for any other soft-processor.



8 Mauricio A Dias and Fernando S Osorio

Altera provides softwares for hardware configuration (Quartus II IDE) and
for code development and interface with Nios II soft-processor (Nios II EDS).
These two softwares have free versions that were used for this work. Developed
software will be executed on all different soft-processors to compare their perfor-
mance, to choose the best between them for this work, and continue the co-design
development method with hardware improvements if necessary.

5 Results

Following proposed method, initial results are about the influence of image size
and sub-image size changes on execution time for the algorithm. These results
are presented graphically on Fig. 2 and Fig. 3. Sub-image sizes are represented
by the number of pixels as 10x10, 20x20 and so on, and images are the common
sizes of images that are 352x288, 256x192 to 1024x768. These execution image
sizes were chosen based on characteristics presented in [4].

Fig. 2. Sub-Image Size Results for General Purpose Processor.

Based on [30], chosen optimization techniques applied to softwares developed
for embedded system are: use of unsigned variables, change functions for equiva-
lent expressions (change pow(x,2) for x*x), use of common operators for simple
attributions (change x += for x = x +), loop unrolling and use of vectors instead
of matrices.

Results show that the only technique that is really efficient in this case is
the loop unrolling. The reason is the fact that compilers apply the first three
optimization techniques automatically and the last one is only effective when
using operating systems that store matrix data away from each other. The prob-
lem of using loop unrolling technique is that the algorithm became more specific



Hardware/Software Co-design for Image Cross-Correlation 9

Fig. 3. Image Results for General Purpose Processor.

Table 2. Software Optimization Results

Mean Execution Time (s) Size (KB)

Initial 0,047 25,6

Unsigned Variables 0,047 25,6

Function Changing 0,047 25,6

Operator Changing 0,047 25,6

Loop Unrolling 0,0235 26,6

as long as loop unrolling is applied. Other important things are that there is
a maximum number of iterations to unroll after that point the execution time
became higher again, and the code size also increases. In our tests the maximum
number of unrolled iterations was 4.

To evaluate the influence of soft-processor features changing and achieve
good results on co-design methodology, the experiments have been done with
nine different Nios II hardware configuration in two different FPGAs platforms
(Terasic DE2-70 and Arrow BeMicro). Both FPGAs executed the algorithm
that implements normalized cross-correlation coefficient described in previous
sections.

Starting with pipelined processor influence on execution time and area con-
sumption, three basic processors were configured initially: Nios II /e, /s and /f.
This work considers Nios II /e as the reference software implementation of the al-
gorithm because it has no hardware accelerations or improvements as instruction
pipelining, hardware multipliers or divisors. After profiling the code the parts
that consumed the higher percentage of execution time were the floating point
operations. So, the other six possible configurations for Nios II soft processor
were implemented using floating point unit (FPU) and hardware division.



10 Mauricio A Dias and Fernando S Osorio

Table 3. Comparing Developed Hardware

bET (s) bLE bMB bP Clock tET (s) tLE tMB tP

Nios II /e 5600 14% 53% 30% 50 - 3 72% <1%

Nios II /s 1260 22% 60% 30% 50 - 4 75% <1%

Nios II /f 980 26% 63% 30% 50 - 4 77% <1%

Nios II /ef 4057 22% 53% 30% 50 - 4 72% <1%

Nios II /sf 980 31% 60% 30% 50 - 6 75% <1%

Nios II /ff 840 35% 63% 30% 50 - 7 77% <1%

Nios II /efd 3888 53% 53% 30% 50 - 11 72% <1%

Nios II /sfd - - - - 50 856,7 13 75% <1%

Nios II /ffd - - - - 50 673,5 14 77% <1%

FPGAs chosen for this work are Cyclone II and Cyclone III manufactured by
Altera Corporation and part of DE2-70 and Arrow BeMicro development boards
respectively. These boards are interesting because DE2-70 has a considerable
number of I/O and BeMicro is similar to a pen-drive where power is provided
from USB connection that consumes a slow amount of power. Only Cyclone II
allowed floating point unit configuration with hardware division for Nios II /f
and Nios II /s. Fitter of Quartus II wasn’t able to fit the complete design (FPU
+ division) on Cyclone III FPGA so the software could be executed only on
seven different soft-processors.

Table 3 shows the results for the execution on all configured soft-processors
(Nios II /xf - represents FPU, Nios II /xfd - represents FPU+HW Divisor) and
boards (indicating a b before - BeMicro board and a t before - DE2-70 board) for
a 160x120 pixel image and a sub-image of 10x10 pixels (Execution Time (ET),
Logic Elements (LE), Pins (P), Memory Bits (MB), Clock).

Execution time using was significantly reduced after including FPU unit
without division hardware and on Nios II /e with division hardware. In the
other hand, the execution time using DE2-70 was also significantly reduced af-
ter including FPU unit, but in this case including the division hardware in all
configurations. Based on this results the soft processor Nios II /f with FPU (Be-
Micro) and Nios II /f with FPU + Division Hardware (DE2-70) were chosen to
execute some different sizes of images and templates. Some higher image sizes
that execute very fast on the general purpose computer achieve non-acceptable
time on Nios II for this implementation as can be seen on table 3. To compare
the influence of sizes on the soft-processor some smaller images and sub-images
where chosen from 9x9 to 200x200 pixels images and from 3x3 to 11x11 pixels
sub-images. These results can be seen in Fig. 5 and Fig. 4.

During hardware optimization step of the proposed methodology, the speedup
of the resulting hardwares was calculated. Graphic of Fig.6 shows the speedup
values for each development step.



Hardware/Software Co-design for Image Cross-Correlation 11

Fig. 4. Sub-Image Results for Nios II Processors.

6 Conclusions

The results presented on previous section show that the proposed architecture
achieves acceptable execution time only for small-size images. Initially chosen
FPGA, Cyclone III wasn’t huge enough to configure Nios II /f with floating
point unit and hardware division. Despite of it, if small images can be used
this system is very interesting for energy consumption constraints. Development
time using chosen IDE’s was also interesting because the configuration of the
soft-processor became a less arduous task. On DE2-70 the results for the same
images were better, representing almost half of the execution time on Bemicro.
This improvement occurred because of the division hardware added into floating
point unit on co-design hardware development phase. Presented results showed
that chosen method is efficient and effective.

Extending this analysis, the speedup rate achieved after hardware develop-
ment was 8,31. This number is related to all software execution time on Nios II
/e processor, equivalent to 5600 seconds, divided by Nios II /f with FPU and
hardware division 673,5 seconds. This speedup is due to FPU hardware together
with pipeline of 6 stages from Nios II fast processor, and with hardware accelera-
tion for integer multiplies and division. All these modifications can be considered
hardware development and can be applied to any soft-processor.

Compilers already do automatically some software optimization operations
and this fact justifies the fact that only with loop unrolling technique achieved
significant code optimizations as presented on table 2. Using vectors instead of
matrices are a good technique only when the operating system doesn’t allows a
better structured representation of the matrix.

The analysis of image sizes and sub-image sizes impacts on execution time
showed that, on general purpose computers with high processing power, grayscale



12 Mauricio A Dias and Fernando S Osorio

Fig. 5. Image Results for Nios II Processors.

Fig. 6. Speedup during development.

images of 320x240 can achieve acceptable execution time with small sub-images
(Fig. 2). This analysis also indicates that the main relative problem is not the
image size for the execution time but the sub-image size. There is a point that
the sub-image gets so large that the number of calculus is small and execution
time start to fall again, due to the reduced sliding window area.Software imple-
mentation on soft-processor showed to be more sensitive for both cases related
to image sizes, but sub-image size still remains the main problem (Fig. 5).



Hardware/Software Co-design for Image Cross-Correlation 13

The comparison between implemented soft-processors also confirms that the
usage of the processor with higher computational power (Nios /f + FPU +
Hardware Divison) is the right choice for this work and the area that is necessary
to configure it on an FPGA compared to simpler processors is an acceptable
counterpart. In order to implement this system in an actual autonomous robot
navigation system, it will be possible only with improvements on algorithm’s
limitations related to image sizes that can be executed on acceptable time.

Future works directions include performing tests on larger FPGA’s, so the
Nios II soft-processor can be implemented with better hardware accelerations
and the algorithm can probably achieve more interesting execution times. Other
soft-processors can also be tested and compared. Code profile shows that the
main problems of this algorithm are the floating point operations, so hardware
structures should be included to parallelize code execution of sums and compen-
sate part of the time wasted on divisions and square root operations.

References

1. Atasu, K.: Hadware/Sotware Partitioning for Custom Instruction Processors.
Ph.D. thesis, Insitute for Graduate Studies in Science and Engineering (2007)

2. Birla, M., Vikram, K.N.: Partial run-time reconfiguration of fpga for computer
vision applications. In: IPDPS. pp. 1–6 (2008)

3. Bobda, C.: Introduction to Reconfigurable Computing: Architectures, Algorithms,
and Applications. Springer Publishing Company, Incorporated (2007)

4. Bourque, P.: Image dimensions. http://local.wasp.uwa.edu.au/.../imagedim/
(2010), acesso: 25/10/2010

5. Briechle, K., Hanebeck, U.D.: Template Matching Using Fast Normalized Cross
Correlation. In: Proceedings of SPIE: Optical Pattern Recognition XII. vol. 4387,
pp. 95–102 (March 2001), http://dx.doi.org/10.1117/12.421129

6. Corp., A.: Altera.com. http://www.altera.com/literature (2010), acesso:
22/05/2010

7. Dias, M., Lacerda, W.: Hardware/software co-design using artificial neural network
and evolutionaryy computing. In: 5th SPL. pp. 153–157 (April 2009)

8. Feng Zhao, Qingming Huang, W.G.: Image matching by normalized cross-
correlation. In: Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Pro-
ceedings. 2006 IEEE International Conference on. pp. II 729 – II 732 (2006)

9. Fernandes, C.W., Bellar, M.D., Werneck, M.M.: Cross-correlation-based optical
flowmeter. IEEE T. Instrumentation and Measurement 59(4), 840–846 (2010)

10. Gonzalez, R.C., Woods, R.E.: Digital Image Processing (3rd Edition). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA (2006)

11. Honeyford, M.: Speed your code with the gnu profiler.
http://www.ibm.com/developerworks/library/l-gnuprof.html (2010), acesso:
17/07/2010

12. Hongcheng, Y., Liu, W.: Design of time difference of arrival estimation system
based on fast cross correlation. In: Proceedings of 2nd International Conference
on Future Computer and Communication. vol. 2, pp. 464–466. IEEE Computer
Society (2010)

13. Houssain, S.T.: An introduction to evolutionary computation (1998)



14 Mauricio A Dias and Fernando S Osorio

14. Hübert, H., Stabernack, B.: Profiling-based hardware/software co-exploration for
the design of video coding architectures. IEEE Trans. Cir. and Sys. for Video
Technol. 19(11), 1680–1691 (2009)

15. Jones, S., Andresen, C., Crowley, J.: Appearance based process for visual naviga-
tion. In: Intelligent Robots and Systems, 1997. IROS ’97., Proceedings of the 1997
IEEE/RSJ International Conference on. vol. 2, pp. 551–557 vol.2 (Sep 1997)

16. Joost, R., Salomon, R.: Hardware-software co-design in practice: A case study. In:
in Image Processing, In Proceedings of the 32 nd Annual Conference of the IEEE
Industrial Electronics Society (IECON (2006)

17. Kalomiros, J., Lygouras, J.: A reconfigurable architecture for stereo-assisted de-
tection of point-features for robot mapping (2009)

18. Lee, G.G., Chen, Y.K., Mattavelli, M., Jang, E.: Algorithm/architecture co-
exploration of visual computing on emergent platforms: Overview and future
prospects. Circuits and Systems for Video Technology, IEEE Transactions on
19(11), 1576–1587 (Nov 2009)

19. Lu, J., Rogmans, S., Lafruit, G., Catthoor, F.: Stream-centric stereo matching and
view synthesis: A high-speed approach on gpus. Circuits and Systems for Video
Technology, IEEE Transactions on 19(11), 1598–1611 (Nov 2009)

20. Matsumoto, Y., Inaba, M., Inoue, H.: Visual navigation using view-sequenced route
representation. In: Robotics and Automation, 1996. Proceedings., 1996 IEEE In-
ternational Conference on. vol. 1, pp. 83–88 (Apr 1996)

21. de Micheli, G., Gupta, R.K.: Hardware/software co-design. In: Proceedings of
IEEE, vol. 85. pp. 349–365 (1997)

22. Nicosevici, T., Garcia, R.: On-line visual vocabularies for robot navigation and
mapping. In: Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ Inter-
national Conference on. pp. 205–212 (Oct 2009)

23. Pei, L., Xie, Z., Dai, J.: Fast normalized cross-correlation image matching based
on multiscale edge information. In: Proceedings of International Conference on
Computer Application and System Modeling. vol. 2, pp. 507–511. IEEE Computer
Society (2010)

24. Russ, J.C.: Image Processing Handbook, Fourth Edition. CRC Press, Inc., Boca
Raton, FL, USA (2002)

25. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision.
Thomson-Engineering (2007)

26. Straunstrup, J., Wolf, W.: Hardware Software Co-Design : Principles and Parctice.
Springer, first edn. (1997)

27. Tao, Z., Feng-ping, Y., Hao-jun, Q.: An optimized high-speed high-accuracy image
matching system based on fpga. In: Proceedings of the International Conference
on Information and Automation. pp. 1107–1112. IEEE Computer Society (2010)

28. Tsai, D.M., Lin, C.T.: Fast normalized cross correlation for defect detection. Pat-
tern Recogn. Lett. 24, 2625–2631 (November 2003), http://dx.doi.org/10.1016/
S0167-8655(03)00106-5

29. Wolf, W.: A decade of hardware/software codesign. Computer 36(4), 38–43 (April
2003)

30. Wolf, W.: High-Performance Embedded Computing: Architectures, Applications,
and Methodologies. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2006)

31. Yiannacouras, P., Rose, J., Steffan, J.G.: The microarchitecture of fpga-based soft
processors. In: CASES ’05: Proceedings of the 2005 int. conf. on Compilers, arch.
and synthesis for emb. sys. pp. 202–212. ACM, New York, NY, USA (2005)



Hardware/Software Co-design for Image Cross-Correlation 15

32. Yonghong, Z.: An nprod algorithm ip design for real-time image matching appli-
cation onto fpga. Electrical and Control Engineering, International Conference on
0, 404–409 (2010)


