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Abstract— This paper describes the simulation system pro-
posed in order to study and to implement intelligent au-
tonomous vehicle control. The developed system can automat-
ically drive a vehicle, implementing a robust control system
capable of simulating in a realistic way autonomous parking
in a parallel parking space. The system controls the vehicles
based on the reading of sonar sensors and uses a neural network
to automatically generate acceleration and steering commands,
parking it in a parallel parking space. The controller was
implemented using a Jordan-Net based neural network, and
the results obtained in our simulations demonstrated that the
proposed controller is perfectly able to correctly park the
vehicle in different situations.

I. INTRODUCTION

The autonomous vehicles and robots (Autonomous Mobile
Robots - AMR) have attracted the attention of a great number
of researchers, mainly due to the great challenge that this
new domain of research offers: to endow these systems with
an intelligent reasoning capability, exploring their abilities to
interact with the environment where they are inserted. AMRs
should perceive the environment through their sensors (e.g.
infrared, sonar, lasers, video cameras), and from them they
can be able to plan and execute their actions[1], [2].

Nowadays, mobile robots are used in different areas, as for
example, to disarm bombs, to explore hostile environments
like volcanos and other planets, and to transport materials,
working as (semi)autonomous industrial robotic vehicles.
Some well known examples of successful AMRs are: the
ALVINN and the newer NavLab systems developed at the
CMU’s NavLab[3], [4] that guided an autonomous vehicle
across the American highways; the NASA’s rover robots
sent to explore Mars[5]; the robot Dante that is able to
explore the interior of volcanos[6]; the different vehicles
developed to participate in the Grand DARPA Challenge of
Autonomous Ground Vehicles; and the control system of an
electric vehicle developed at INRIA in France[7], [8]. All
those systems possess the capacity to receive sensor inputs
giving to them information about the external environment,
and then they generate action commands in a semi or com-
pletely autonomous way. They are able to move across the
environment in a safe way, or in other words, not colliding
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against obstacles or risking their integrity or the integrity of
the different elements present in the environment.

Starting from the studies and research work developed
by the Artificial Intelligence Group (GIA-PIPCA1) and by
Autonomous Vehicles Group (GPVA2) at Unisinos related
to the development of applications in the area of mobile
autonomous robots, the bases of this work were created. We
stand out particularly the initial development of the SEVA2D
system (Autonomous Vehicles Parking Simulator)[9], [10]
that accomplished a simple simulation of the task of parking
a non-holonomic mobile robot (car like) in a parallel parking
space. This simulator uses a bidimensional environment (2D)
in which a simple virtual vehicle with six infrared sensors
is controlled through a finite state automaton (SEVA2D-A)
or through an artificial neural network (SEVA2D-N) called
Jordan Cascade-Correlation Net (J-CC)[9].

One of the main limitations of the initial version of SEVA
is due to the fact it was adopted a simple bidimensional
simulated environment, in which the objects are flat. The
simulated model of sensors was very simple since the
measured distance from objects can’t consider their height
or tridimensional shape. In a three-dimensional simulated
environment (3D), as in the real world, tasks such as to
localize the sidewalk’s curb are more difficult to be exe-
cuted. In this specific case, curbs usually possess a very
small height, measuring 15cm on average. Other important
limitation of the previous 2D model was the absence of noise
in data read from the simulated infrared sensors. The sensor
simulation was very simple, measuring precisely the distance
from sensors to well defined obstacles. This model proved
to be too much simplified related to the reality.

Due to these limitations, it was proposed the development
of a new system, the SEVA3D (Autonomous Vehicles Park-
ing Simulator in a three-dimensional environment)[11]. The
main goal was to develop a new system capable of accom-
plishing virtual and realistic 3D simulations of vehicles. The
same task of controlling a vehicle in order to autonomously
park in a parallel parking space should be accomplished by
this new system, but instead of using a simple 2D model, it
was adopted a more realistic three-dimensional environment
model with a 3D sonar sensor model, which includes noise as
in real sonar data. Therefore SEVA3D is much closer to the
reality, and the simulation results will be easily transposed
to our real working system: an automated Mini-Baja Buggy
developed by the GPVA Group at Unisinos[12].

1GIA-PIPCA – http://www.inf.unisinos.br/gia-pipca.html
2GPVA – http://www.eletrica.unisinos.br/˜autonom/



The SEVA3D3 system uses the SimRob3D simulation
library and components[13], [14]. The control system im-
plemented in SEVA3D-A accomplishes the parking of vehi-
cles, controlling them in an autonomous way using a finite
state automaton (FSA). The sonar sensors were installed
in strategic positions and orientations around the vehicle,
making possible to control the vehicle in the parking task.
The experiments using SEVA3D-A worked in a satisfactory
way, but it was indeed needed to manually code all the rules
used to define the FSA functioning. The task of specifying
FSA rules has proven to be a difficult task, that needs a lot
of a priori knowledge about the system functioning, and the
resulting vehicle control behavior has shown to be few robust
in not expected situations.

For these reasons, we decided to develop a new version of
the system SEVA3D. This new improved version was called
SEVA3D-N. The vehicle parking control in SEVA3D-N is
accomplished using an artificial neural network inspired in
the Jordan-Net Model. The main advantage of this approach
is the use of automatic knowledge acquisition instead of
code it manually. The neural net is able to learn how to
control the vehicle from examples, so we just need to show
how to park the vehicle - showing how to do it, instead of
specifying how to control it. This article aims to describe the
modeling, development and implementation of SEVA3D-N.
In the following sections it will be described: the adopted
simulation model, the vehicle controller based on a neural
network, the experiments and obtained results. We finish
presenting some possible improvements and future work.

II. RELATED WORKS AND MAIN CONCEPTS

Studies relative to assistive systems and (semi)autonomous
parking of vehicles have been done by some research groups
and companies (e.g. BMW, Mercedes-Benz, Toyota, GMC)
in the US, Japan, UK, Italy, Germany and France. Among
them, one of the first outstanding studies was accomplished
by INRIA researchers[7], [8], which implemented a control
system used to park an adapted Ligier electric vehicle in an
autonomous way. This vehicle was equipped with 14 sonar
sensors and it was used a manually customized set of rules to
accomplish the task. The Figure 1 shows the INRIA adopted
vehicle and the parking model.

Fig. 1. INRIA’s vehicle parking model[8]

The above mentioned system adopted the Ackerman kine-
matics model[1] to describe the vehicle control path. The

3SEVA3D – http://www.inf.unisinos.br/˜osorio/seva3d/

parking task was divided in three stages: to search for a
parking space location; to adjust the vehicle position to
allow a correct parking; to control the parking manoeuvre
execution. While the vehicle moves along the road searching
for a vacant place, an environment map is elaborated con-
sidering the sensorial input data. When a parallel parking
space with enough size is located, the system estimates the
beginning manoeuvre position and moves the vehicle up to
this position. Once the vehicle is correctly positioned, the
parking manoeuvre starts. This task is accomplished through
the use of sinus based functions, as described in [15]),
defining a soft path, as showed in Figure 2.

Fig. 2. Parking path curve[8]

During all parking manoeuvre execution, the vehicle is
controlled in an autonomous way using an iterative algo-
rithm, and for each iteration, the speed and the steering wheel
angle are adjusted using the following equations:

φ(t) = φmax kφ A(t), 0 ≤ t ≤ T, (1)

v(t) = vmax kv B(t), 0 ≤ t ≤ T, (2)

where φ(t) is the angle of the steering wheel at the instant
t, v(t) is the speed of the vehicle at the instant t, T is the
maximum duration of the parking manoeuvre, φmax is the
maximum steering angle, and vmax is the maximum speed
during the manoeuvre. The kφ = ±1 indicates if the parking
space is on the left (−1) or on the right (+1) side, and kv =
±1 indicates the direction of the movement, assuming the
value +1 to move forward and −1 to move backward. The
values of A(t) and B(t) are estimated through the following
equations:

A(t) =







1, 0 ≤ t < t′,

cos π(t−t′)
T∗

, t′ ≤ t ≤ T − t′,

−1, T − t′ < t ≤ T,

(3)

B(t) = 0.5(1 − cos 4πt
T

), 0 ≤ t ≤ T, (4)

t′ = T−T∗

2 , T ∗ < T, (5)

where T (duration of the manoeuvre) and T ∗ (duration of
the curved part of the manoeuvre) are estimated based on the
width (Di) and depth (Dw) of the parallel parking space.

In order to become possible to measure in advance the
parking space depth, it was necessary to install a barrier of
moderate height close to the curb. The introduction of this
artificial barrier turns possible to determine more precisely
the parking space depth using the available sensors[7]. One of
the advantages of this approach was the choice of sinus based
functions to control the vehicle, producing softer movements,



instead of using a finite state automaton based on discrete
states, which can causes abrupt state transitions and action
changes. The drawbacks of this approach are: (i) the require-
ment of curb barrier installation, which restricts the practical
application of this method on conventional streets; (ii) the
great number of sonar sensors that must be installed around
the vehicle (fourteen sensors); (iii) the limited application
of this algorithm that works specifically in parallel parking
tasks and needs to be manually coded. We aim to propose
a new system that uses a small number of sensors, should
be able to be used in conventional parking spaces, and also
must allow a simple adaptation to different parking situations.
The SEVA3D-N is the system we developed and we are
improving in order to achieve these goals.

III. ARTIFICIAL NEURAL NETWORKS

Through the use of an abstract and simplified model of
human neurons, is possible to develop a neural simulator
capable to: classify, generalize and learn how to classify and
approximate functions. One of the most used neural learning
models is the so called Multi-Layer Perceptron (MLP) with
Back-propagation learning algorithm[16]. Some improved
versions of the original Back-Propagation algorithm were de-
veloped in the few past years, and the RPROP algorithm[17]
became an interesting choice among them.

The RPROP algorithm performs a direct adaptation of
the weight step (learning rate) based on local gradient
information. To achieve this, each weight has its individual
update value ∆ij , which solely determines the size of the
weight update. This adaptive update-value evolves during the
learning process based on its local sight of the error function
E, according to the following learning-rule[17]:

∆
(t)
ij =
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∆
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(6)

where 0 < η− < 1 < η+, ∂E
∂wij

is the partial derivative of

the error function for the weight wij , and ∆
(t−1)
ij is the last

weight update.
The Artificial Neural Network simulator used in our exper-

iments was the Stuttgart Neural Network Simulator - SNNS4.
It is a free software, and a quite complete neural network
simulator that have several additional tools that allow us to
create scripts and execute learning and simulation tasks in
batch mode. The SNNS facilities also simplify the analysis
of the obtained results and creation of graphic plots.

IV. SEVA3D SIMULATOR

The SEVA3D-A Simulator (controlled by a finite state
automaton) possesses several improvements related to the
original SEVA (2D), among which it can be emphasized the
following main features:

• Uses a 3D environment and 3D simulated sensors
obtaining more realistic simulations;

4SNNS – http://www-ra.informatik.uni-tuebingen.de/SNNS/

• Implements sonar sensors similar to real sensors, includ-
ing the presence of noise in the model;

• Accomplishes the autonomous vehicle control, parking
in a parallel parking space independent of the presence
or absence of other previously parked cars;

• Implements a robust control system accepting different
starting positions, with a distance between the car and
the curb ranging from 2 to 4 meters;

• Accomplishes automatic adjustments of the vehicle po-
sition, if the vehicle is too close (or too far) from the
parked cars, doing this before beginning the automatic
parking manoeuvre (considers too close when the side
by side distance is smaller than 30cm);

• Allows the visualization of the parking manoeuvre from
virtually anywhere in the 3D virtual environment;

• Accomplishes the reversal parking manoeuvre, exiting
the vehicle from the parking space in an automatic way.

The major advantage of SEVA3D-N related to the
SEVA3D-A is the fact that using an artificial neural network
we do not need to manually code vehicle control rules
(FSA), once the control system is obtained by training a
neural net. We just need to show some examples of parking
manoeuvres execution and the system will automatically
adapt the network parameters, learning to autonomously park
the vehicle.

Both simulators, SEVA3D-A and SEVA3D-N, were able
to correctly control the vehicles in parking manoeuvres, as
presented in experimental results section. The Figure 3 shows
a diagram of the SEVA3D modules. The main components
of the SEVA3D simulator are:

Fig. 3. SEVA3D modules

Perception module: measures the distance from obstacles
based on a sonar sensor simulation (see Section IV-B);
Action module: sends action commands to vehicle actua-
tors, defines the direction (forward, backward), the speed
(gas pedal control) and the car orientation (steering wheel
rotation) (see Section IV-D);
Kinematics module: uses the Ackerman model to estimate
the vehicle trajectory (simulation), considering vehicle direc-



tion, speed and steering wheel angle defined by the Vehicle
Action Module (see Section IV-C);
FSA control module: receives sensor data from the percep-
tion module and sends actions to the action module, using
a Finite State Automaton to control the parking manoeuvre
(see Section IV-E);
Neural control module: receives sensor data from the per-
ception module and sends actions to the action module, using
an artificial neural network to control the parking manoeuvre
(see Section IV-F).

A. SimRob3D Simulation Tool

The implementation of SEVA3D uses the SimRob3D sim-
ulation tools[13], [14], previously developed by our group.
The SimRob3D tools main characteristics are: to provide 3D
environment visualization tools used in simulations, and to
provide customizable mobile robots simulation tools. The 3D
environment objects can be modeled using different com-
mercial or free 3D modeling software, and allows to detail
the different elements present in the environment (objects
- robots, vehicles, streets, buildings; lights and textures),
resulting in a high level of realism in the simulations. The
SimRob3D tools also include different sensorial (infrared
and sonar sensors) and kinematics models (Ackerman and
Differential models), which can be used to customize the
simulated robots.

SimRob3D tools provide only a set of methods used to
read data from sensors and to send commands to actuators,
updating the robot position in the simulated environment.
SimRob3D needs an external robot control module, since
their main goal is only to provide facilities to model the
robots (defining sensors and actuators) and to provide a sim-
ulated interface between the robots and the environment. The
external controller is a separated module from SimRob3D,
in our case provided by SEVA3D. The interface between
these two softwares is accomplished by DLL (dynamic linked
library) calls. So, the SimRob3D API (Application Program-
ming Interface) supplies an interface that separates world
interaction from the robot control mechanisms. SEVA3D
uses SimRob3D facilities to define the environment, vehicle,
sensors and actuators, implementing its own vehicle control
modules (FSA and neural control modules). An interesting
characteristic of this coupled system is that the controller
does not possesses direct access to any information from
the environment, the only available information is the one
provided by the vehicle sensors through DLL calls.

B. Sensors Model

Sonars are an interesting type of distance sensor used
in robotic applications, because they can estimate with a
reasonable precision the distance from objects positioned
near to them. Sonars can be used to perceive the environment
objects and obstacles, and they offer a good precision/price
rate related to other distance measuring methods[18].

The simulated sonar sensors[1] allow to estimate the
distance between the vehicle and the obstacles present in
the environment: other cars and the edge of the sidewalks.

The five sensors used were distributed in strategic positions
of the vehicle, as showed in Figure 4.

Fig. 4. Distribution of the sonar sensors around the vehicle

In our experiments sensors were put only in one side of
the vehicle, because all experiments were developed in order
to park the vehicle in parallel parking spaces located on the
right side of the car, which is a typical situation in two-
way streets. Sensors V[2] and V[3] were positioned with a
certain inclination related to the ground, so it was possible
to detect the curb. The SEVA3D allows to configure other
distributions of the sensors, but in this paper the discussion
is focused only to this kind of vehicle configuration.

The SimRob3D sonars are simulated through the defini-
tion of a conical section of the virtual space, where the
objects which remain inside this volume can be detected.
The intersection between objects and the sonar cone volume
(perceptual space) is detected using a stochastic approach.
Several object detection lines (rays) are generated from
the position of the sensor directed according to the sonar
spatial orientation, remaining inside the sonar cone volume.
A RayCast5 technique was used to generate rays, that are
randomly distributed in the sonar cone volume. If any of them
collide (intersect) with some object polygon, the distance
from the sensor until the collision point is informed.

Due to the stochastic nature of the measured distances, a
temporal window method[20] was adopted to represent the
data obtained from sensors. The defined temporal window
has a length of 10 samples. This technique is also commonly
used to deal with real sonar sensors data.

Besides the sonar sensors, sometimes it was also necessary
to use an odometer. The odometer was used only to verify if
the parking space is enough to allow the correct parking of
the vehicle when there are no other parked cars available to
be used as reference points. This situation occurs only when
there are large empty spaces.

C. Kinematics Model
The movement of the vehicle respects the Ackerman

kinematics model[1], which was also the model adopted in
the precursor work developed at INRIA[21]. In this model
a simulated vehicle is represented by a rectangular volume
supported by four wheels divided in two axes, where the back
wheels are attached to a fixed axis and the front wheels can
be turned, controlling them through the steering wheel[18].
The Figure 5 shows the elements of the kinematics model.

5RayCast is a computer graphic technique that simulates the physical
effects associated with the propagation of light rays[19]



Fig. 5. Kinematics model

The vehicle’s location (position and orientation) relative
to some reference coordinate system is denoted as q =
(x, y, θ)T where x = x(t) and y = y(t) are the coordinates
of the rear axle midpoint, θ = θ(t) is the orientation of the
vehicle, and t is time. The motion of the vehicle is described
by the following equations[8]:







ẋ = v cos φ cos θ,

ẏ = v cosφ sin θ,

θ̇ = v
L

sin φ,

(7)

where φ = φ(t) is the steering angle, v = v(t) is the
locomotion velocity of the midpoint of the front wheel axle,
and L is the wheel base. The steering angle and locomotion
velocity are two control commands (φ, v). Eqs. 7 correspond
to a system with non-holonomic constraints because they
involve the derivatives of the coordinates of the vehicle and
are non-integrable[22].

D. Vehicle Control

The vehicle is controlled in SEVA3D by simulated ac-
tuators. These actuators control the vehicle speed (accel-
erate/break) and steering wheel rotation. So, the vehicle
displacement is obtained in the simulator sending commands
to actuators which control the speed (v) and rotation of the
steering wheel (φ).

Differently of the model adopted in SEVA2D, whose
parameters are not directly related to real world measures
(distance was measured in pixels), the parameter values
adopted in SEVA3D are quite realistic. As for example,
during the parking manoeuvre in SEVA3D the speed can be
set with values ranging from 0 (stopped) to 80 (very fast).
When the vehicle needs to move backward the speed is set
to a negative value.

To change the vehicle orientation, the steering wheel angle
(φ) can be set with values ranging from 0 and 35, that
corresponds directly to the rotation angle to the left of the
steering wheel. When the vehicle needs to turn to the right
the angle φ is set to a negative value.

E. Finite State Automaton Control

In SEVA3D-A, the vehicle control in an autonomous park-
ing task is accomplished by a Finite State Automaton (FSA).
The Figure 6 shows the diagram of the finite state machine
used to control the vehicle, and therefore this successful FSA
was also used to be learned by an artificial neural network.
The following states were defined:

Fig. 6. Automaton states

Stopped: automaton initial and final state;
Searching for parking space: first state of the parking
manoeuvre, when the vehicle moves in a straight forward
direction, searching for a free parking space. If a possible
parking space is found the FSA state changes to Positioning
outside;
Positioning outside: the vehicle moves forward in order to
reach a correct position to start entering in the parking space,
usually aligning side by side with the next parked car (the
odometer can be used in the absence of parked cars). This
state is also used to verify if the parking space is adequate.
If the space is too small, the state returns to Searching for
parking space. If the space is large enough, the state changes
to Entering;
Entering: the car starts to move backward and the steering
wheel is turned to the right, so in this way the vehicle
starts to enter in the parking space. The φ and v values
are set to empirically predefined values. When the sensor
V[2] (Figure 4) detects the sidewalk curb the state changes
to Positioning inside;
Positioning inside: in this state, the vehicle continues to
move backward, but the steering wheel is turned to the left.
When the sensor V[3] detects the sidewalk curb or the sensor
V[1] detects a close obstacle (distance under 30cm) the state
changes to Aligning;
Aligning: in this state, the vehicle is moved in order to reach
an adequate distance from the cars parked ahead and behind
it. After the alignment is done, the state changes to Stopped
and the manoeuvre is terminated with success.

F. Neural control

The results obtained with the control based on a manually
specified FSA, adopted in SEVA3D-A, motivated us to study
other alternatives to the parking control task knowledge
acquisition. The FSA creation process was difficult, and the
rule codification was an arduous task and besides that the
final result does not guarantee a great robustness to the
system. As the control system was hard coded, the FSA needs
a fine tuning every time we have some change in sensors
and actuators behavior (e.g. input noise, imprecise actuators),
and also if an unexpected situation occurs. We looked for
a practical solution that should be capable to automatically
learn how to control the vehicle. The adopted solution was
the use of artificial neural nets (ANNs)[16] with supervised
learning, which are capable to adapt themselves to different
situations. The ANNs can learn how to control the vehicle in
a parallel parking task from a set of practical examples: we
just need to show how to park the vehicle. This approach is



very interesting because it increases the possibility of success
when the simulated control system will be transposed to the
real vehicle.

The first step was to create the parking examples data set to
be employed in the ANN learning. The SEVA3D-A simulator
was adapted in order to generate a log file, containing records
of: the sensors state, the FSA state and the commands sent to
the vehicle actuators (speed and steering wheel angle). The
obtained file can be used to train a neural net, and it was
expected that the resulting ANN could be able to reproduce
the FSA behavior. The initial experiments worked fine and
later SEVA3D was also used to generate a new set of parking
task examples, with the vehicle being controlled by a human
instead using the autonomous control system.

The ANN adopted model was a Jordan-Net[23], a modi-
fied version of Multi-Layer Perceptron (MLP) nets[20] with
recurrent inputs. The learning algorithm implemented was
the Resilient Propagation[17]. This network was used in the
following way: a set of inputs are used to indicate the current
state of the network (representing the active FSA state) and
another set of outputs are used to indicate the next state of
the network (the FSA state in the next cycle). The next state
indicated by the network outputs can be the same as in the
current state or it can be changed in order to assume a new
network state. The network state changes occur in function
of their inputs represented by the sensors plus the current
state. So, the neural net receives as inputs the sensors data
and the current state (Figure 7) and based on this information
decides if the current state remains the same, or if it is time
to change to a new state.

Fig. 7. Artificial neural network model scheme

Then the next state (current or new), indicated by the
network outputs, is re-injected in the network inputs. This
makes this model similar to the ANN model proposed by
Jordan[23], where the network outputs are re-injected in the
inputs through a recurrence known as context units. Using
these context units we provide the information about the
current state of the network (simulated FSA).

The Table I shows the main ANN parameters used in our
simulations. For a complete description of these parameters,
see the SNNS manual. The neural input variables used were:
the data from the five sonar sensors, the odometer and the
current state of the parking process. In the network output
is obtained the actuators activation commands (speed and
steering wheel rotation), as well as the indication of the next
state of the parking process. This network output information
allows to simulate a FSA, controlling the actuators and the

TABLE I
NEURAL NETWORK PARAMETERS

Parameter Value
ANN model MLP - Jordan
Learning algorithm RPROP
Number of input units 12
Number of hidden units 5
Number of output units 12
Activation function Act Logistic
Starting learning rate 0.001
Maximum learning rate 0.1
Weights initialization [0.001; 0.001]
Maximum of generations 1000

FSA state, which can be changed according to the progress
of the parking manoeuvre. The Figure 7 presents the scheme
of the ANN inputs and outputs used in SEVA3D-N.

The states and actions were coded on a “1-of-N” basis in
the learning database used to train the neural network. The
neural inputs and outputs were defined as follows:

• Inputs: current state (6 states = 6 binary inputs, one
input for each state); state of the sensors (5 sensor
= 5 numerical inputs normalized between 0 and 1);
odometer (1 numerical input);

• Outputs: speed (3 states with previously fixed speeds =
3 binary outputs: forward, backward and stopped); steer-
ing wheel angle (3 possible predefined angle positions
= 3 binary outputs: Turn to the left, Straight forward
and Turn to the right); next state (6 binary outputs).

It should be pointed out that it is very important to know
the current state to allow a correct interpretation of the
sensors (same situation, different actions), for example: (i)
When searching for a free parking space, if lateral sensors
indicate the proximity of parked cars then this indicates that
we should continue to move forward until a parking space is
found; (ii) When entering in a parking space after the vehicle
was positioned outside of it, if the lateral sensors indicate
the proximity of a parked car (exactly as in the previous
situation) then this indicates that we should start to move
backward and turn the steering wheel to the right.

So, correct state transitions are very important to accom-
plish the autonomous parking task. In our experiments we
noticed that the neural net was perfectly capable to learn
state transitions (next state outputs were correctly generated).
Once the neural learning phase is finished, it is capable
of accomplishing the vehicle parking task autonomously
without any human intervention.

V. IMPLEMENTATION

The SimRob3D simulation tools[13], [14] were used to
create the virtual environment and to interface the vehicle
devices with the SEVA3D autonomous controller implemen-
tation. The virtual environment was modeled, creating 3D
models of the road and parked cars, and also the model of
our autonomous vehicle. The Figure 8 shows an image of
the virtual environment modeled.

The model of the vehicle used to accomplish the parking
task is a reproduction of a real Mini-Baja Buggy available



Fig. 8. Virtual environment visualization

in our research laboratory. This vehicle was developed by
the GPVA Research Group at Unisinos. The real vehicle
was automated and now it can be controlled from remote
devices, like cell phones (see available videos in the GPVA
web site). The Figure 9 shows the actual vehicle used as
model of the virtual autonomous vehicle. At the present time
we are working on the real vehicle instrumentation, adding
sonar sensors, and a real world test is planned soon using
the SEVA3D controller to control the real vehicle.

(a) Real vehicle (b) Simulated vehicle

Fig. 9. Automated Mini-Maja vehicle

The SEVA3D simulator implements a discrete integration
of the model described in the Eqs. 7. The FSA imple-
mentation, used to control the simulated SimRob3D vehicle
movement, was developed in “C” language. In order to
follow the progress of the parking manoeuvre, the user can
visualize the simulated environment using a virtual camera.
Besides that a status window exhibits information about the
simulation, including: the FSA current state, the sensors data,
the vehicle speed and steering wheel angle, the absolute
vehicle position and orientation, and the odometer value. The
Figure 10 shows the window containing all these information.

The SEVA3D implementation was validated through sev-
eral preliminary tests. It was also verified that the simulated
model behavior was quite similar to the reality. In the next
section are presented the main experimental results obtained
with this system.

VI. EXPERIMENTAL RESULTS

The learning database was created with 2166 examples,
(1083 for the learning and 1083 for the generalization test),

Fig. 10. Status information window

each one with 12 inputs and 12 outputs. The Table II shows
the results obtained in the ANN learning for 10 different
experiment runs. The first column (E) is the experiment
identifier, the second and third columns shows, respectively,
the mean square error (MSE) and the correct classification
rate (Hits) in the learning database, and the two last columns
shows the MSE and the correct classification rate (Hits) in
the generalization test database. The last two lines of the
Table II shows the mean (µ) and the standard deviation (σ)
of all accomplished experiments.

TABLE II
RESULTS OBTAINED IN THE SIMULATIONS

Learning Generalization
E MSE Hits MSE Hits
01 1.0482e-02 93.26% 2.1188e-02 93.17%
02 1.8281e-02 78.67% 2.6644e-02 92.43%
03 1.0415e-02 90.86% 2.5437e-02 90.30%
04 1.9093e-02 89.47% 2.4292e-02 88.09%
05 1.8791e-02 90.58% 2.6284e-02 89.10%
06 1.6726e-02 79.04% 2.5679e-02 84.49%
07 1.4022e-02 87.53% 2.1959e-02 87.17%
08 1.4551e-02 93.26% 2.5646e-02 95.84%
09 1.3445e-02 91.23% 2.7894e-02 81.35%
10 6.2535e-03 84.49% 2.5490e-02 88.73%
µ 1.4206e-02 87.84% 2.5051e-02 89.07%
σ 4.2174e-03 5.40% 2.0625e-03 4.23%

The generalization test was performed for each 10 epochs,
and the average best epoch was 382. The achieved learning
performance was 89.07% of correct answers. A correct
answer occours when all outputs are correct, considering a
score threshold of 0.4. The Figure 11 shows the neural output
error (MSE) curve evolution during the learning, related to
the learning data (darker line) and the generalization test data.

The examples that generated an incorrect network output
were analyzed and in all cases it was noticed that the wrong
answers don’t cause problems in the FSA state transitions.
The trained ANN was perfectly capable to change from the
current FSA state to the next FSA state with no errors. This is
very important once correct FSA state transitions are critical
to obtain a successful parking manoeuvre.

In experiments of the Table II, SEVA3D was capable to
correctly park the vehicle, with an average distance from the
curb of 26.16cm and a standard deviation of 5.92cm. This
demonstrates that the implemented system is safe and robust



Fig. 11. Progress of the neural learning

to control vehicles in parallel parking tasks execution. The
Figure 12 shows an example of parking manoeuvre6.

Fig. 12. Parking manoeuvre

VII. CONCLUSIONS AND PERSPECTIVES

This work main goal was to develop a simulator for
autonomous control of vehicles in parallel parking tasks.
The proposed system should be able to create a realistic
model of the real world application, so it was implemented a
simulation tool situated in a 3D environment, the SEVA3D.
This system includes a 3D model of the vehicles and obsta-
cles, and it also includes a 3D model of sonar sensors. The
experimental results, accomplished with SEVA3D-A (control
based on a FSA) and SEVA3D-N (control based on an ANN),
demonstrated that the control system possesses the capacity
to correctly control the vehicle. The main objective of the
control system was achieved with success: to park vehicles
in an autonomous way, not colliding against obstacles present
in the environment. In order to validate the SEVA3D vehicle
control module, several experiments were accomplished with
visual and numerical evaluations. This experiments allowed
to verify that the vehicle was correctly controlled in different
situations, demonstrating that the proposed method is stable,
safe and robust.

Although the experimental results were very good, we
are still planning to improve SEVA3D/SimRob3D simulation
model. The implementation of a new version of SEVA3D
is being considered in order to include a more realistic
physical simulation tool. We are considering to add rigid
body dynamics simulation extensions, allowing to simulate
force, torque, friction, gravity, terrain slopes, etc. In the near

6Some videos demonstrating the SEVA3D parking manoeuvre are avail-
able in http://www.inf.unisinos.br/˜osorio/seva3d/

future we plan to implement SEVA3D-N in a real vehicle,
an automated mini-Baja Buggy available in our research
laboratory. The SEVA3D neural network will be adapted
(trained) to use the new hardware (real sonar sensors) and
the system will be evaluated in real world conditions.
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do processo de estacionamento de carros,” in Anais do Seminco,
Blumenau, SC, Brazil, Oct. 2001.
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