
Applying Genetic Algorithms to Control Gait of Physically Based
Simulated Robots

Milton Roberto Heinen and Fernando Santos Osório, Member, IEEE

Abstract— This paper describes our studies in the legged
robots research area and the development of the LegGen
System, that is used to automatically create and control stable
gaits for legged robots into a physically based simulation
environment. The parameters used to control the robot are
optimized using genetic algorithms (GA). Comparisons between
different robot models and fitness functions were accomplished,
indicating how to compose a better multi-criterion fitness
function to be used in the gait control of legged robots. The best
gait control solution and the best robot model were selected in
order to help us to build a real robot. The results also showed
that it is possible to generate stable gaits using GA in an efficient
manner.

I. INTRODUCTION

The autonomous mobile robots have been attracting the
attention of a great number of researchers, mainly due to
the challenge that this new research domain proposes: make
these systems capable of intelligent reasoning and able to
interact with the environment they are inserted in, through
sensor’s perception (infrared, sonar, bumpers, gyroscopes,
etc) and motor’s action planning and execution[1]. The
mobile robots are applied in different important tasks like:
bomb disarming, exploration of hostile environments and
automatic vehicle conduction[2], [3]. All those systems have
the capacity to read sensors data and use this information, in a
semi or completely autonomous way, to generate commands
moving the mobile robot or vehicle in a safe way. They
should not to collide against environment obstacles or to risk
its own integrity or the integrity of the elements present in
the environment.

At the present time, the most part of mobile robots use
wheels for locomotion, what does this task easy to control
and efficient in terms of energy consumption, but they have
some disadvantages since they have problems to move across
irregular surfaces and to cross borders and edges. Thus, these
robots are not the most indicated to move into environments
specifically designed for humans, because they have several
irregularities like staircases and uneven ground[4]. So, in
order to make mobile robots better adapted to human envi-
ronments, they must be able to walk and/or to have a similar
locomotion mechanism used by humans and animals, that is,
they should have a legged locomotion mechanism[5].

The development of legged robots is a quite difficult task,
that needs the configuration of many gait parameters[6]. The
manual configuration of these parameters demands a lot of

Milton Roberto Heinen and Fernando Santos Osório are with the Applied
Computing (PIPCA), Universidade do Vale do Rio dos Sinos (UNISINOS),
São Leopoldo, CEP 93022-000, Brazil (email: mheinen@turing.unisinos.br,
fosorio@unisinos.br).

effort and spent time of a human specialist, and the obtained
results are usually suboptimal and specific for one robot
architecture[7]. Thus, it is interesting to generate the robot
gait configuration in an automatic manner, using machine
learning techniques[8] to perform this task.

One of these machine learning techniques that are most
adapted for this specific task are the genetic algorithms
(GA)[9], [10]. This is a reasonable choice because according
to the Evolution’s Theory[11], the locomotion mechanisms
of several life forms resulted of the natural evolution. This
makes the use of genetic algorithms a natural solution,
since they are biologically inspired. From the computational
point of view, the genetic algorithms are also very well
adapted for the automatic gait configuration of legged robots,
because: (a) they use a multi-criterion optimization method
to search solutions in the configuration space, that means
in our specific case, they are capable to optimize not only
the gait velocity, but also the stability and even other gait
parameters; (b) they do not need local information for the
error minimization, nor the gradient calculation, that is very
important for the gait parameters generation and optimiza-
tion, since it is very difficult to have available some a priori
training data for supervised learning; (c) if correctly used,
the genetic algorithms are capable to avoid local minima[8].

The main goal of this paper is to describe the LegGen
System. This system is capable to automatically evolve the
gait control of physically based simulated legged robots using
genetic algorithms. This paper is structured as follows: The
Section II describes related works in control of locomotion
in legged robots; The Section III describes the genetic
algorithms and the GAlib software library adopted in our
system; The Section IV describes several concepts relative
to mobile robots simulation; The Section V describes the
proposed system, called LegGen; The Section VI describes
the accomplished experiments and the obtained results; and
the Section VII provides some final conclusions and future
perspectives of this work.

II. RELATED WORKS

Control of locomotion in legged robots is a challenging
multidimensional control problem[5], [1]. It requires the
specification and coordination of motions in all robots’
legs while considering factors such as stability and surface
friction[12]. This is a research area which has obvious ties
with the control of animal locomotion, and it is a suitable
task to use to explore this issue[13]. It has been a research
area for a considerable period of time, from the first truly
independent legged robots like the Phony Pony built by



Frank and McGhee[14], where each joint was controlled by a
simple finite state machine, to the very successful algorithmic
control of bipeds and quadrupeds by Raibert[15].

Lewis[16] evolved controllers for a hexapod robot, where
the controller was evaluated on a robot which learn to
walk inspired on insect-like gaits. After a staged evolution,
its behavior was shaped toward the final goal of walking.
Bongard[17] evolved the parameters of a dynamic neural net-
work to control various types of simulated robots. Busch[18]
used genetic programming to evolve the control parameters
of several robot types. Jacob[19], on the other hand, used
reinforcement learning to control a simulated tetrapod robot.
Reeve[13] evolved the parameters of various neural network
models using genetic algorithms. The neural networks were
used for the gait control of tetrapod robots.

In the most part of these approaches described above, the
fitness function used was the distance traveled by the robot in
a predefined amount of time. Although this fitness function
is largely used, it may hinder the evolution of more stable
gaits[20]. In our approach, we use in the fitness function,
beyond distance traveled, sensorial information (gyroscope
and bumpers) to guarantee stable and fast gaits.

III. GENETIC ALGORITHMS

Genetic algorithms are optimization methods of stochastic
space state search based on the Darwin’s Natural Evolu-
tion Theory[11], that were proposed in the 60s by John
Holland[21]. They work with a population of initial solutions,
called chromosomes, which are evolved through several
operations during a certain number of generations, usually
reaching a well optimized solution, and preserving the best
individuals according to a specific evaluation criterion. In
order to accomplish this, in each generation the chromosomes
are individually evaluated using a function that measures its
performance, called fitness function[10]. The chromosomes
with the best fitness values are selected to generate the next
generation applying the crossover and mutation operations.
Thus, each new generation tends to adapt and improve the
quality of solutions, until we obtain a solution that satisfies
a specific objective.

The genetic algorithms implementation used in our sys-
tem is based on the GAlib1 software library, developed by
Matthew Wall of the Massachusetts Institute of Technology.
GAlib was selected as it is one of the most complete, efficient
and well known libraries for genetic algorithms simulation,
and also it is a free open source library based on C++.

In the LegGen System, a simple genetic algorithm de-
scribed by Goldberg in his book[9] was used, and a floating
point type genome was adopted. In order to reduce the search
space, alleles were used to limit generated values only to
possible values for each parameter. The Algorithm 1 shows
a summary of the genetic algorithm used to evolve the robot’s
gait parameters. This is a basic genetic algorithm with non-
overlapping populations, elitism, roulette wheel selection

1GAlib – http://www.lancet.mit.edu/ga/

schema and uniform crossover[9]. The fitness values were
scaled using the sigma truncation scaling schema[10].

Algorithm 1 Pseudocode of the GA
F ← FitnessFunction
G← NumberOfGenerations
M ← SizeOfPopulation
pc ← FrequencyOfCrossover
pm ← FrequencyOfMutation
Population ← RandomPopulation(M)
CalculateFitness(Population)
while GenerationNum < G do

Parents ← Population
Children ← Crossover(Parents, pc)
NewPopulation ← Mutation(Children, pm)
Population ← NewPopulation
CalculateFitness(Population)

end while
return (BestIndividual)

IV. MOBILE ROBOT SIMULATION

When someone wants to make experiments in the mobile
robots research area, two alternatives are possible: (a) to
accomplish the experiments directly in a real robot; or (b) to
make experiments using a simulated robot. The use of a real
robot has the advantage of to be realistic, but the simulation
have the following advantages[22], [23]:

• When using simulated robots, does not exist the risk of
robot damages;

• Tasks as the recharge of batteries are not necessary;
• The robot positioning in order to restart a simulation

can be accomplished without human intervention;
• The simulation clock can be accelerated, reducing the

total amount of spended time for learning;
• Several different architectures and robot models can be

tested before the construction of the robot.
For these reasons, we chose to implement our initial

experiments using a simulated robot, because this makes
possible to discover the most efficient robot architecture to
be built in the future. Once the physical robot construction
is finished, the control model learned using the simulated
robot may be quickly adapted to the real robot, and only
a few adjustments may be necessary in order to adapt the
simulated model to the reality. Based on these main ideas, we
chose to implement a very realistic robot simulator, using a
physical simulation engine, so we can build simulated robots
very similar to the real models.

A. Physics Simulation Engine

In order to do more realistic mobile robots simulation,
several elements of the real world should be present in the
simulated model, doing the simulated bodies to behave in a
similar way related to the reality. Especially, it is necessary
that the robot suffers from instability and falls down if badly
positioned and controlled, and also it should interact and



collide against the environment objects in a realistic manner.
To accomplish that, it is necessary to model the physics laws
in the simulation environment (e.g. gravity, inertia, friction,
collision). Nowadays, several physics simulation tools exist
used for the implementation of physics laws in simulations.
After study different possibilities, we chose a widely adopted
free open source physics simulation library, called Open
Dynamics Engine - ODE2.

ODE is a software library for the simulation of articu-
lated rigid bodies dynamics. With this software library, it
is possible to make autonomous mobile and legged robots
simulations with great physical realism. In ODE, several
rigid bodies can be created and connected through different
types of joints. To move bodies using ODE, it is possible
to apply forces or torques directly to the body, or it is
possible to activate and control angular motors. An angular
motor is a simulation element that can be connected to two
articulated bodies, which have several control parameters
like axis, angular velocity and maximum force. With these
elements, it is possible to reproduce articulations present in
real robots, humans or animals, with a high precision level.

V. PROPOSED SYSTEM

The LegGen3 system was developed to accomplish the gait
control of simulated legged robots in an automatic way. It
was implemented using the C++ programming language and
the free software libraries ODE and GAlib. The LegGen
System reads two configuration files, one describing the
robot format and dimensions and the other file describing
the simulation parameters.

In the LegGen System, the gait control is generated
using a finite state machine (FSM), in which is defined
for each state and for each robot joint their final expected
angles configuration[17]. In this way, the controller needs to
continually read the joints angle state, in order to check if
the joint motor accomplished the task. Real robots do this
using sensors (encoders) to control the actual angle attained
by the joints[5], [1]. So, in this approach the gait control is
accomplished in the following way: initially the controller
verify if the joints have already reached the expected angles.
The joints that do not have reached them are moved (activate
motors), and when all the joints have reached their respective
angles, the FSM passes to the following state. If some of the
joints have not reached the specified angles after a certain
limited time, the state is advanced independently of this. In
a future version of the system, we are planning to treat this
situation more carefully, because the leg can be blocked by
an obstacle and the robot can be damaged in this case.

To synchronize the movements, it is important that all
joints could reach their respective angles at almost the same
time. This is possible with the application of a specific joint
angular velocity for each joint, calculated by the equation:

Vij = V ri(αij − αij−1) (1)

2ODE – http://www.ode.org
3LegGen – http://www.inf.unisinos.br/˜osorio/leggen

where Vij is the velocity applied to the motor joint i in the j

state, αij is the joint angle i in the j state, αij−1 is the joint
angle i in j−1 state, and V ri is the reference velocity of the
i state, used to control the set velocity. The reference velocity
V r is one parameter of the gait control that is also optimized
by the genetic algorithm. The other parameters are the joints
angles for each state. To reduce the search space, the genetic
algorithm only generates values between the maximum and
minimum accepted values for each specific parameter.

The Table I shows the parameters used by the LegGen
System, with the values used in the simulations (described
below in Section VI). The Crossover, Mutation, Population
size and Number of generations parameters are used directly
by the GAlib software. The Number of states parameter is the
number of FSM states, the Time of walk parameter is the time
of each individual walk during the fitness evaluation, and the
Velocity min and Velocity max are the relative velocity (V r)
interval generated by GA.

TABLE I
PARAMETERS OF THE LEGGEN SYSTEM

Par-ID Parameter Value
1 Crossover 0.60
2 Mutation 0.05
3 Population size 50
4 Number of generations 100
5 Number of states 4
6 Time of walk 60
7 Velocity min 0.0
8 Velocity max 1.0

The LegGen System works as follows: initially the file
describing the robot is loaded, and the robot is created in the
ODE environment according to file specifications. After this,
the system parameters are loaded (Table I), and the genetic
algorithm is initialized and executed until the number of
generations is reached. The evaluation of each chromosome
is realized in the following way:

• The robot is placed in the starting position and orienta-
tion in the simulation environment;

• The genome is read and the robot control FSM table
values are set;

• The physical simulation is executed during a predefined
amount of time (sixty seconds in our experiments);

• Gait information and sensor data are captured during
each individual physical simulation;

• Fitness is calculated and returned to the GAlib;
During the simulation, if all paws of the robot leave the
ground at same time for more than one second, the simulation
of this individual is immediately stopped, because this robot
probably fell down, and therefore it is not necessary to
continue the physical simulation of this individual.

A. Modeled Robots

According to the documentation, computational complex-
ity when using the ODE library is O(n2), where n is
the amount of bodies present in the simulated physical
world. Thus, in order to maintain the simulation speed in



an acceptable rate, we should use few and simple objects.
For this reason, all the simulated robots were modeled with
simple objects, as rectangles and cylinders, and they have
only the necessary articulations to perform the gait. Thus,
body parts as the head and the tail are not present in the
modeled robots. In order to keep our robot project simple,
the joints used in the robots legs just move around the z axis
of the robot (the same axis of our knees), and the simulations
just used robots walking in a straight line. In the near future,
we plan to extend our system to accept more complex robot
models and joints.

Several robot types were developed and tested, before we
defined the final two main models presented here, that are
shown in Figure 1. The robot model, called HexaL3J, have
six legs and three parts per leg. The paws are wider than the
remaining legs, in way to give a large support to the robot.

(a) HexaL3J (b) TetraL3J

Fig. 1. Robot models used in the simulations

This robot model differs from the majority of hexapod
robots developed, because their legs are not like the insect
legs, but their leg joints are like human joint legs. The
Figure 1(b) model, called TetraL3J, is similar to the previous
model, but it has just four legs. Both models in Figure 1(a)
and 1(b) have the paws final joint angles automatically
calculated using direct kinematics, in such a manner as these
paws are always parallel to the ground. The Table II shows
the dimensions of the robots in centimeters.

TABLE II
DIMENSIONS OF THE SIMULATED ROBOTS

TetraL3J HexaL3J
Part x y z x y z

Body 45.0 15.0 25.0 80.0 15.0 30.0
Thigh 5.0 15.0 5.0 5.0 15.0 5.0
Shin 5.0 15.0 5.0 5.0 15.0 5.0
Paw 8.0 5.0 9.0 8.0 5.0 9.0

The simulated robots dimensions are approximately the
dimensions of a medium sized dog. The joint restrictions
used in the simulated robot are similar as they biologi-
cal equivalents, with the following values: Hip=[-60°;15°];
Knee=[0°;120°]; Ankle=[-90°;30°]. All the robot legs have
these same joint restrictions.

The use of paws as showed in Figures 1(a) and 1(b) models
was designed to allow a more stable walk, mainly when

dynamic stability was used. The robot joints have maximum
and minimum joint angle limits similar to horses and dogs,
but these animals have more articulated members than the
implemented in our models.

B. Genome

The genome used in the LegGen system was a simple
array of floating points numbers, with alleles limiting the
generated values between the minimum and maximum joint
limits. The vector width W is:

W =
S × L× (J − 1)

2
+ S (2)

where S is the number of states, J is the number of joints
per leg and L is the number of robot legs. For the fitness
evaluation, the genome is converted in a FSM control table.
The Table III shows a example of a FSM control table.

TABLE III
EXAMPLE OF A GENOTYPE

State 1 State 2 State 3 State 4
Reference velocity 1.1703 2.0705 1.2499 1.5901
Front legs - hip 0.0698 -0.6283 -0.1570 -0.0698
Front legs - knee 1.0473 0.7504 0.2268 0.4363
Front legs - ankle -1.1172 -0.1221 -0.0698 -0.3665
Rear legs - hip -0.1570 -0.0698 0.0698 -0.6283
Rear legs - knee 0.2268 0.4363 1.0473 0.7504
Rear legs - ankle -0.0698 -0.3665 -1.1172 -0.1221

The first line shows the reference velocity (V r) of each
state, and the following lines shows the desired angles for
the hip, knee and ankle joints of each leg in radians. In this
example, were used four states in the FSM table. Due to the
fact that the robots are symmetrical, just half of the joints are
needed to evolve (for just one side of the robot). The joints of
the other side are obtained inverting the angle values between
the states 1 and 3 and between states 2 and 4, in this case.

C. Fitness Function

In this work, different fitness functions were studied and
tested to evaluate their contribution in order to generate a
better gait control. The fitness function F of the genetic
algorithm used in the first set of experiments was based only
in the distance covered by the robot (D) in the x axis:

F = D (3)
D = x1 − x0 (4)

where x0 is the robot start position and x1 is the final
robot position in the x axis. Using this fitness function,
the individuals that move forward will be rewarded, and the
individuals that move backward will be punished, receiving
a negative fitness.

We start believing that, with this fitness function, the
individuals selected to produce offsprings should be the ones
that have a more stable gait: a stable individual should to
move longer than the one that fell down. But due to the
fact that in the first generations almost all the individuals
are unstable and fall down, the selected individuals were the



ones that simply fell down in the forward direction. So, the
selected individuals are not the individuals that can remain in
the upright position and walk longer during the simulation.
In this way, the Equation 3 did not lead us to a good solution,
and thus the GA makes an almost random search.

To avoid this problem, we developed an other fitness
function that use sensorial information in order to make
the gait learning more efficient. One of the less expensive
and simpler robotic sensors are the bumpers. These contact
sensors can be installed under the robot paws, and they
indicate when the paw is touching the ground. Thus, we
decided to simulate bumpers under the robot paws, and then
it was possible to determine how many paws are maintained
in contact with the ground for each instant of time. The new
fitness calculation was accomplished through the equation:

F = D ∗ µP (5)

where µP is the average number of paws touching the
ground, calculated through the equation:

µP =

N
∑

i=1

bi

N
(6)

where bi is the number of paws in contact with the ground
in the instant i and N is the total number of sensorial
(bumper) readings. Using this fitness function, we noticed
that an odd behavior began to happen. The individuals that
maintained all the paws in the ground and just inclined
forward the front of their bodies were rewarded more than
those that lifted the paws from the ground during the walk.
Thus, other modifications were accomplished in the previous
fitness function. This new fitness function is calculated in the
following way:

F =
D

1 + B
(7)

where B (Bumpers) is calculated through the equation:

B =

(

µP −
L

2

)2

(8)

where L is the number of the robot legs. In this way, the
individuals that maintain approximately half of the paws
in contact with the ground, during walk simulation, will
consider in the fitness computation the total distance covered
by the robot. The individuals that fell down or did not move
the paws from the ground will be punished, and the total
distance covered by the robot will be reduced in function of
this. This fitness function is useful in a trot gait.

Using the Equation 7, the gait learning became much more
efficient, but we still have a lot of totally unstable solutions.
The visualization of the obtained solutions showed unstable
robots where the body height and inclination varies a lot
during the walking simulation. Thus, besides the bumpers,
we decided to add simulated inertial sensors (gyroscope).
These sensors are used in some modern mobile robots and
they are becoming a largely adopted device in walking
machines. During the walk, readings from the simulated

gyroscope are collected, and the robot instability measure
G (Gyro) is calculated through the equation[20]:

G =

√

√

√

√

√

√

N
∑

i=1

(xi − xx)2 +

N
∑

i=1

(yi − xy)2 +

N
∑

i=1

(zi − xz)
2

N
(9)

where N is the number of sample readings, xi, yi and zi are
the data collected by the simulated gyroscope in the time i,
and xx, xy and xz are the mean values of gyroscope readings,
calculated by the equation:

xx =

N
∑

i=1

xi

N
, xy =

N
∑

i=1

yi

N
, xz =

N
∑

i=1

zi

N
(10)

The fitness F is then calculated through the equation:

F =
D

1 + G + B
(11)

Analyzing the fitness function, we can observe that B

reaches its smaller value when the robot maintains half of
its endpoints (paws) touching the ground. This condition
is desirable when the type of gait adopted is the trot. In
this way, the best solutions have B close to zero. So, this
parameter will have a strong influence in the population eval-
uation and evolution. Related to the other fitness parameters,
the individual better qualified will be the one that has the
best relationship between velocity and stability. The best
solutions are those that moves fast, but without losing the
stability[20]. After we included the instability measure G in
the fitness function, we analyzed if it was possible to remove
the average number of endpoints touching the ground from
the fitness function. This new fitness function is represented
in the following equation:

F =
D

1 + G
(12)

In the next section we describe the accomplished experi-
ments using these four different fitness functions (Equations
3, 7, 11 and 12), and using the robots with four and six paws.
These experiments were accomplished in way to verify which
of these fitness functions is more efficient to generate stable
gaits for legged robots.

VI. RESULTS

In order to determine the best robot model to build, several
experiments were conducted using robots with four and six
legs (TetraL3J and HexaL3J). The experiments also were
conducted to discover the most suitable fitness function to
be applied in the genetic algorithm, which obtains the best
robot gait control. Each robot was tested using the four fitness
functions described above (Equations 3, 7, 12, and 11).

Our intention is to create a real robot using the fitness
function that better improves the gait control learning by
the genetic algorithm, but with an accessible final cost. The
Equations 12 and 11 need a gyroscope sensor to compute
the fitness function, so this solution is more expensive. The



Equation 7 needs just bumper sensors, which have a quite
accessible cost and can be easily used in a real robot. Thus,
the use of gyroscope sensors would be justifiable only if they
present a significant increase in the robot performance (sta-
tistically significant results) in terms of speed and stability.
In relation to the total number of robot legs, the best choice
is to use the smallest possible number of legs that allows a
stable gait. The Table IV describes the eight different type
of experiments.

TABLE IV
ACCOMPLISHED EXPERIMENTS

EXP Fitness Function Robot
01 F = D (Equation 3) HexaL3J
02 F = D (Equation 3) TetraL3J
03 F = D / (1 + B) (Equation 7) HexaL3J
04 F = D / (1 + B) (Equation 7) TetraL3J
05 F = D / (1 + G) (Equation 12) HexaL3J
06 F = D / (1 + G) (Equation 12) TetraL3J
07 F = D / (1 + G + B) (Equation 11) HexaL3J
08 F = D / (1 + G + B) (Equation 11) TetraL3J

Due to the stochastic nature of the genetic algorithms, each
experiment described in Table IV was repeated 10 times
using different random seeds, and the mean and standard
deviation of the obtained results were calculated. The Table V
shows the results obtained in the experiments.

TABLE V
RESULTS OBTAINED IN THE SIMULATIONS

F D G B

EXP µ σ µ σ µ σ µ σ
01 191 103 1083 84 1.77 0.67 4.16 2.04
02 279 105 622 117 1.54 2.11 0.49 0.74
03 343 48 680 32 0.97 0.25 0.04 0.03
04 272 89 424 140 0.56 0.18 0.01 0.01
05 301 76 1017 69 0.82 0.18 1.77 0.84
06 278 48 490 72 0.68 0.19 0.12 0.18
07 436 84 689 102 0.53 0.19 0.07 0.05
08 268 70 405 68 0.56 0.30 0.01 0.01

The first column indicates the experiment identification
(EXP identifies the same specific experiment in both tables),
the second and third columns show, respectively, the mean
and the standard deviation of the fitness (F ), the fourth and
the fifth columns show the mean and the standard deviation
of the distance covered by the robot (D) in centimeters, the
sixth and seventh columns show the mean and the standard
deviation of the robot instability measure (G), and the last
two columns show the mean and the standard deviation of
the average number of endpoints touching the ground (B).

The Figure 2 shows the boxplot graphic of all experiments.
From this fitness distributions, we can notice that there is no
significant differences between the fitness values obtained in
the experiments accomplished with the two robot types. Al-
though the HexaL3J robot is a little bit faster, the difference
is not enough to justify the use of a six legged robot.

A. HexaL3J Results
The Figure 3 shows the boxplot graphics of the exper-

iments using the HexaL3J robot (Experiments 01, 03, 05

Fig. 2. Boxplot of the all experiments

and 07). The Figure 3(a) shows the boxplot graphic of the
distance covered by the robot (D) and the Figure 3(b) shows
the boxplot graphic of the robot instability measure (G).

(a) Distance (b) Instability

Fig. 3. Boxplot of the HexaL3J experiments

From the observed results presented in Table V and the
fitness distributions of the Figure 3, we can reach several
conclusions. Firstly, the use of bumper sensors (Experiments
03 and 07) resulted in a slower walking, although more
stable. The use of a gyroscope sensor (Experiment 05) did not
affect the robot velocity in a significant way, but it reduced
the instability. The best results in terms of velocity/stability
are the ones that used both types of sensors (Experiment
07). So, these results showed that the choice of the proposed
multi-criterion fitness function improved the results obtained
by the genetic algorithm. The Figure 4 shows snapshots of
the generated gait obtained in the Experiment 01, and the
Figure 5 shows the generated gait of the Experiment 07.

Analyzing the visual results, it can be noticed that the
robot gait of the Figure 5 is much more stable than the gait
of the robot showed in Figure 4.



Fig. 4. Experiment 01 - HexaL3J gait

Fig. 5. Experiment 07 - HexaL3J gait

B. TetraL3J Results

The Figure 6 shows the boxplot graphics of the exper-
iments using the TetraL3J robot (Experiments 02, 04, 06
and 08). The Figure 6(a) shows the boxplot graphic of the
distance covered by the robot (D) and the Figure 6(b) shows
the boxplot graphic of the robot instability measure (G).

(a) Distance (b) Instability

Fig. 6. Boxplot of the TetraL3J experiments

From the observed results presented in Table V and the
fitness distributions of the Figure 6, we can reach the conclu-
sion that although the distance covered by the robots in the
experiments 04 and 08 are a little bit smaller, the differences
are not statistically significant. Considering the instability, the
use of bumper sensors (Experiment 04) increased the stability
more than the use of the gyroscope sensor (Experiment
06). The Figure 7 shows an example of the generated gait
obtained in the Experiment 02, and the Figure 8 shows an

example of generated gait obtained in the Experiment 08.

Fig. 7. Experiment 02 - TetraL3J gait

Fig. 8. Experiment 08 - TetraL3J gait

The Figure 9 shows an example of generated gait obtained
in the Experiment 04. Although the use of the gyroscope
has practically the same benefits of the bumpers in stability
terms, the absence of it changes the overall robot behavior.
We can see in the Experiment 04 that the robot doesn’t main-
tain the same walking direction, because the only sensorial
information that it receives are the covered distance in the x

axis and the bumper readings. In this case there is no robot
orientation control.

Fig. 9. Experiment 04 - TetraL3J gait

Analyzing the visual results, it can be noticed that the
experiments using the Equation 11 (Experiment 08) are much
more stable than others, as showed in Figure 8.

The Figure 10 show the evolution and the relationship
between the fitness and the number of generations in a
experiment using the TetraL3J. The bright points (not filled)
show the best fitness values for each generation, and the dark
points (filled) show the mean fitness values of the population
for each generation. The Figure 11 shows the relationship
between instability and velocity in 200 experiments accom-
plished using the TetraL3J robot and the Equation 11.

We observed in the Figure 11 that an interesting rela-
tionship between velocity and instability exists. This suggest



Fig. 10. Generations x fitness

that the high speed solutions are less stable, but is possible
to obtain stable solutions with moderate speeds. The main
goal of our optimization search GA algorithm was to obtain
control solutions with the lowest possible instability (solution
points close to the x axis) and with the greater possible
distance coverage (solution points far from the y axis),
in order to maximize the velocity and to minimize the
instability. The Figure 11 shows that we achieved that goal.

Fig. 11. Velocity x instability

VII. CONCLUSIONS AND PERSPECTIVES

Based on the performed experiments, we observed that six
legged robots are able to move faster than four legged robots,
like it occurs in the nature with some arthropods and insects,
that are very fast animals if we consider the covered distances
related to their small size. The number of legs seems also to
play and important role related to their movement skills. In
four legged robots, we observed through our simulations that
fitness functions with sensorial information are very useful
to generate stable gaits, and we also concluded that although
these robot models are slower than six legged robots, they
are also able to develop stable gaits.

We concluded that both robot models are possible config-
urations to be adopted in a physical construction of a real
robot, but the four legged robot is less expensive than the
six leg robot. We also achieved a good performance with

our control gait system implementation, which can provide
a stable gait control to legged robots.

The perspectives of this work includes to adapt gait
control in order to make possible control robots moving over
irregular surfaces and to climb or to descend stairs, as well
as, this work will help us in the physical robot construction
based on the specifications of our best learned models. The
real robot implementation created from the virtual model will
help us to validate the control system in real conditions.

REFERENCES

[1] G. A. Bekey, Autonomous Robots: From Biological Inspiration to
Implementation and Control. Cambridge, MA: MIT Press, 2005.

[2] F. J. Heinen and F. S. Osório, “HyCAR - a robust hybrid control ar-
chitecture for autonomous robots,” in Proc. Hybrid Intelligent Systems
(HIS), vol. 87. Santiago, Chile: IOS Press, 2002, pp. 830–840.

[3] C. Kelber, C. R. Jung, F. S. Osório, and F. J. Heinen, “Electrical drives
in intelligent vehicles: Basis for active driver assistance systems,” in
Proc. IEEE Int. Symposium on Industrial Electronics (ISIE), vol. 4,
Dubrovnik, Croatia, 2005, pp. 1623–1628.

[4] R. Knight and U. Nehmzow, “Walking robots - a survey and a research
proposal,” Univ. Essex, Essex, UK, Technical Report CSM-375, 2002.

[5] G. Dudek and M. Jenkin, Computational Principles of Mobile
Robotics. Cambridge, UK: Cambridge Univ. Press, 2000.

[6] G. Wyeth, D. Kee, and T. F. Yik, “Evolving a locus based gait for a
humanoid robot,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and
Systems (IROS), vol. 2, Las Vegas, NV, Oct. 2003, pp. 1638–1643.

[7] S. Chernova and M. Veloso, “An evolutionary approach to gait learning
for four-legged robots,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (IROS), Sendai, Japan, Sept. 2004.

[8] T. Mitchell, Machine Learning. New York: McGrall-Hill, 1997.
[9] D. E. Goldberg, Genetic Algorithms in Search, Optimization and

Machine Learning. Reading, MA: Addison-Wesley, 1989.
[10] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA:

MIT Press, 1996.
[11] C. Darwin, Origin of Species. London, UK: John Murray, 1859.
[12] N. Kohl and P. Stone, “Policy gradient reinforcement learning for

fast quadrupedal locomotion,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), New Orleans, LA, Apr. 2004, pp. 2619–2624.

[13] R. Reeve and J. Hallam, “An analysis of neural models for walking
control,” IEEE Trans. Neural Networks, vol. 16, no. 3, pp. 733–742,
May 2005.

[14] R. B. McGhee, “Robot locomotion,” Neural Control of Locomotion,
pp. 237–264, 1976.

[15] M. H. Raibert, Legged Robots That Balance. Cambridge, MA: MIT
Press, 1986.

[16] M. A. Lewis, A. H. Fagg, and A. Solidum, “Genetic programming
approach to the construction of a neural network for control of a
walking robot,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), Nice, France, 1992, pp. 2618–2623.

[17] J. C. Bongard and R. Pfeifer, “A method for isolating morphological
effects on evolved behaviour,” in Proc. 7th Int. Conf. Simulation of
Adaptive Behaviour (SAB). Edinburgh, UK: MIT Press, Aug. 2002,
pp. 305–311.

[18] J. Busch, J. Ziegler, C. Aue, A. Ross, D. Sawitzki, and W. Banzhaf,
“Automatic generation of control programs for walking robots using
genetic programming,” in Proc. European Conf. Genetic Programming
(EuroGP), Berlin, Germany, 2002, pp. 258–267.

[19] D. Jacob, D. Polani, and C. L. Nehaniv, “Legs than can walk:
Embodiment-based modular reinforcement learning applied,” in Proc.
IEEE Int. Symposium on Computational Intelligence in Robotics and
Automation (CIRA), Espoo, Finland, June 2005, pp. 365–372.

[20] D. Golubovic and H. Hu, “Ga-based gait generation of sony quadruped
robots,” in Proc. 3th IASTED Int. Conf. Artificial Intelligence and
Applications (AIA), Benalmadena, Spain, Sept. 2003.

[21] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann
Arbor, MI: Univ. Michigan Press, 1975.

[22] K. Wolff and P. Nordin, “Evolutionary learning from first principles
of biped walking on a simulated humanoid robot,” in Proc. Advanced
Simulation Technologies Conf. (ASTC), Orlando, FL, Apr. 2003.

[23] A. M. Law and D. W. Kelton, Simulation Modeling and Analysis.
New York: McGraw-Hill, 2000.


