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Abstract

This paper describes a simulation system proposed to
accomplish in a realistic way an autonomous parking in
a parallel parking space, and also to pull out the vehicle
of the parking space to go back to the traffic lane. The
proposed system controls a car-like vehicle based on the
sonar sensors readings, and using an Jordan neural net-
work to automatically generate acceleration and steer-
ing commands. The results obtained in our simulations
demonstrated that the proposed controller is perfectly
able to correctly park and pull out the vehicle.

1 Introduction

The autonomous vehicles and robots (Autonomous
Mobile Robots - AMR) have attracted the attention of
a great number of researchers, mainly due to the great
challenge that this new domain of research offers: to en-
dow these systems with an intelligent reasoning capabil-
ity, exploring their abilities to interact with the environ-
ment where they are inserted[1]. AMRs should perceive
the environment through their sensors (e.g. infrared,
sonar, lasers, video cameras), and from them they can
be able to plan and execute their actions[7].

Starting from the studies and research work devel-
oped by the Artificial Intelligence Group (GIA-PIPCA)
and by Autonomous Vehicles Group (GPVA) at Unisi-
nos1 related to the development of applications in
the area of mobile autonomous robots, the basis of
this work were created. We should notice particu-
larly the initial development of the SEVA3D2 system
(Autonomous Vehicles Parking Simulator in a three-
dimensional environment)[10, 13]. Our main goal was
to develop a system capable of accomplishing virtual re-
alistic 3D simulations, implementing a better simulation

1http://www.exatec.unisinos.br/˜autonom/
2http://inf.unisinos.br/˜osorio/seva3d/

tool of autonomous parking in parallel parking spaces.
This system uses a realistic three-dimensional environ-
ment model with a 3D sonar sensor model, which in-
cludes noise as in real sonar data. Therefore SEVA3D is
much closer to the reality, and the simulation results will
be easily transposed to our automated Mini-Baja Buggy
developed by the GPVA Group at Unisinos[14].

The control system implemented in SEVA3D-A ac-
complishes the parking of vehicles, controlling them
in an autonomous way, using a finite state automaton
(FSA). The implemented system is also capable of pull
out the vehicle of the parking space to go back to the
traffic lane. The experiments using SEVA3D-A worked
in a satisfactory way, but we needed to code manually all
the rules used to define the FSA functioning. The task
of specifying FSA rules has proven to be a difficult task,
that needs a lot of a priori knowledge about the system
functioning, and resulting a few robust vehicle control
behavior in non expected situations.

For these reasons, we decided to develop a new ver-
sion of the system SEVA3D, called SEVA3D-N[12, 11].
The vehicle parking and pull out control in SEVA3D-N
is accomplished using a neural network inspired in the
Jordan-net model. The main advantage of this approach
is the automatic knowledge acquisition instead of code
it manually. The neural net is able to learn how to con-
trol the vehicle from examples, so we just need to show
how to park and pull out the vehicle - showing how to do
it, instead of specifying how to control it. In our previ-
ous work[12], we autonomously park the vehicle in the
parking space. In this paper, we describe a new version
of SEVA3D-N, that is capable to pull out the vehicle
back to the road lane.

2 Related works

Studies related to driving assistance systems and au-
tonomous parking of vehicles have been done by some
research groups and companies. Among them, one of
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the first outstanding studies were accomplished by IN-
RIA researchers[5, 16, 18], which implemented a con-
trol system used to park an adapted Ligier electric vehi-
cle in an autonomous way. This vehicle was equipped
with 14 sonar sensors and it was used a manually cus-
tomized set of rules to accomplish the task. In order
to become possible to measure in advance the parking
space depth, it was necessary to install a barrier of mod-
erate height close to the curb. The introduction of this ar-
tificial barrier turns possible to determine more precisely
the parking space depth using the available sensors[18].

The drawbacks of this approach are: (i) the curb bar-
rier installation requirement, which restricts the practi-
cal application of this method on conventional streets;
(ii) the great number of sonar sensors that must be in-
stalled around the vehicle (fourteen sensors); (iii) the
limited application of this algorithm that works specifi-
cally in parallel parking tasks and needs to be manually
coded. We aim to propose a new system that uses a small
number of sensors, should be able to be used in conven-
tional parking spaces, and also must allow the adapta-
tion to different parking situations. The SEVA3D-N is
the system we developed and we are improving in order
to achieve these goals.

3 SEVA3D simulator

The SEVA3D-N Simulator possesses several im-
provements related to the SEVA3D-A. The major ad-
vantage of SEVA3D-N is the fact that using an artificial
neural network we do not need to manually code vehicle
control rules (FSA), once the control system is obtained
by training a neural net. We just need to show some ex-
amples of parking and pull out maneuvers execution and
the system will automatically adapt the network param-
eters, learning to autonomously park and pull out the ve-
hicle. The main components of the SEVA3D simulator
are:
• Perception Module: measures the distance from ob-

stacles based on a sonar sensor simulation;
• Action Module: sends action commands to vehicle

actuators, defines the direction (forward, backward),
the speed (gas pedal control) and the car orientation
(steering wheel rotation);

• Kinematics Module: uses the Ackerman model to es-
timate the vehicle trajectory, considering vehicle di-
rection, speed and steering wheel angle;

• Control Module: receives sensor data from the Per-
ception Module and sends actions to the Vehicle Ac-
tion Module, using a neural network to control the
parking and pull out maneuver.

3.1 SimRob3D simulation tool

The implementation of SEVA3D uses the SimRob3D
simulation tools[8, 9], previously developed by our
group. The SimRob3D tools main characteristics are:
to provide 3D environment visualization tools used in
simulations, and to provide customizable mobile robots
simulation tools. The 3D environment objects can be
modeled using different 3D modeling software, and al-
lows to detail the different elements present in the envi-
ronment (vehicles, streets and buildings), resulting in a
high level of realism. The SimRob3D tools also include
different sensorial and kinematics models, which can be
used to customize the simulated mobile robots.

3.2 Perception module

Sonars are a common distance sensor used in robotic
applications, because they can estimate with a reason-
able precision the distance from objects positioned near
to them[1]. Sonars can be used to perceive the envi-
ronment objects and obstacles, and they offer a good
precision/price rate related to other distance measuring
methods[3].

The simulated sonar sensors allow to estimate the dis-
tance between the vehicle and the obstacles present in
the environment: other cars and the edge of the side-
walks. The six sensors used were distributed in strategic
positions of the vehicle, as showed in Figure 1. In our

Figure 1. Distribution of the sonar sensors

experiments we put sensors only in one side of the ve-
hicle, because all experiments were developed in order
to park the vehicle in parallel parking spaces located on
the right side of the car, which is a typical situation in
two-way streets.

The SimRob3D sonars are simulated through the def-
inition of a conical section of the virtual space, where the
objects which remain inside this volume can be detected.
The intersection between objects and the sonar cone vol-
ume (perceptual space) is detected using a stochastic ap-
proach. Several object detection lines (rays) are gener-
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ated from the position of the sensor directed according to
the sonar spatial orientation, remaining inside the sonar
cone volume. A RayCast3 technique was used to gener-
ate rays, that are randomly distributed in the sonar cone
volume. If any of them collide (intersect) with some
object polygon, the distance from the sensor until the
collision point is informed.

Besides the sonar sensors, sometimes it was also nec-
essary to use an odometer. The odometer was used only
to verify if the parking space is enough to allow the
correct parking of the vehicle, when there are no other
parked cars available to be used as reference points.
This situation occurs when there are large empty parking
spaces.

3.3 Kinematics Module

The movement of the vehicle respects the Ackerman
kinematics model[3], which was also the model adopted
in the precursor work developed at INRIA[5]. In this
model a simulated vehicle is represented by a rectan-
gular volume supported by four wheels divided in two
axes, where the back wheels are attached to a fixed axis
and the front wheels can be turned, controlling them
through the steering wheel[1]. The Figure 2 shows the
elements of the kinematics model.

Figure 2. Kinematics model

The vehicle’s location (position and orientation) rel-
ative to some reference coordinate system is denoted as
q = (x, y, θ)T where x = x(t) and y = y(t) are the
coordinates of the rear axle midpoint, θ = θ(t) is the
orientation of the vehicle, and t is time. The motion of
the vehicle is described by the following equations[16]:







ẋ = v cosφ cos θ,

ẏ = v cosφ sin θ,

θ̇ = v

L
sin φ,

(1)

where φ = φ(t) is the steering angle, v = v(t) is the
locomotion velocity of the midpoint of the front wheel

3RayCast is a computer graphic technique that simulates the phys-
ical effects associated with the propagation of light rays[4]

axle, and L is the wheel base. The steering angle and
locomotion velocity are two control commands (φ, v).
Eqs. 1 correspond to a system with non-holonomic con-
straints because they involve the derivatives of the coor-
dinates of the vehicle and are non-integrable[15].

3.4 FSA control - parking

In SEVA3D-A, the vehicle control task is accom-
plished by a Finite State Automaton (FSA). The Fig-

Figure 3. FSA control - parking

ure 3 shows the diagram of the finite state machine used
to control the vehicle, and therefore this successful FSA
was also used to be learned by an artificial neural net-
work in SEVA3D-N. The following states were defined:
Stopped: automaton initial and final state;
Searching for parking space: the vehicle moves in a
straight forward direction, searching for a free parking
space. If an available parking space was found then the
FSA state changes to Positioning outside;
Positioning outside: the vehicle moves forward in order
to reach a correct position to start entering in the parking
space. This state is also used to verify if the parking
space is adequate. If the space is too small, the state
returns to Searching for parking space. If the space is
large enough, the state changes to Entering;
Entering: the car starts to move backward and the steer-
ing wheel is turned to the right, entering in the parking
space. When the sensor V[2] detects the sidewalk curb
the state changes to Positioning inside;
Positioning inside: the vehicle continues to move back-
ward, but the steering wheel is turned to the left. When
the sensor V[3] detects the sidewalk curb the state
changes to Aligning;
Aligning: the vehicle is moved in order to reach an ad-
equate distance from the cars parked ahead and behind
it. After the alignment, the state changes to Stopped and
the maneuver is terminated.

3.5 FSA control - pull out

The Figure 4 shows the diagram of the finite state ma-
chine used to pull out the vehicle of the parking space.
The following states were defined:
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Figure 4. FSA control - pull out

Preparing pull out: the car starts to move in a straight
backward direction, until the V[1] detects a near obsta-
cle (another parked car) or until the frontal space is suf-
ficient to going out;
Pull out: the vehicle moves in a forward direction exe-
cuting a “s” shaped trajectory, until the sensors indicate
the car is outside of the parking space;
Returning: the car is aligned in a parallel way to the
lane, the state changes to Stopped and the maneuver is
terminated.

3.6 Neural control

The results we obtained with the control based on a
manually specified FSA, adopted in SEVA3D-A, moti-
vated us to study other alternatives to the parking con-
trol task knowledge acquisition. The FSA creation pro-
cess was difficult, and rule codification was an arduous
task and besides that the final result does not guarantee
a great robustness to the system. As the control system
was hard coded, the FSA needs a fine tuning every time
we have some change in sensors and actuators behavior
and also if an unexpected situation occurs (e.g. input
noise, imprecise actuators). We looked for a practical
solution that should be capable to automatically learn
how to control the vehicle. The adopted solution was
the use of artificial neural nets (ANNs)[20] with super-
vised learning, which are capable to adapt themselves to
different situations. The ANNs can learn how to control
the vehicle in a parallel parking task from a set of practi-
cal examples: we just need to show how to park and pull
out the vehicle.

The first step was to create the parking examples data
set to be employed in the ANN learning. The SEVA3D-
A simulator was adapted in order to generate a log file,
containing records of: the sensors state, the FSA state
and the commands sent to the vehicle actuators (speed
and steering wheel angle). The generated file allowed
to train a neural net, and we expected that the resulting
ANN could be able to reproduce the FSA behavior. This
initial experiment worked fine and later SEVA3D was
also used to generate a new set of parking task examples,
with the vehicle being controlled by a human instead
using the autonomous control system.

The ANN adopted model was a Jordan-net[17],
a modified version of Multi-Layer Perceptron (MLP)
nets[6] with recurrent inputs. The learning algorithm
used was the Resilient Propagation[19]. This network
was used in the following way: a set of inputs are used
to indicate the current state of the network (representing
the active FSA state) and another set of outputs are used
to indicate the next state of the network (the FSA state in
the next cycle). The next state indicated by the network
outputs can be the same as the current state or it can be
changed in order to assume a new network state. The
network state changes occur in function of their inputs
represented by the sensors plus the current state. So,
the neural net receives as inputs the sensors data and the
current state (Figure 5) and based on this information
decides if the current state remains the same, or if it is
time to change to a new state.

Figure 5. Neural network model scheme

The next state (current or new), indicated in the net-
work outputs is then re-injected in the network inputs.
This makes this model similar to the ANN model pro-
posed by Jordan[2, 17], where the network outputs are
re-injected in the inputs through a recurrence known as
context units. Using these context units we provide the
information about the current state of the network.

The neural network simulator adopted was the
Stuttgart Neural Network Simulator - SNNS4, it is a free
software, and a quite complete neural network simulator
that have several additional tools that allow us to cre-
ate scripts and execute learning and simulation tasks in
batch mode. The SNNS facilities also simplify the anal-
ysis of the obtained results and creation of graphic plots.

The neural input variables used were: the data from
the six sonar sensors, the odometer and the current state
of the parking process. In the network output are ob-
tained the actuators activation commands (speed and
steering wheel rotation), as well as the indication of the
next state of the parking process. This network output
information allows to simulate a FSA, controlling the

4SNNS – http://www-ra.informatik.uni-tuebingen.de/SNNS/
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actuators and the FSA state, which can be changed ac-
cording to the progress of the parking maneuver.

The states and actions were coded on a “1-of-N” ba-
sis in the learning database. The neural inputs and out-
puts were defined as follows:
• Inputs: current state (6 binary inputs); state of the sen-

sors (6 numerical inputs normalized between 0 and 1);
odometer (1 numerical input);

• Outputs: speed (3 binary outputs: forward, backward
and stopped); steering wheel angle (3 binary outputs:
Turn to the left, Straight forward and Turn to the
right); next state (6 binary outputs).
We point out that to know the current state is very

important to allow a correct interpretation of the sensors
(same situation, different actions), for example, when
searching for a free parking space, if lateral sensors in-
dicate the proximity of parked cars then this indicates
that we should continue to move forward until a park-
ing space is found, but when entering in a parking space
after the vehicle was positioned outside of it, if the lat-
eral sensors indicate the proximity of a parked car (ex-
actly as in the previous situation) then this indicates that
we should start to move backward and turn the steering
wheel to the right.

So, correct state transitions are very important to ac-
complish the autonomous parking task. In our experi-
ments we noticed that the neural net was perfectly ca-
pable to learn state transitions (next state outputs were
correctly generated). Once the neural learning phase is
finished, it is capable of accomplishing the vehicle park-
ing without any human intervention.

4 Implementation

The SimRob3D simulation tools[8, 9] were used to
create the virtual environment and to interface the ve-
hicle devices with the SEVA3D autonomous controller
implementation. The virtual environment was modeled
using the 3DStudioMax software, creating 3D models of
the road, the parked cars and our autonomous vehicle.

The model of the vehicle used to accomplish the
parking task is a reproduction of a real Mini-Baja Buggy
available in our research laboratory. This vehicle was
developed by the GPVA Research Group at Unisinos.
The real vehicle was automated and now it can be con-
trolled from remote devices, like a cell phone (see avail-
able videos in the GPVA web site). The Figure 6
shows the actual vehicle used as model of the virtual au-
tonomous vehicle. At the present time we are working
on the real vehicle instrumentation, adding sonar sen-
sors, and soon we plan to test the SEVA3D controller
with this real vehicle.

(a) Real vehicle (b) Simulated vehicle

Figure 6. Automated mini-baja vehicle

5 Experimental results

The learning database was created with 5000 exam-
ples, (2500 for the learning and 2500 for the general-
ization test), each one with 13 inputs and 12 outputs.
The results obtained in the ANN learning, considering
the average of 10 simulations with different initializa-
tions, were a learning performance with a mean score
of 96.83% correct answers. A correct answer is when
all outputs signals are corrected, considering a Score
Thereshold of 0.4. Three neurons were used in the hid-
den layer of the neural network, and the mean number
of epochs was 192 (best epoch of generalization). The
Figure 7 shows a exemple of parking manoeuvre5.

Figure 7. Parking maneuver

The examples that generated an incorrect network
output were individually analyzed and in all cases we
noticed that the wrong answers don’t cause problems in
the FSA state transitions. The trained ANN was per-
fectly capable to change from the current FSA state to
the next FSA state with no errors. This is very important
once correct FSA state transitions are critical to obtain a
successful parking maneuver. In the vehicle pull out, the
mean of the learning was 98.43% with the same neural
network architeture. This demonstrates that the imple-
mented system is safe and robust to control vehicles in
parallel parking and pull out tasks execution.

5Some videos demonstrating the parking manoeuvre are available
in http://inf.unisinos.br/˜osorio/seva3d/
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6 Conclusions and perspectives

This work main goal was to develop a simulator for
autonomous control of vehicles in parallel parking tasks.
The proposed system should be able to create a real-
istic model of the real world application, so we im-
plemented a simulation tool situated in a 3D environ-
ment, the SEVA3D. This system includes a 3D model
of the vehicles and obstacles, and it also includes a 3D
model of sonar sensors. The experimental results, ac-
complished with SEVA3D-A (control based on a FSA)
and SEVA3D-N (control based on an ANN), demon-
strated that our control system possesses the capacity to
correctly control the vehicle. The main objective of the
control system was achieved with success: to park ve-
hicles in an autonomous way, not colliding against any
obstacle present in the environment. In order to vali-
date the SEVA3D vehicle control module, several ex-
periments were accomplished with visual and numeri-
cal evaluations. The SEVA3D system experiments al-
lowed to verify that the vehicle was correctly controlled
in different situations, demonstrating that the proposed
method is stable, safe and robust.

Although the experimental results were very good,
we are still planning to improve SEVA3D/SimRob3D
simulation model. The implementation of a new version
of SEVA3D is being considered in order to include a
more realistic physical simulation tool. We are consid-
ering to add rigid body dynamics simulation extensions,
allowing to simulate force, torque, friction, gravity, ter-
rain slopes, etc. In the near future we plan to imple-
ment SEVA3D-N in a real vehicle, an automated mini-
Baja Buggy available in our research laboratory. The
SEVA3D neural network will be adapted (trained) to use
the new hardware (real sonar sensors) and the system
will be evaluated in real world conditions.
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autônomos. In Proc. of VIII Symposium on Virtual Real-
ity, pages 245–256, Belém, PA, Brazil, May 2006. Edi-
tora CESUPA.

[14] C. Kelber, C. R. Jung, F. S. Osório, and F. J. Heinen.
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