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Abstract

This paper describes the LegGen simulator, used to au-
tomatically create and control stable gaits for legged robots
into a physically based simulation environment. In our ap-
proach, the gait is defined using two different methods: a
finite state machine based on robot’s leg joint angles se-
quences; and a recurrent neural network. The parameters
for both methods are optimized using genetic algorithms.
The model validation was performed by several experiments
realized with a robot simulated using the ODE physical sim-
ulation engine. The results showed that it is possible to gen-
erate stable gaits using genetic algorithms in an efficient
manner, using these two different methods.

1 Introduction

The autonomous mobile robots have been attracting the
attention of a great number of researchers, due to the chal-
lenge that this new research domain proposes: make these
systems capable of intelligent reasoning and able to interact
with the environment they are inserted in, through sensor’s
perception (infrared, sonar, bumpers, gyro, etc) and motor’s
action planning and execution [6]. At the present time, the
most part of mobile robots use wheels for locomotion, what
does this task easy to control and efficient in terms of energy
consumption, but they have some important disadvantages
since they have problems to move across irregular surfaces
and to cross borders and edges, like stairs. So, in order to
make mobile robots better adapted to human environments
and to irregular surfaces, they must be able to walk and/or to
have a similar locomotion mechanism used by the humans
and animals, that is, they should have legs [6, 1].

However, the development of legged robots capable to
move in irregular surfaces is a quite difficult task, that needs
the configuration of many gait parameters. The manual con-
figuration of these parameters demands a lot of effort and
spent time of a human specialist, and the obtained results
are usually suboptimal and specific for one robot architec-

ture [4]. Thus, it is interesting to generate the robot gait con-
figuration in an automatic manner, using Machine Learning
techniques to perform this task.

One of these Machine Learning techniques that are most
adapted for this specific task are the genetic algorithms
(GA) [8, 20]. This is a reasonable choice because accord-
ing to the Evolution’s Theory [5], the locomotion mecha-
nisms of several life forms resulted from the natural evolu-
tion, what makes the use of genetic algorithms a natural so-
lution since they are biologically inspired and can generate
biologically plausible solutions. From the computational
point of view, the GAs are also very well adapted for the
automatic gait configuration of legged robots, because: (a)
they use a multi-criterion optimization method to search so-
lutions in the configuration space, that means in our specific
case, they are capable to optimize not only the gait veloc-
ity, but also the stability and even other gait parameters; (b)
they don’t need local information for the error minimiza-
tion, nor the gradient calculation, what is very important for
the gait parameters generation and optimization, since it is
very difficult to have available some a priori training data
for supervised learning; (c) if correctly used, the GA is ca-
pable to avoid local minima [20].

In our previous works, we made a comparative study be-
tween robots with four (tetrapod) and six (hexapod) legs
[14], and also about the use and the influence of different
fitness functions [12, 13] used in GA robot control opti-
mization. This paper shows a comparative study between
the following legged robot control strategies: (i) Control
based on FSA (finite state automata); (ii) Control based on
ANN (artificial neural networks). In both strategies the pa-
rameters tuning and optimization was done using GAs.

This paper is structured as follows: The Section 2 de-
scribes several concepts relative to mobile robots simula-
tion; The Section 3 describes related works in control of
legged robots; The Sections 4 and 5 describes GA and
ANN; The Section 6 describes the proposed model, called
LegGen; The Section 7 describes the accomplished experi-
ments and the obtained results; and the Section 8 provides
some final conclusions and future perspectives of this work.
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2 Mobile robot simulation

In order to obtain a more realistic mobile robots simu-
lation, several elements of the real world should be present
in the simulated model, doing the simulated bodies to be-
have in a similar way related to the reality and also to inter-
act with the environment they are inserted in. Especially, it
is necessary that the robot suffers from instability and fall
down if badly positioned and controlled, and also it should
interact and collide against the environment objects in a
realistic manner [21]. To accomplish that, it is necessary
to model the physics laws in the simulation environment
(e.g. gravity, inertia, friction, collision). Nowadays, several
physics simulation tools exist used for the implementation
of physics laws in simulations. After analyzing different
possibilities, we chosed a widely adopted physics simula-
tion library, called Open Dynamics Engine - ODE1.

ODE is a software library for the simulation of artic-
ulated rigid bodies dynamics. With this software library,
it’s possible to make autonomous mobile and legged robots
simulations with great physical realism. In ODE, several
different rigid bodies can be created and connected through
different types of joints. To move bodies using ODE, it’s
possible to apply forces or torques directly to the body, or
it is possible to activate and control angular motors. An an-
gular motor is a simulation element that can be connected
to two articulated bodies, which have several control pa-
rameters like axis, angular velocity and maximum force.
With these elements, it’s possible to reproduce articulations
present in real robots with a high precision level [21].

3 Related works

Control of locomotion in legged robots is a challeng-
ing multidimensional control problem [6, 1]. It requires the
specification and coordination of motions in all robots’ legs
while considering factors such as stability and surface fric-
tion [17]. This is a research area which has obvious ties with
the control of animal locomotion, and it is a suitable task to
use to explore this issue [24]. It has been a research area for
a considerable period of time, from the first truly indepen-
dent legged robots like the Phony Pony built by Frank and
McGhee [19], where each joint was controlled by a sim-
ple finite state machine, to the very successful algorithmic
control of bipeds and quadrupeds by Raibert [23].

Lewis [18] evolved controllers for a hexapod robot,
where the controller was evaluated on a robot which learn to
walk inspired on insect-like gaits. After a staged evolution,
its behavior was shaped toward the final goal of walking.
Bongard [2] evolved the parameters of a dynamic neural
network to control various types of simulated robots. Busch

1Open Dynamics Engine (ODE) – http://www.ode.org

[3] used genetic programming to evolve the control param-
eters of several robot types. Jacob [16], on the other hand,
used reinforcement learning to control a simulated tetrapod
robot. Reeve [24] evolved the parameters of various neu-
ral network models using genetic algorithms. The neural
networks were used for the gait control of tetrapod robots.

In the most part of these approaches described above, the
fitness function used was the distance traveled by the robot
in a predefined amount of time. Although this fitness func-
tion is largely used, it may hinder the evolution of more sta-
ble gaits [9]. In our approach, we use in the fitness function,
beyond distance traveled, sensorial information (gyroscope
and bumpers) to guarantee stable and fast gaits [12, 13, 11].

4 Artificial neural networks

Through the use of an abstract and simplified model of
human neurons, it is possible to develop a neural simulator
capable to classify, to generalize and to learn how to classify
and approximate functions. In this work we are particularly
interested in the artificial neural networks (ANN) function
aproximation properties. One of the most used neural learn-
ing models is the so called Multi-Layer Perceptron (MLP)
with Back-propagation learning algorithm [25, 10]. In this
work, instead of using the standard back-propagation al-
gorithm and its improvements, we used GAs to evolve the
synaptic weights, because we do not have any local infor-
mation for the the gradient calculation [22].

The network topology used in this work was an Elman
network, which are multi-layer perceptron networks with
feedback connections from the output of the hidden layer
to its input. This feedback path in the hidden layer allows
Elman networks to learn, to recognize and to generate tem-
poral patterns, as well as spatial patterns [7].

5 Genetic algorithms

Genetic algorithms are optimization methods of stochas-
tic space state search based on the Darwin’s Natural Evo-
lution Theory [5], that were proposed in the 60s by John
Holland [15]. They work with a population of initial solu-
tions, called chromosomes, which are evolved through sev-
eral operations during a certain number of generations, usu-
ally reaching a well optimized solution, and preserving the
best individuals according to a specific evaluation criterion.
In order to accomplish this, in each generation the chromo-
somes are individually evaluated using a function that mea-
sures its performance, called fitness function [20]. Usually
the chromosomes with the best fitness values are selected
to generate the next generation applying the crossover and
mutation operations. Thus, each new generation tends to
adapt and improve the quality of solutions, until we obtain
a solution that satisfies a specific objective.
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The genetic algorithms implementation used in our sys-
tem was based on the GAlib software library2, developed
by Matthew Wall of Massachusetts Institute of Technology
(MIT). GAlib was selected as it is one of the most com-
plete, efficient and well known libraries for GA simulation,
and also because it is a free and open source C++ library.

In the proposed model, a genetic algorithm as described
by Goldberg in his book [8] was used, and a floating point
type genome was adopted. In order to reduce the search
space, alleles were used to limit generated values only to
possible values for each parameter.

6 Proposed model

The LegGen simulator3 [12, 13, 14, 11] was developed
to accomplish the gait control of simulated legged robots
in an automatic way. It was implemented using the C++
programming language and the free software libraries ODE
and GAlib. The LegGen simulator reads two configuration
files, one describing the robot format and dimensions and
the other file describing the simulation parameters.

The LegGen simulator works as follows: initially the file
describing the robot is loaded, and the robot is created in
the ODE environment according to file specifications. After
this, the simulator parameters are loaded, and the genetic al-
gorithm is initialized and executed until the number of gen-
erations is reached. The evaluation of each chromosome is
realized in the following way:

• The robot is placed in the starting position and orien-
tation in the simulation environment;

• The genome is read and the control parameters are set;
• The physical simulation is executed during a prede-

fined amount of time (30 seconds in our experiments);
• Gait information and sensor data are captured during

each individual physical simulation;
• Fitness is calculated from captured data and returned

to the GAlib;
During the simulation, if all paws of the robot leave the

ground at same time for more than one second, the simula-
tion of this individual is immediately stopped, because this
robot probably fell down, and therefore it is not necessary
to continue the physical simulation of this individual.

In the LegGen simulator, the gait control is accomplished
through two strategies: (i) a finite state machine (FSM); (ii)
a artificial neural network. The following sections describe
these control strategies.

6.1 Finite state machine control

In the LegGen simulator, the gait control is generated
using a finite state machine (FSM), in which is defined for

2GAlib – http://www.lancet.mit.edu/ga/
3LegGen – http://www.inf.unisinos.br/~osorio/leggen

each state and for each robot joint their final expected an-
gles configuration [2]. In this way, the controller needs to
continually read the joints angle state, in order to check if
the joint motor accomplished the task. Real robots do this
using sensors (encoders) to control the actual angle attained
by the joints [6, 1]. So, in this approach the gait control is
accomplished in the following way: initially the controller
verify if the joints have already reached the expected an-
gles. The joints that do not have reached them are moved
(activate motors), and when all the joints have reached their
respective angles, the FSM passes to the following state.

To synchronize the movements, it is important that all
joints could reach their respective angles at almost the same
time. This is possible with the application of a specific joint
angular velocity for each joint, calculated by the equation:

Vij = V ri(αij − αij−1) (1)

whereVij is the velocity applied to the motor jointi in the
j state,αij is the joint anglei in the j state,αij−1 is the
joint anglei in j − 1 state, andV ri is the reference velocity
of thei state, used to control the set velocity. The reference
velocity V r is one parameter of the gait control that is also
optimized by the genetic algorithm. The other parameters
are the joints angles for each state. To reduce the search
space, the genetic algorithm only generates values between
the maximum and minimum accepted values for each spe-
cific parameter.

6.2 Neural control

Besides the use of FSMs to control legged robots, we
also can use artificial neural networks (artificial neural net-
works – ANN) [10]. This approach has some important
and specific limitations: it is quite difficult to have an a
priori information about the generation of the control pa-
rameters. Since we do not have available the exact and
correct sequence of values that should be sent to control
the motors (actuators), then it is usually not possible to ap-
ply traditional supervised learning algorithms, likeback-
propagationand other similar ones. This is the main reason
we decided to adopt genetic algorithms to evolve synaptic
weights.

GAs can adjust synaptic weights with the advantage they
do not need any local information or local error measure in
order to adapt the weights, and so we do not need a train-
ing dataset (supervised learning). The weights can be coded
into the chromosomes and evolved, using a fitness function
to evaluate the robot performance controlled by this evolved
ANN. On the other hand, the use of ANNs has some main
advantages when used to control robot gait: ANNs are more
robust to noise, continue to perform well even when faced to
unseen situations, and they usually can obtain a good gen-
eralized behavior.
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The ANN inputs are the present robot joint angles values
(angles at timet, normalized in the range from -1 (αmim)
to +1 (αmax). In the ANN outputs are obtained the joint
angles in the next time stept + 1, also normalized in the
range [-1:+1]. After some preliminary tests, we choose the
Elman model of recurrent ANNs, which was very satisfac-
tory when applied in this problem where we need to predict
a temporal behavior (sequencing joint angles). The Elman
networks are MLP nets with feedback connections from and
back to the hidden layer. These connections allow the El-
man nets to learn temporal sequences of patterns and then,
from the joint angles patterns in timet, they can generate
the next joint angles pattern in their outputs. We adopted the
hyperbolic tangent function as neuron’s activation function,
and also the synaptic weights were limited ranging from -1
to +1, which simplify the GA weights optimization. This
ANN model and parameters setup was empirically tested
and showed to be well suited to the problem in question.

6.3 Modeled robot

According to the documentation, computational com-
plexity when using the ODE library isO(n2), wheren is the
amount of bodies present in the simulated physical world.
Thus, in order to maintain the simulation speed in an ac-
ceptable rate, we should use few and simple objects. For
this reason, all the simulated robots were modeled with sim-
ple objects, as rectangles and cylinders, and they have only
the necessary articulations to perform the gait. Thus, body
parts as the head and the tail are usually not present in the
modeled robots. In order to keep our robot project sim-
ple, the joints used in the robots legs just move around the
z axis of the robot (the same axis of our knees), and the
simulations just used robots walking in a straight line. In
the near future, we plan to extend our simulator to accept
more complex robot models and joints. Several robot types
were developed and tested, before we defined the final main
model, presented in the Figure 1.

Figure 1. Modeled robot

The simulated robots dimensions are approximately the
dimensions of a medium sized dog. The joint restrictions
used in the simulated robot are similar as they biologi-
cal equivalents, with the following values: Hip=[-60°;15°];
Knee=[0°;120°]; Ankle=[-90°;30°]. All the robot legs have
these same joint restrictions.

6.4 Fitness function

The fitness evaluation uses the following sensorial infor-
mation that must be calculated: (a) the distanceD covered
by the robot; (b) instability measureG; The covered dis-
tanceD is given by the equation:

D = Px1 − Px0 (2)

whereD is the distance traveled by the robot in thex axis
(forward walk following a straight line),Px0 is thex start
position andPx1 is the endx position.

The instability measure is calculated using the robot po-
sition variations in thex, y andz axis. These variations are
collected during the physical simulation, simulating a gy-
roscope/accelerometer sensor, which is a sensor present in
some modern robots [6]. The instability measureG (Gyro)
is then calculated by the following equation [9]:

G =

√

√

√

√

√

√

N
∑

i=1

(xi − xx)2 +
N

∑

i=1

(yi − xy)2 +
N

∑

i=1

(zi − xz)
2

N
(3)

whereN is the number of sample readings,xi, yi andzi are
the data collected by the simulated gyroscope in the timei,
andxx, xy andxz are the gyroscope reading means, calcu-
lated by the equation:

xx =

∑N

i=1
xi

N
, xy =

P

N

i=1
yi

N
, xz =

∑N

i=1
zi

N
(4)

After finished the sensorial information processing, the
fitness functionF is then calculated through the equation:

F = D/(1 + G) (5)

whereL is the number of robot legs. Analyzing the fitness
function, we see that the individual better qualified will be
the one that has the best relationship between velocity and
stability, so the best solutions are those that moves fast, but
without losing the stability.

7 Results

This section describes our experiments and the achieved
results. These experiments were done in order to evaluate
the GA parameters optimization and robot behavior in both
control strategies (FSM and ANN), as described in the pre-
vious sections. For each control strategy, we executed 10
different tests, which are presented here. Table 1 shows
the obtained results, where we can see each control strat-
egy (FSM and ANN) and the values of the fitness, distance
and gyro instability measure respectively (F , D, G) indi-
cated for each experiment (E) in both strategies. The two
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Table 1. Evaluation of the control strategies
FSM ANN

E F D G F D G
1 14.04 32.17 0.128 16.27 29.19 0.079
2 14.28 32.38 0.126 16.63 28.31 0.070
3 13.18 30.33 0.129 16.99 27.85 0.063
4 15.87 26.81 0.069 16.68 27.91 0.067
5 16.64 36.60 0.120 16.16 28.20 0.074
6 16.48 27.69 0.068 15.97 31.13 0.093
7 14.88 31.69 0.112 17.33 29.63 0.070
8 13.77 29.02 0.110 16.65 29.04 0.074
9 15.33 34.41 0.124 16.29 30.15 0.085
10 15.80 37.01 0.134 16.23 29.81 0.083
µ 15.03 31.81 0.112 16.52 29.12 0.076
σ 1.19 3.48 0.024 0.42 1.08 0.009

lines below in the table are the average (µ) and standard
deviation (σ) indicated over the 10 experiments.

In the experiments using the FSM, we fixed the number
of states in the automata to four. In the experiments using
the neural network we adopted a network with three neurons
in the hidden layer. These parameters were defined after a
careful preliminary study based on experiments. We spent
a total of 149.22 hours processing the final experiments of
Table 1. The Figure 2 shows the box plot graph and the
confidence interval (CI) of 95%, related to the fitness values
obtained in the experiments presented in Table 1.

(a) Boxplot (b) Confidence interval

Figure 2. Boxplot and confidence interval

According to Figure 2 we can affirm that the results ob-
tained by the ANN are clearly superior to those obtained
using the FSM, since the confidence intervals are not super-
posed. Besides that, the results obtained using the FSM are
more instable with a large variability. The Figure 3 com-
pares the fitness improvement of the population during the
evolution (best and average fitness) obtained for each con-

trol strategy. The experiments showed in this figure are
those that achieved the best results in our simulations.

Figure 3. GA optimization

It is clear that the evolution of the neural control param-
eters needs more generations (epochs) in order to achieve
good results. This is due to the fact that we have a big-
ger parameters state space when optimizing the ANN (we
optimize 13 parameters in the FSM and 44 weights in the
ANN). The Figure 4 shows one example of the robot gait
controlled by an optimized FSM and the Figure 5 shows
one example of a robot gait obtained using a trained ANN4.

Figure 4. FSM robot control

8 Conclusions and perspectives

The main goal of this paper was to describe the LegGen
simulator, which was developed in order to study the auto-
matic configuration of parameters used to control the gait
of legged robots. In our simulator, the gait control was
achieved using genetic algorithms. The GA evolves param-
eters used to control the robot actuators and this evolution
was tested into a virtual environment using the ODE rigid

4Some demostration videos are available in the LegGen website
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Figure 5. ANN robot control

body dynamics simulation tool. The robot joints are con-
trolled using two different strategies: (i) GA evolved FSM
- finite state machine and (ii) GA evolved ANN - artificial
neural network. Several experiments were achieved, com-
paring both approaches and demonstrating (with a valid sta-
tistical analysis) that the neural controller is superior to the
FSM controller (superior fitness), obtaining a better perfor-
mance (more stable, better displacement).

The future works include improving the robot gait in or-
der to walk on irregular surfaces and go upstairs or down-
stairs, as well as, to implement in hardware the simulated
robot, once we had now acquired sufficient experience in
order to design, implement and fine tune the control of the
legged robots. We are sure that the virtual robot control
system can be easily adapted to control real robots.
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