
RULE_OUT METHOD: A NEW
APPROACH FOR KNOWLEDGE

EXPLICITATION FROM
TRAINED ANN

L�ic Decloedt 1, Fernando Os�rio 1,2, Bernard Amy 1

1 Laboratoire LEIBNIZ / LIFIA - IMAG -INPG
46, avenue F�lix Viallet 38031 Grenoble Cedex 1 - FRANCE

E-mail: osorio@imag.fr - amy@imag.fr
Web: http://leibniz.imag.fr/RESEAUX/

2 UNISINOS - Computer Science Dept.
Av. Unisinos, 950 - CP 275 - CEP 93022-000 RS- BRAZIL

Web: http://www.unisinos.tche.br/

ABSTRACT

Artificial Neural Networks have been applied in many different domains with success.
Their main advantage come from their generalisation ability on a learned base of examples. On
the other hand, their major drawback comes from their lack of justification abilities. So, several
methods have been designed to explicit their knowledge in a symbolic form, in order to get it
comprehensible for a human operator. We present here an ANN knowledge explicitation
system, included in a more general neuro-symbolic hybrid AI system: the INSS system.
Usually, existing explicitation systems attempt to express the whole part of the ANN
knowledge. Here, choice has been made to represent only its more significant part. In order to
do this, we have developed methods based on the incrementality of the applied ANN learning
method, and on network simplification. We present these methods in this paper; then, some
experimental results obtained on the Monk's problems are shown.

1. INTRODUCTION

Artificial Neural Networks (ANN) have shown very good abilities to
represent knowledge expressed into a set of examples, and interesting
generalisation properties. However, their sub-symbolic representation,
expressed in terms of units structure containing weighted links, doesn't allow
to explain their answers. Several methods, defined as ANN knowledge
extraction methods, have been developed to express the ANN representation in
terms of symbolic knowledge (i.e. symbolic rules). As we don't consider that
ANN knowlegde is embedded in the network, but expressed in a way that is
difficultly comprehensible for a human, we'd rather talk of knowledge
explicitation than knowledge extraction.

Unlike usual explicitation systems, that work on the whole ANN
knowledge, we started from the idea to only express the more significant

part of considered knowledge. The aim of this concept is, on one hand, to
enhance comprehension of a human user, and on the other hand, to reduce the
complexity of such process.

We implemented this explicitation method as a part of an hybrid AI
system, that combines both symbolic and connectionist models: the INSS
system [11]. This system is presented in the first part of this paper, in Section
2. The main principles of the explicitation method are exposed in the next
section. Then, methods for selecting more significant parts of considered
knowledge are presented in Section 4. At least, we present some experimental
results obtained on a well known machine learning problem: the Monk
Problem [13].

2. INSS SYSTEM

The acquired knowledge of a given problem can be represented in
different forms. It can be expressed either as theoretical concepts, or as
practical examples. To take advantage of the whole knowlegde, it would be
interesting to be able to use together both aspects. The INSS System -
Incremental Neuro-Symbolic System - developed by F. Osorio [11], is an
hybrid system that combines theoretical and practical models of knowledge
(i.e. symbolic rules and pratical examples). Its base model (inspired by
KBANN system [14] with an important improvement in the ANN learning
algorithm) works with two independent modules, each one representing one of
the considered aspects.

Theoretical aspect is represented by a set of production rules that associate
hypothesis conditions or facts to conclusion facts. This set of rules is
manipulated by a Symbolic Module. Practical aspect is modelled by an
Connectionist Module, composed of an ANN. In INSS system, ANN learning is
incremental, i.e. it changes the network topology, working both on modifying
output weights, and adding new hidden units in order to represent the new
acquire knowledge. The algorithm used to perform this task is based on
Cascade Correlation, developed by S.E. Fahlmann [4]. This kind of algorithm
(i.e. incremental learning methods) improves significantly the learning ability
of KBANN networks, e.g. see [9].

In addition to this, communication processes between these modules,
Symbolic one and Connectionist one, are designed to reduce the gap that can
exist between the two knowledge aspects. These processes work on information
exchange, based on translation from one representation to the other one. Rules
compilation in ANN form represents communication from Symbolic Module
to Connectionist Module; knowledge explicitation allows to express an ANN in
a theoretical model, and thus represents communication form Connectionist to
Symbolic Module. This particular aspect of INSS, knowledge explicitation, is
described in more details in the next sections.

3. MAIN ASPECTS OF KNOWLEDGE EXPLICITATION

At the moment, two main types of methods exist in the domain of
knowledge explicitation [1]. On one hand, there exits "decompositional"

methods that approximate each unit of the ANN as a propositional variable.
Then, they attempt to find logical relationships between these variables,
through weights value carried by links between corresponding units. At least,
rules are derived from these relationships. This type of method is represented
by algorithms like SUBSET algorithm, created by L.M. Fu [5], or NofM
algorithm [14]. On the other hand, "pedagogical" methods don't examine each
unit of the net, rather considering it as a "black box". These methods try to
directly find the relationships between the inputs and the outputs of the
network, through directed search into the space of inputs. Examples of this
kind of method are "Extraction-as-learning", developed by M. Craven [2], or
that developed in BRAINNE system, by S. Sestito and T. Dillon [12].

However the major drawback of all these methods is that they focuses on
the whole knowledge contained by networks. This aspect increases the
processing complexity in a significant manner, especially for decompositional
algorithms. Furthermore, the corresponding number of obtained rules can
alter their abilities to be understood by a human operator.

The fact of we have chosen to represent more significant parts of
considered knowledge, instead of the whole part of it, allows us to reduce both
complexity of such process and number of expressed rules. This is obtained by
selecting the more significant elements of the network, and applying the
explicitation only on these elements. As explicitation process is only applied on
particular elements on the considered network, decompositional methods have
been chosen to realise it. Indeed, this kind of method can be applied to
particular parts of the network, whereas pedagogical methods usually works
on the whole net. Chosen methods are SUBSET and NofM algorithms. In the
next section, we show how more significant parts of treated network are
selected, prior to explicitation.

4. SELECTING NETWORK ELEMENTS

In this part, we present methods that are used to select elements
representing more significant network knowledge. Firstly, it is shown how
explicitation can be focused more particularly on knowledge that the network
has acquired during learning. Secondly, it is seen how relative importance of
units on global outputs can be measured. At least, some methods to evaluate
relative importance of weights are presented.

4.1. Selecting acquired-knowledge-linked elements

As seen in ¤2, INSS combines two models of knowledge, a symbolic one
and a connectionist one. Studies has shown that learning is improved if initial
theoretical knowledge is inserted into ANN before [6][10][14]. In the INSS
system, theoretical knowledge insertion can be realised by rules-to-network
compilation. Such network, obtained by compiling a set of rule, can then be
submitted to the learning of a set of examples. After learning, due to Cascade
Correlation algorithm [4], ANN possesses two kinds of separeted knowledge:
initial knowlegde and knowledge acquired during learning. Then, it would be
interesting to be able to express only the second type of knowledge, and not the

whole one. It would then allow us to focus on this type of knowledge, and to
compare it to the initial knowledge. It can be noted that this possibility is
absent from every ANN extraction system we have seen up to now.

Since the initial theoretical knowledge is conserved during learning, the
INSS system learning algorithm is incremental, i.e. it works by adding new
hidden units. Indeed, initial hidden weights are frozen before learning, and
cannot be changed. Thus, knowledge acquired during learning is represented
by new units (output and hidden units), added by Cascade Correlation
algorithm. Then, explicitation process can be applied directly to this type of
unit, in order to express additive knowledge acquired during learning.

4.2. Selecting significant units

As, during explicitation process, each unit is expressed as a propositional
variable, it can be useful to detect significant units before applying it. Indeed,
if only the most significant variables are involved, resulting rules can be
simplified, and comprehensibility increased. Methods for measuring unit
significance have been developed. The aim is then to remove from the network
least significant units. One method measures influence of network inputs. We
have created another method that allows to detect units with few decisive
outputs.

4.2.1. Influence of inputs

This method is designed to measure how global error is affected, when a
particular network input value is set to be always equal to its mean value over
a set of examples. It is inspired by a method developed by John Moody [8], that
has developed a measure, called sensitivity, which measures this effect. This
measure, realised on a set of N patterns is defined, for each input i, as:

Si = 1
N

∂ SE(j)
∂ xi(j)j =1

N

∑ .d xi(j)

where xi(j) represents value of input i for pattern j, SE(j) represents
global Squared Error for pattern j, and dxi(j) is defined as:

d xi(j) = xi(j) − xi()
where xi is the mean value of input i over the set of examples.

4.2.2. Detecting few decisive units

We have created another simple method to detect units which have nearly
the same output values in the network input space [3]. When detected, this kind
of unit can be approximated as always sending the same output ; it then can be
removed from the network, after having propagated its mean activation
through the network, by modifying bias of units which have an incoming link
from this unit.

To detect this type of unit, the activation frequency (i.e. the frequency
with which a given unit sends an output value near 1) of each unit is measured
over a set of examples. If the considered set of examples is representative
enough, then a unit with high activation frequency will be approximated as a

unit always sending value of 1, and a unit with very low activation frequency
will be approximated as a unit sending output of 0.

4.3. Selecting significant weights

Some methods have been designed to measure influence of weights on
network outputs, in order to prune those having the least influence. This aspect
is very important, because the complexity of explicitation methods that are
used is strongly related to the number of incoming weights of units they are
applied to. The number of expressed rules can be reduced in a significant
manner too. Two different methods have been designed to measure this
influence.

4.3.1. Relative percentage

One assumption is made that, considering connections incoming to the
same unit, links that have very low weights with respect to other ones has little
influence on the output of the considered unit. This hypothesis can be
contested, but our experimental results has shown that Cascade Correlation
algorithm assigned very low weights to less important links. So, we have
created a very simple method that measure relative importance of each weight
with respect to other ones incoming to the same unit [3]. In order to do that,
we calculate percentage of each weight with respect to global sum of the others
weights. Then, weights having the least percentage can be pruned in priority.
In our system we provide some feedback to the user so he can check whether
this operation does affect global error.

4.3.2. Influence on global error

The assumption that the influence of a link is proportional to its weight
can be wrong: if very little weights usually have little influence, it has been
observed, after learning, links with big weights that were not significant for
global network response. So, another method, inspired by Optimal Brain
Damage algorithm [7], has been developed to measure influence of each weight
on global error; it is based on calculus of global error second derivative. This
measure, called saliency, is defined, for a weight wk as:

S(wk)= 1
2

∂ 2 ASE
∂ wk∂ wk

.(wk)2

where ASE represents the training Average Squared Error. Then weights
with low saliency can be pruned, and explicitation can be greatly improved by
this way.

5. EXPERIMENTAL RESULTS

Experiments have been realised, using an artificial machine learning
problem known as the Monk's Problem. Its main interest is that it had been
tested out on many learning methods [13], and is therefore useful to compare
INSS system to other ones. This problem is defined as following; we consider
robots having the following characteristics:

 HEAD_SHAPE: ROUND, SQUARE, OCTAGON;
 BODY_SHAPE: ROUND, SQUARE, OCTAGON;
 IS_HOLDING: FLAG, SWORD, BALLOON;
 JACKET_COLOUR: RED, BLUE, YELLOW, GREEN;
 HAS_TIE: YES, NO;
 IS_SMILING: YES, NO;

In the first Monk's Problem data set, valid robots are those having the
same head shape as their body shape, or a red jacket. Corresponding rules can
be seen below.

 Monk1<- HEAD_SHAPE=ROUND, BODY_SHAPE=ROUND (I)
 Monk1<- HEAD_SHAPE=SQUARE, BODY_SHAPE=SQUARE (II)
 Monk1<- HEAD_SHAPE=OCTAGON, BODY_SHAPE=OCTAGON (III)
 Monk1<- JACKET_COLOUR=RED (IV)

Each rule having the form (Y<- X1, X2,, ..., Xn;) means: "if (X1 and X2
and ... Xn) then Y". Each set of rules having the form (Y<-X1; Y<- X2; ...
Y<-Xn;) means: "if (X1 or X2 or ... Xn) then Y".

This set of rules can then be compiled into an ANN. The corresponding
ANN has one output and, for each input variable, one input for each possible
value, i.e. 17 inputs in total. Each input is coded as: <Variable#Value>.
For example, the input representing (HAS_TIE = YES) is coded as
(HAS_TIE#YES).

Chosen test has been realised by selecting 50% of initial theory, i.e. rules I
and II, and by compiling them in the form of an ANN. Afterward, this
network has been submitted to the learning of a set of examples containing the
whole knowledge (i.e. the original Monk's 1 problem learning data set).
Knowledge explicitation processes have then been activated to verify whether
missing knowledge had been acquired during learning. Resulting net after
learning is represented in Figure 1.

Monk1_50

BODY_SHAPE

Square

HEAD_SHAPE

Round Oct. Square Round Oct. Red

.....

JACKET_COLOUR

......

Final_Monk

Blue

.....

NewUnit

4

3

1 2

5

Monk1_I Monk1_II

Figure 1 - Resulting ANN structure after learning

Units 1 to 3 represent initial knowledge. The incoming weights of these
units has remained unchanged during learning. Unit 4 represent the network
global response, and had been added during the first step of the learning
algorithm execution, unit 5 is the unit added by Cascade Correlation
algorithm. Newly acquired knowledge during learning phase is represented by
units 4 and 5. So explicitation will focus on these particular units, as seen in
¤4.1.

Incoming links to these units represented with a dashed line had a very
low weight (less than 1% of the total weight sum), and have been eliminated as
discussed in ¤4.3.1. The link represented with a simple line had a big weight,
but its saliency were very low (cf. 4.3.2). then, it has been pruned too. So,
only incoming links with "strong" lines were remaining before applying
explicitation process. The explicitation has been performed with the SUBSET
algorithm [5][14], the resulting rules are:

 Final_Monk<- Monk1_50%;
 Final_Monk<- not (NewUnit);
 NewUnit<- not (JACKET_COLOUR#RED), not (BODY_SHAPE#OCTAGON);
 NewUnit<- not (JACKET_COLOUR#RED), not (HEAD_SHAPE#OCTAGON);

Monk_50% variable is equivalent to initial rules (I) and (II). We define a
new variable Neg_NewUnit such as: Neg_NewUnit= not (NewUnit). Then we
introduce it in the above rules, using De Morgan formulas:

 Final_Monk<- Monk1_50%;
 Final_Monk<- Neg_NewUnit;
 Neg_NewUnit<- JACKET_COLOUR#RED;
 Neg_NewUnit<- BODY_SHAPE#OCTAGON, HEAD_SHAPE#OCTAGON;

It can be seen that missing knowledge was found again. It can be noted
that use of incrementality and simplification processes increased very
significantly the efficiency of the explicitation process. Indeed, execution time
of explicitation, using SUBSET algorithm, without simplification is
approximately equal to two or three hours on a Sun Sparc station, whereas it
takes few seconds if simplification is realised before. Simplification also allows
to reduce number of resulting rules by a factor of ten to twenty, without loss
of generality. This is very useful to check main aspects of explicited
knowledge. At least, use of incrementality allow us to separate initial
knowledge and acquired knowledge during learning; as a result,
comprehensibility is enhanced.

6. CONCLUSION

We presented in this paper an ANN knowledge explicitation system based
on incrementality and simplification. This system is able to do incremental rule
extraction because, taking advantage of incremental learning characteristics, it
allows to focus extraction only on newly acquired knowledge. It can be noted
that this aspect is absent from ANN explicitation systems that we have seen up
to now. As more significant parts of considered ANN are selected, prior to
explicitation, this system is simplification-based; few systems provide this
possibility. Experimental results showed that, given an initial network that had

been compiled from an incomplete set of rules and then submitted to learning,
missing knowledge could be found back very efficiently using this system.

However, it has been observed that it was more difficult to extract
significant features from network containing no initial knowledge. Indeed, this
knowledge was expressed in a very dense way, so it was difficult to detect
more significant terms. A solution to this problem could be to work out an
incremental symbolic knowledge acquisition method. This method would
consist in, starting from an empty, or almost empty, initial set of rules,
extending it through several compile-learn-extract loops. Each loop would
consist in compiling current set of rules and submitting resulting net to
learning. Then we could extract simpler rules from this ANN to insert them
into initial set of rules. This process could then be applied back to the new set
of rules until entire knowledge is acquired. We are currently developing
studies in this direction.

Another problem comes from the fact that considered knowledge has
strong symbolic requirements that remain implicit for the network. For
example, in case showed in ¤5, as inputs of the net are nominal variables, input
units representing the same variable are mutually exclusive, and, at any time,
one of these inputs has a valid value. As these properties are implicit,
explicitation system doesn't take them in account, and give, for example, rules
containing conjunction of different values for the same variable in antecedent.
These rules are valid at the network level, but have no reality in the symbolic
context in which we are. For examples, rules described on ¤5 were not
obtained directly under the given form, but have been submitted before to
some symbolic manipulations, giving an equivalent set of rules, taking in
account these symbolic properties. So, we would need to use symbolic methods
to automate these manipulations, in order to enhance comprehensibility.

Works that will be developed in the future, for this explicitation system,
concern compile-learn-extract loops research, designing methods for the
manipulation, validation and verification of extracted rules, and use of this
system on real-world problems.

BIBLIOGRAPHY

[1] Andrews, R.; Diederich, J.; Tickle, A.B. A Survey and Critique of Techniques for
Extracting Rules form Artficial Neural Networks ; To appear: Knowledge-Base Systems.
Queensland University of Technology. 1995.

[2] Craven, M. W. Using Sampling and Queries to Extract Rules from Trained Neural
Network; Machine Learning: Proc. of the 11th International Conf. of San Francisco. 1994.

[3] Decloedt, L. Explicitation de Connaissances dans un Syst�me Hybride d'Intelligence
Artificielle. Computer Science DEA Research Report, LIFIA - IMAG, Grenoble - France,
1995.

[4] Fahlman, S. E.; Lebiere, C. The Cascade-Correlation Learning Architecture; Carnegie
Mellon University, Technical Report - CMU-CS-90-100. 1990.

[5] Fu, L. M. Integration of Neural Heuristics into Knowledge-Based inference ; Connection
Science 1(3): 325-339. 1989.

[6] Giacometti, A. Mod�les hybrides de l'expertise ; Ph.D. Thesis, LIFIA - IMAG, Grenoble -
France, 1992.

[7] LeCun, Y.; Denker, J. S.; Solla, S.A. Optimal Brain Damage ; Advances in Neural
Information Processing Systems 2, D.S. Touretzky ed., Morgan Kauffmann publishers,
1990.

[8] Moody, J. Prediction Risk and Architecture Selection for Neural Networks ; From Statistics
to Neural Networks: Theory and Pattern Recognition Applications, NATO ASI Series F .
Springer-Verlag, 1994.

[9] Opitz, D. W.; Shavlik, J. W. Dynamically Adding Symbolically Meaningful Nodes to
Knowledge-Based Neural Networks. To appear: Knowledge-Base Systems. Computer
Science Dept. Univ. of Wisconsin-Madison. 1995.

[10] Orsier, B. Etude et application de syst�mes hybrides neurosymboliques ; Ph.D. Thesis,
UJF - LIFIA, Grenoble - France, 1995.

[11] Osorio, F. INSS: A Hybrid Symboli-Connectionist System that Learns from Rules and
Examples ; (in portuguese), Panel'95 - XXI Latin American Conference on Computer
Science, Canela, Brazil, 1995.

[12] Sestito, S.; Dillon, T. The Use of Sub-Symbolic Methods for the Automation of
Knowledge Acquisition for Expert Systems and Their Applications ; Proc. of the 11th
International Conference on Expert Systems and their Applications (AVIGNON'91),
Avignon. 1991.

[13] Thrun, S. B. et al.The Monk's Problem - A Performance Comparison of Different
Learning Algorithm ; Carnegie Mellon University, Technical Report CMU-CS-91-197.
1991.

[14] Towell, G. Symbolic Knowledge and Neural Networks: Insertion, Refinement and
Extraction ; Ph.D Thesis, University of Wisconsin-Madison - Comp. Science Dept. 1991.

