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1. Introduction

Various Artificial Intelligence methods have been developed to reproduce in-
telligent human behavior. These methods allow to reproduce some human
reasoning process using the available knowledge. Each method has its advan-
tages, but also some drawbacks. Hybrid systems combine different approaches
in order to take advantage of their respective strengths. These hybrid intelli-
gent systems also present the ability to acquire new knowledge form different
sources and so to improve their application performance.

The main argument, and the most used one, to justify the study and the
application of hybrid symboli-connectionist systems is the complementarity
of symbolic AI methods and sub-symbolic connectionist methods (Artificial
Neural Networks - ANN).

Such a justification is a very general one. And it remains to be more
precise about the real contribution of the hybrid approach. What exactly
provides the combination of neural networks and knowledge based systems?
Researchers claim that hybrid systems take advantage of their respective com-
ponent strengths. Is it a real property of the existing hybrid neuro-symbolic
systems? And what are these advantages?

To validate an hybrid system, one have to answer these questions, and
to describe what really can be done with this system which was hardly done
with just one of its components. Particularly the system has to be given proof
of the following properties:

— Possibility to use and to take into account several kinds of knowledge repre-
sentation, like empirical data and expert knowledge (examples, production
rules and fuzzy rules).
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— Best efficiency of the global system when compared to each of its compo-
nents.

— Strong coupling between the components, leading to an exchange of knowl-
edge between all of these components. This knowledge has to be proved
consistent and useful. The best way for implementing such a coupling is
to choose the integration mode called co-processing [17, 23], in which the
different components of the hybrid system work on the same level and
exchange information between both themselves and their environment.

— Possibility of global learning. The whole system is able to adapt its various
sets of knowledge to the variations of the data domain. This tuning can be
done following two ways : either learning (or forgetting) new examples, or
modifying the architecture of the neural component.

In this paper we describe a system, called INSS (Incremental Neuro-
Symbolic System [24, 25]), endowed with these properties. In section 2 we
explain the origin of our system and the reasons of our choices. Section 3 de-
scribes INNS system. Then, in section 4, to validate the system, we present
some practical results allowing to show that INSS has the sought properties.
Section 5 presents the application of INSS in a medical domain.

2. The co-processing integration mode

In the classification task domain, the hybrid neuro-symbolic systems, such as
SYNHESYS [15] and KBANN [35], exploit their capacity to use at the same
time theoretical knowledge (set of symbolic rules) and empirical knowledge
(set of observed examples). These two systems are significant examples of the
coprocessing integration mode in hybrid systems, allowing a bi-directional
knowledge transfer between the symbolic and connectionist modules. Figure
2.1 shows the general architecture of this kind of systems.

We chose to base our study on the KBANN model, a well-known hybrid
neuro-symbolic system that represents, among others, the state-of-the-art in
this domain. This system is able to compile a knowledge base into the form
of an ANN. Then, it learns from an example data set, and after that it
extracts new rules. This approach allows a refinement of initial knowledge,
as we can see in Figure 2.2. Such a system constructs robust networks: the
insertion of a priori theoretical knowledge leads to quicker learning; we can
use small data sets during the learning phase; all available knowledge about
the problem (whether theoretical or empirical) is used; and thus the system
is more adapted to process incomplete and/or erroneous data.

However, the KBANN system has some important limitations due to the
choice of its ANN model and learning method, the Back-Propagation algo-
rithm [28]:

1. KBANN networks are based on static networks, so it is difficult to change
or to add new knowledge. A simple change in old knowledge requires a
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retraining of the whole network. Furthermore, if new knowledge is dicov-
ered that turns invalid the old knowledge, it is difficult to correct it;

2. due to the use of the Back-Propagation algorithm, the learning is slow.
Back-Propagation as a first order (first derivative) successive approxima-
tion algorithm brings with him performance problems (for example, the
”flat spot” problem) that can be solved by better training algorithms
and strategies like QuickProp, Cascor, RProp, Scaled Conjugate Gradi-
ent ALgorithm, etc. [29];

3. in the KBANN since the rule extraction process must consider the whole
network after the rule insertion and training, all the rules must be ex-
tracted. That is, a fully new knowledge base is created, which may include
the old rules or not. The interpretation of this new knowledge base by a
human becomes then a time consuming task, since he has to throw away
all the previous analysis.

It is the reason why we developed the new system called INSS to improve
KBANN networks and to overcome its main limitations. This new system
also authorises insertion, refinement and rule extraction, but, unlike the
KBANN system, each process performs incrementally. Moreover, instead of
using the Back-Propagation algorithm, based on static networks, INSS uses
the Cascade-Correlation learning method [14] which proceeds by adding new
units (neurons) during learning. Our approach allows to obtain a constructive
network that is able to develop its structure and its knowledge, while keep-
ing unchanged the principal properties of a hybrid neuro-symbolic system.
The main feature, that constitutes the originality of our system, is that we
are able to perform an incremental rule extraction [11]. The rule extraction
process may analyze only the new added units and occurs as new knowledge
is acquired. This way, the old knowledge remains intact and is progressively
incremented by the new one. Furthermore, the user is able to determine the
degree of exactness or of generality of the extracted rules. Less rules give him
a overview of the data being modelled but with little exactness. As more rules
are extracted from a more refined network, more details can be added to the
old ones. We do not know any other neuro-symbolic system able to extract
rules in a such incremental way.

3. The INSS system

The INSS system is composed of five modules: Symbolic-Module (Symbolic
Inference Engine), NeuComp (Construction of a network from rules), NeuSim
(ANN learning and recall), Extract (Rule extraction), and Valid (Validation
of acquired knowledge, by means of study of relations between rules and
examples). The INSS system components are represented in Figure 2.3.

Our system uses the CLIPS language (C Language Integrated Produc-
tion System) [16], developed by the STB-NASA, as its symbolic module. Our
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system also provides facilities to transfer rules and examples to/from the
specific syntax used in this language and the syntax used in our tools (Neu-
Comp/NeuSim/Extract). The NeuSim module can be also used as a forward-
chaining inference engine once the symbolic rules have been transferred to
the connectionist module.

3.1 Rule Insertion

The NeuComp module can process elementary production rules (simple
propositions) which we called “rules of order 0”. These rules are equivalent
to IF/THEN forms such as:

IF <Condition>(TRUE/FALSE) AND/OR
<Condition> (TRUE/FALSE)...
THEN <Conclusion>

The rule compilation follows the method described by Towell [35, 37]. The
result of the translation is a network composed of a set of units linked by
weighted connections (see Figure 3.1). The activation of this network, before
learning, leads exactly to the same results (outputs) as those obtained with
the set of rules.

We also extended the rules used by KBANN to ”high level rules” [26, 27):
production rules of order 0+, which are rules including value intervals. As
application problems, where this type of rules were used, we cite:

— Robotic applications. Ex.: an autonomous robot using left and right sensors
can be controlled by rules of the form: ”if the left sensor signal is higher
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than the right one, then it is closer to the left wall”. Using only boolean
operators or boolean logic rules does not allow such a conclusion.

— Medicine. Ex.: an alarm equipment in a hospital can indicate the state of
a patient through rules of the form: ”if the temperature is higher than 37
degrees or lower than 35 degrees, then please call the nurse”.

The introduction of this kind of rules was necessary to express and to in-
troduce the existent knowledge (expert knowledge) to NeuComp in projects
conducted by the authors of the paper.

We implemented the usage of comparison functions of the following type:

<Operator>(<Feature>, <Value>) or
<0Operator>(<Feature>, <Feature>),
where <Operator> is GreaterThan, LessThan or Equal.

Resulting in rules of this kind:

IF GreaterThan(Sensor_S1, 1.0) AND
LessThan(Sensor_S1, Sensor_S2)
THEN Conclusion_C1

These rules can be compiled into an ANN composed by simple Perceptron
like units (we create feed-forward multi-layer networks with sigmoid based
units). A detailed description of all compilation processes, used within INSS,
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can be found in [25], and we show a brief description of the compilation pro-
cess in Figure 3.2. We added two new parameters to our symbolic rules that
allow us to specify the ”sensibility” (slope of the output curve) and the ” con-
fidence” (displacement of the output curve related to the specified activation
threshold). So, with these two parameters we are able to compile rules like:
less than or equal to X, greater than or equal to X, less than and not equal
to X, in range (including or excluding limit values), etc. The ”sensibility”
parameter acts like the ”W” value used with KBANN nets [35].

We show in Figure 3.3 examples of the neurons output. These neurons
were obtained using our compilation process of 0+ order rules. We can observe
rules that compare one input value with one constant value (Greater_than
[Feature, ConstValue]), and rules that compare one input value with another
input value (Greater than [Feature, Feature]).

Ag the symbolic rules allow to establish some initial knowledge and then
give an initial structure to the network, this approach solves two important
problems related to Artificial Neural Networks: on one hand this simplifies
the choice of the number and distribution of units, on the other hand we
obtain a good assignment of initial values to the connection weights.

3.2 Learning

The use of the Cascade-Correlation learning algorithm instead of Back-Propa-
gation, in the NeuSim module, allows a quicker learning [14, 29], with higher
performance results [29, 34]. Figure 3.4 shows an example of the network
structure evolution when we apply the Cascade-Correlation learning algo-
rithm. It allows especially constructive learning where the initial knowledge
is not mixed with the new acquired knowledge. New units are added to the
initial network structure in order to correct or complete the initial knowledge.

The importance of such a choice of the learning method is reinforced by
studies [30, 31] showing that Cascade-Correlation networks can be used to
model some aspects of human cognitive development.

The Cascade-Correlation algorithm developed by Fahlman and Lebiere
[14], in contrast to static neural learning algorithms such as Back-Propa-
gation [28], is a generative technique to network construction and learning.
Instead of merely adjusting weights in a network of fixed topology, Cascade-
Correlation starts with a minimal network of input and output units. During
learning, it may add hidden units one at a time, installing each on a separate
layer. This is done in the following way: if the net is not reducing error
fast enough with its current topology, it will select and install a new hidden
unit whose output activations correlate best over all training cases with the
existing network error. Once one new unit is installed in the network its
weights are frozen, and this unit keeps unchanged its learned weights. So,
Cascade-Correlation will reduce step-by-step the network output error by a
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cyclic process of output units learning and hidden unit addition/learning. In
essence, Cascade-Correlation searches not only in weight space but also in
the space of network topologies.

Learning in a network by adding new units allows to complete, to change,
or to refine the initial knowledge. In INSS, using the Extract module, one
can be able to analyse only the new added units and the modified output
units. The old units always keep their function and their meaning in compar-
ison with the initial rules introduced into the network. As we can preserve
unchanged the initial knowledge acquired, this technique makes the main
difference of our system in comparison with the KBANN system [11, 12, 25].

3.3 Rule Extraction

The Extract module [11, 12] implements an improved version of the SUBSET
algorithm [2, 35, 36] of rule extraction from neural networks. This algorithm
was improved in two ways. First, the extraction process is a lot simpler and
quicker since we look only at a small part of the network. We do not need
to extract all network knowledge, but just the new acquired knowledge. Sec-
ond, we developed heuristic methods for network simplification (remove less
significant units and links), used before extraction. The use of a simplified
network helps us to reduce the complexity of the extraction procedure.

We included in our system the use of expert and fuzzy rules, since a) the
inputs of a neural network can be interpreted as the state of the system; b)
the mapping performed by the network of the system state to an output can
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be interpreted as the inference mechanism performed by production systems;
c) the output of the network can be interpreted as the action to be taken on
the system.

The use of fuzzy rules in this context is mainly due to:

— for some kinds of neural networks (RBF networks), there is a proof of
equivalence between the neural network and fuzzy inference systems ([19];

— the smooth continuous mapping implemented by some feedforward neural
networks (like MLP) can be easily represented by fuzzy rules;

— counterpropagation networks use proximity concepts, which are very similar
to membership functions of the fuzzy techniques.

The main disadvantage in the use of fuzzy rules is that one rule interferes
with the others making the rules less modular. This disadvantage is partly
suppressed by the use of mutually exclusive rules.

Unfortunately most of the extraction algorithms work only with a dedi-
cated structure, where the network has special neurons with special activation
functions connected in a special way. The result is a mirroring of the fuzzy
algorithm in form of a network. There are fuzzyfication neurons, inference
neurons and defuzzyfication neurons. A simple look at the network reveals
the fuzzyfication, inference and defuzzyfication methods of the corresponding
fuzzy inference system. So we should limit ourselves to work only with MLP
networks.

Two problems arise when studying the diverse architectures and work-
ing with transparent networks (networks offering the possibility to extract
knowledge in the form of rules):

1. How to obtain an initial input space partition to be expressed in form
of fuzzy sets (see figure 3.5): there are 4 methods to partition the in-
put space: grid partition, tree partition, scatter partition [18] and linear
partition. These fuzzy sets are used then to form the rules. The grid
partition is commonly used: divide each input variable range in 3 fuzzy
sets with linguistic values low, medium and high and then combine them
with the intersection (see figure 3.5(a)). The disadvantage of the grid
partition is that the number of fuzzy sets increases exponentially with
the number of input variables. The number of fuzzy sets is important
because this number corresponds to the number of rules, which is the
most important index about the comprehensibility of a fuzzy inference
system. The tree and scatter partitions increase the comprehensibility of
rules, but have the disadvantage that, depending on the application and
on the distribution of the data, many of them may be required to cover
the training set. For example, when the data is distributed diagonally
to the input variables, or when there are dependencies among the input
variables. The scatter partition has the disadvantage that the partitions
are not mutually exclusive. The linear partition has the advantage that
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it produces the smallest number of rules but the membership functions
are more difficult to comprehend.

. How to tune or to train the fuzzy inference system: the rules alone are

not enough to implement a good mapping from the inputs to the outputs.
A training with data is necessary to adapt the parameters of the rules.

€) () (©) (d)

Fig. 3.5. Various methods for partitioning the input space: grid partition (a); tree
partition (b); scatter partition (c); linear partition (d).

These two problems are very similar to the problems of determining the

number of hidden units in a sigmoid neural network and determining the
structure of the network.

Therefore, the most common strategies to solve the problems above were

identified and listed below.

1.

The use of special structures representing the structure of the fuzzy infer-
ence system: this facilitates the introduction of fuzzy rules in the network
and the solution of the problem of the input partition. At the same time,
this facilitates the extraction of the rules.

. The use of special units representing the elementary operations of a fuzzy

inference systems: min, max, multiplication, division.

. The use of gradient descent algorithms to solve the problem of parameter

tuning: most algorithms are a modification of Backpropagation adapted
to the new units and architectures. The problem with such a generaliza-
tion in the use of gradient descent algorithms is that some care must be
taken with units whose nonlinear function has a zero derivative some-
where or units, whose effect on the learning is to adapt the wrong pa-
rameters of the network.

. The use of a partition aligned to the input variable axis and mutually

exclusive (see figure 3.5(a) and (b)).

. The use of a partition defined by the user: this is considered by many

authors as an advantage, since knowledge about the problem can be
introduced into the network.

. The computation of all combinations of the linguistic values of the input

variables in the premises: this simplifies the algorithm but increases the
number of rules generated.
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7. The use of reinforcement learning or stochastic search to solve the control
problem. Both methods require the possibility to experiment with the
process or with some model of the process. The stochastic search requires
also an objective function to be minimized.

Furthermore the different rule extraction systems generate two types of
fuzzy rules: Mamdani or Sugeno fuzzy rules.

A Mamdani Fuzzy Inference System with two inputs z; and zs and
one output y contains a set of Mamdani Rules with the form [20]:

IFz, € F AND 2y € F THENy = F (3.1)

where Fy, Fy and F are fuzzy sets. Their membership functions pr,, pr,
and pr have normally the form of triangles (up (z1) = 1 — min(k|z1 —
k2|,1)), where k1 defines the steepness and k2 is the center of the triangle. The
membership functions of a fuzzy inference system constructed with Mamdani
rules should cover the input space, at least the points which can occur in
practice. The fuzzy logic operation AND is implemented with the min operator,
the rule of inference is computed using the min operator and the composition
is computed with the max operator.

The final result is a fuzzy set. A real value must still be computed from
the membership function using some defuzzyfication method.

A Sugeno Fuzzy Inference System with input variables z1,---, %,
and output variable y contains a system of Sugeno rules with the form [33]:

IF f(xy is Fi,---,z; is Fy, -+, 2y 08 Fy) THEN y = g(21,...,2)  (3.2)

where Fy,---, F, are fuzzy sets representing the region of the input space
where the rule is valid, f is the fuzzy logic operation (AND, OR) that connects
the propositions (z; is F;) in the premise and g is the function which computes
the value of y when z1,- - -, z,, satisfies the premise.

The two main advantages of the Sugeno rules in relation to the Mamdani
ones are: first to solve the problem of the need of too many implications to
cover the whole input space and second to simplify the computation effort
of the defuzzyfication process. If the input has many components, then the
space is too large to be covered by the rules. The functional relations in the
consequence part between inputs and outputs make an additional dependence
between the two spaces. This turns the premises valid in a larger set and then
the number of implications needed is reduced. Second, the defuzzyfication
includes normally the computation of some integrals. This is a laborious
computation which takes a lot of time and can be a problem in real-time
applications.

Although the function g was generically defined, Takagi and Sugeno report
only the use of a linear function g(z1, ..., ) = ko+kiz1+- - -+ kix;+- - -+knzp
where k; are constants.



14 Fernando Osério, Bernard Amy, and Adelmo Cechin

Based on the last analysis of different fuzzy inference systems, we present
now the idea for the extraction of fuzzy rules from a neural network of the
type MLP. Consider the network with the structure as in figure 3.6 (left).
This figure shows that the threshold unit separates the input space into two
mutually exclusive regions. Each region is described by two pieces of informa-
tion: where it is located (its region) and the corresponding mapping equation
performed by the network. Its region can be expressed in form of an inequal-
ity: ag > 0 for the grey region and asz < 0 for the white region, where ag is
the activation of the unit 3.

membership function
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Fig. 3.6. Neural network with one threshold unit (marked with an s) (left). Neural
network with one sigmoid unit (right). ws; is the weight of the connection from the
j-th to the i-th unit. The symbol © is to be understood as an arrow pointing to
the reader.

Consider now the network in figure 3.6 (right) with shortcut connections,
sigmoid units instead of threshold units and add unit at the network output.
Since the sigmoid function is continuous there is no sharp limit separating the
white from the grey region as in figure 3.6 (left). In this case, the relations
as > 0 and a3 < 0 must be generalized to a fuzzy relation with defining
membership functions g; and ps.

Now, associated with each region there is a membership function (for
example, u1(z1,22)) and a linear equation (for example, y = z1ws1 +Lawss +
(wso + ws4)) expressing a dependance of the network output on the network
inputs in this region. The computation of the output of the network can be
performed multiplying (implementation of a fuzzy inference) the membership
function by the corresponding linear expression and afterwards added up
(implementation of a fuzzy composition):

y = (21, 22) (T1ws1 +T2wse +wso+Wsa )2 (T1, 2) (F1 W51 +T2Ws2+Ws0—Ws4)

or expressed in form of Sugeno fuzzy rules:
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IF (z1,22) 4s G1 THEN y = z1ws51 + Zowss + Wso + Wsa
IF (z1,22) 458 Go THEN y = z1ws51 + Towse + Wso — Wsa

where G; and G are the fuzzy sets with membership functions u; and o,
respectively.

This idea can be expanded for MLPs with short-cut connections and any
number of hidden layers. This was developed in the FAGNIS (Fuzzy Atomati-
cally Generated Neural Inferred System) system ([5] [6]). In [5] a proof of the
equivalence between the neural network and the generated fuzzy inference
system was performed, in dependence only of the choice for the membership
functions. In that work an exact definition of the extraction problem is shown
with theorems, which define the limits and conditions for the rule extraction.

To maintain an easy interpretability of the membership functions associ-
ated with the fuzzy rules generated some constraints were imposed on them:

1. The fuzzy set F;(z) is a convex fuzzy set, whose membership function
is the highest at only one point with value 1. This way, it is guaranteed
that the degree of membership decreases as the input values get farther
from this point.

2. Mutual exclusiveness of the fuzzy sets. Mathematically, this con-

n
straint is expressed by Z F;(z) < 1. The system of fuzzy rules shall not

i=1
have more than one rulle completely active at a certain state.

3. Region of influence constraint. The region of influence (where the
membership function has a value different of 0) should be occupied by as
few membership functions as possible. For the one-dimensional case this
number should not be greater than two.

The FAGNIS system of rule extraction was already tested on some appli-
cations. First in the control area [8]. These ideas were applied to the control
of the angle and position of the inverted pendulum with a specialized net-
work. There, FAGNIS was compared with a Deadbeat controller (linear state
controller). These ideas were adapted later to treat a second problem, the
control of an interferometer in the MIPAS (Michelson Interferometer for Pas-
sive Atmospheric Sounding [22]) experiment at the Nuclear Research Center
Karlsruhe, which was investigated and published in [7] [13].

A second application of FAGNIS was in the chemistry area where it was
used to interpret neural networks trained to predict separation factors in the
gas chromatography ([6][9][10]).

3.4 System Improvements

Since we can not be totally sure if all symbolic knowledge (rules) are really
perfect with no inconsistencies, and also we can not be totally sure if all
examples in learning database are really perfect, so we need to check the
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validity of our old rules against the new symbolic rules (obtained by rule
extraction) and the available learning examples. The Valid module [3] finds
out the probably incorrect rules and examples. Thus, we will need to submit
these inconsistencies to an expert analysis, or to increase our learning and
rule databases with more informations. This module is very important and
complex and it is under development.

In summary, the INSS system presents some important advantages over
its predecessor, KBANN. Qur system improvements allow us to eliminates
some drawbacks of KBANN nets:

— The INSS constructive neural architecture allows to work with incomplete
symbolic rule sets and also with incorrect symbolic rule sets. Qur system
can easily add new rules (neurons) or even make broader changes in the
existing ones. The KBANN networks, as they use static networks, restrict
learning to less important changes to the rule set. If we need to ’learn’ a
new rule from examples in KBANN we should add manually specific units
for this purpose.

— The KBANN network algorithm tries not to change unit meaning, and
tries to keep the symbolic label significance associated to them. We can
not be sure that, during the KBANN learning process, its units will not
suffer a meaning shift. The Cascade-Correlation, used within INSS, keeps
unchanged the initial acquired knowledge (compiled rules) by freezing the
network connection weights, and does not have any problem of meaning
shift.

— The learning algorithm used in INSS is faster than KBANN’s Back-Propa-
gation based algorithm. Besides, this algorithm allows an incremental net-
work construction, by improving the connection weights as well as the
network topology.

— Our rule extraction algorithm does not need to analyse all the ANN struc-
ture, but instead we just consider the new acquired network knowledge by
analysing the new added units. This leads to an important reduction of
the rule extraction process complexity.

— We are not restricted to using binary inputs (rules of order 0), nor obligated
to pre-process continuous inputs in order to discretizate them. Qur system
allows symbolic rule compilation of proposition rules of order 0+.

— The integration of efficient fuzzy rule extraction algorithms into the INSS
system due to its modular construction expands its capabilities. This rep-
resents an improvement in the knowledge representation power of the gen-
erated rules and so in the range of applications of the system.

4. Validation of INSS : practical results

The possibility to use and to take into account several kinds of knowledge
representation appears clearly in the description of the functionning of INSS.
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It is the same for the possibility of global learning. INSS can not only adapt
its various sets of knowledge to the variation of the data domain, but also to
learn by modifications of its architecture.

It remains to show that the hybridisation increases the efficiency of the
system, and that the knowledge extracted by INSS is a ”good” knowledge.
With this aim in view we have applied INSS on a relatively simple appli-
cation, the Monk’s Problem [34]. This problem is a set of tests developed
for performance comparison of different learning algorithms. There are three
Monk’s problem data sets. Here we will discuss only the results we obtained
within the first one, the Monk1 problem, although our tests cover all three
problem data sets.

Table 4.1. Monk1: Description of the symbolic rule set

Input Features:

HEAD SHAPE = { ROUND, SQUARE, OCTAGON }

BODY _SHAPE = { ROUND, SQUARE, OCTAGON }

ISSSMILING = { YES, NO }

HOLDING = { SWORD, BALLOON, FLAG }

JACKET_COLOUR = { RED, YELLOW, GREEN, BLUE }

HAS_TIE = { YES, NO }

Symbolic Rules:

(1) Monkl + HEAD SHAPE = ROUND, BODY SHAPE = ROUND
(2) Monkl + HEAD SHAPE = SQUARE, BODY SHAPE = SQUARE
(3) Monkl + HEAD SHAPE = OCTAGON, BODY _SHAPE = OCTAGON
(4) Monkl + JACKET_COLOUR = RED

The Monk1 problem data set is composed by one set of four symbolic
rules (see table 1 for the complete domain theory), by one generalization test
set of 432 examples (covering all the input space), and by one learning set of
124 examples. The examples are exactly those available in the original data
[38]. In our experiments we used portions of the rule set and the examples set
in order to study the generalization capacity of our system. Just the learning
set and the rule set were partitioned, for its part, the generalization test set
was preserved unchanged in all experiments.

4.1 First experiment : validity of the extracted knowledge

This experiment aims at verifiying if the system is able to find again the
complete rule set from a partial set of knowledge. This is accomplished by
means of learning an example base built up with the complete set.

In a first test, we created a network by compiling 75% of the rules (3
among the 4 available rules). Then we applied the rule extraction method.
The extraction process has been applied only on two units, the output and
one hidden unit, because one unit only has been added to the network during
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the learning period. We repeated such a test for all the configurations of the
incomplete rule set : one rule eleminated among four available rules. In any
case, the extraction method allowed to retrieve the rule removed from the
initial set.

In a second test, we used another incomplete rule set constructed by
suppressing 50% of the rules contained into the complete set. As in the first
test, we refined this initial knowledge by using the original learning data
set. The result we obtained is the same one: we rediscovered all the rules
eliminated from the original rule set.

This set of experiments leads to two remarks :

— In any case, the retrieved rules were found by rule extraction from the
ANN added units. That shows the process of modification of the network
architecture is consistent.

— The fact we rediscover the eliminated rule means the removed rule was
implicitly present in the examples learned by the neural network. The
extracted knowledge is sound and not in contradiction to the example set.

Table 4.2. Monkl problem: Using rules and examples to improve generalization

Portion of Portion of Generalization  Generalization ~ANN Generaliz.
Rule Set Examples Set  using INSS Just rules Just examples
- 100% 100% - 100%

- 75% 89.21% - 89.21%

- 50% 70.92% - 70.92%

100% - 100% 100% -

75% - 83.33% 83.33% -

50% - 72.22% 72.22% -

75% 100% 100% 83.33% 100%

50% 100% 100% 72.22% 100%

75% 75% 100% 83.33% 89.21%

75% 50% 100% 83.33% 70.92%

50% 75% 100% 72.22% 89.21%

50% 50% 89.86% 72.22% 70.92%

* Generalization scores represents the average obtained from 5 different runs
+ Our system and the data used in these tests are available for comparisons

4.2 Second experiment : efficiency of the hybridisation

The results obtained (see table 2) show that INSS is able to treat this problem
using all available learning examples, or using a combination of the theoretical
knowledge (rules) and empirical knowledge (examples). We showed that we
always obtain a superior generalization rate when we use at the same time
rules and examples. Lower generalization rates are obtained when we used
just one information source at the same time.
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5. Medical Diagnosis and other applications

In order to study the behavior of INSS on a real application, the system has
been also tested on a medical diagnosis application : diagnosis of toxic coma.
When a comatose patient is admitted in an emergency care unit, the clini-
cian makes an early tentative diagnosis by collecting clinical and biological
parameters. The diagnosis may be later confirmed or rejected by toxicological
analysis. So, for the initial therapeutic action to be as adequate as possible,
there is a need for an accurate prediction of the toxic cause, without waiting
for the toxicological analysis. The use of an intelligent automated system to
help in this diagnosis task seems to be very useful. Until now, there is no
complete model for describing this knowledge by means of rules.

Our goal was to use INSS to aid to identify the causes of a psychotrope
induced coma. We have available a case base of 505 pre-analysed examples
of patients. Each example is described with 13 parameters or symptoms ob-
tained directly when the patient is admitted, without waiting for the toxico-
logical analysis. The diagnosis should aid to identify the presence or absence
of each one of the 7 individual toxic causes (Alcohol, ADT, Benzodiazepines,
Barbiturates, Carbamates, Morphine or Phenothiazines). A more detailed
description of this problem can be found in the technical report of the Esprit
MIX Project [1].

Table 5.1 reproduces the results we obtained comparing INSS to other
machine learning systems applied to this medical diagnosis problem. All the
systems were tested with exactly the same learning and testing data sets, and
the results expressed in this table are the average of 10 different runs. The
systems we compared with INSS are described in the MIX report [1].

The scores showed in Table 5.1, related to the other methods (K-PPV,
C4.5, and ProBis), were reproduced from the results obtained by other re-
searchers [21]. As we were constrained to use the same experiment protocol
in order to be able to compare these different methods, we show here just a
brief performance comparison. Although we published in [1] a more detailed
list of the results obtained with INSS related to this problem.

Table 5.1. Comparison of the generalisation test rate after learning

Method — K-PPV C4.5 ProBIS  INSS
Class |

Alcohol -E 66.56%  65.40% 68.94% 74.50%
ADT - a 55.39%  55.26% 57.63% 60.79%

Barbituriques - B 65.65%  63.32% 64.60% 82.45%
Benzodiazepines-b  62.37%  64.34% 63.95% 83.37%
Carbamates - ¢ 81.58% 87.64% 84.87% 87.28%
Morphine - m 97.23%  97.50% 97.97% 97.88%
Phenothiazines - p  66.45%  71.26% 68.95% 75.36%
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As we can observe from Table 5.1, the INSS system shows a remarkable
performance in this task compared with the other techniques. In some classes
the percentage differences between INSS and other methods are quite small,
but INSS is always near to the best performance obtained. However we have
to remark that in some classes we get relatively poor classification results
for all methods. That is due to the intrinsic complexity of this problem and
the strong overlapping of the different classes : this kind of complexity is a
typical feature of the medical diagnosis.

We also tried to extract rules from the trained ANN. The extracted rules
were presented to one expert of this domain, and he immediately recognised
them as ”valid rules”. He also noted that a great part of the rules had captured
important relations between certain input features and the presence of one
specific toxic substance (e.g., intermediate pupil size, normal eye movement,
low core temperature, and prolonged cardiological QT interval, are factors
that indicate the possible presence of ADT).

This research resulted in the development of an experimental user inter-
face to give access to our system through the WWW (World-Wide-Web). This
program allows the consultation of the INSS system for toxic coma diagnosis.
The user can fill-in a form with the patient’s clinical and biological param-
eters and get back the ANN answer indicating the possible toxic substances
absorbed. Presently, the system answer is based upon an ANN trained with
the 505 cases database. However, this small number of available cases has
proved to be insufficient for a good diagnosis of all toxic substances.

We are currently using the INSS system in two other domains: au-
tonomous robot control and models of human cognitive development (e.g.,
balance scale problem [30, 31]). A description of our preliminary results ob-
tained with these applications can be found in [25].

6. Conclusion

The INSS system presented here offers many advantages compared to the
KBANN gystem by which it was inspired. This system has a better perfor-
mance and allows incremental acquisition/extraction of network knowledge.
Furthermore, it is based upon an incremental learning method already used to
model human cognitive development. This learning method allowed us to de-
velop a system perfectly adapted to the concepts proposed in the framework
of constructive machine learning systems. The system was tested on different
applications (classification tasks, medical diagnosis, autonomous robot con-
trol) obtaining satisfactory results. Actually our main goals are to develop a
deeper study of the real-world applications of INSS, as well as to study the
aspects related to the constructive acquisition of knowledge.

Our future work is the implementation of a complete hybrid machine
learning tool based on ANN allowing diverse input and output forms of knowl-
edge. Figure 6.1 shows the structure of such a system for introduction and
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extraction of different forms of knowledge. In the future with the addition of
interface routines for format conversion, such a system could process other
forms of knowledge transforming it into and from Neural Networks.

Decision Tree
Rules
Production
Rules

Fuzzy Rules

| Rules from other

. Machine Learning tools | . formats

Production Rules

Fuzzy Rules

Fig. 6.1. Generic system for introduction and extraction of knowledge
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