Chapter 12

Batchman

Since training a neural network may require several hours of CPU time, it is advisable
to perform this task as a batch job during low usage times. SNNS offers the program
batchman for this purpose. It is basically an additional interface to the kernel that allows
easy background execution.

12.1 Introduction

This newly implemented batch language is to replace the old snnsbat. Programs which
are written in the old snnsbat language will not be able to run on the newly designed
interpreter. Snnsbat is not supported any longer, but we keep the program for those users
who are comfortable with it and do not want to switch to batchman. The new language
supports all functions which are necessary to train and test neural nets. All non-graphical
features which are offered by the graphical user interface (XGUI) may be accessed with the
help of this language as well.

The new batch language was modeled after languages like AWK, Pascal, Modula2 and C. It
is an advantage to have some knowledge in one of the described languages. The language
will enable the user to get the desired result without investing a lot of time in learning
its syntactical structure. For most operators multiple spellings are possible and variables
don’t have to be declared before they are used. If an error occurs in the written batch
program the user will be informed by a displayed meaningful error message (warning) and
the corresponding line number.

12.1.1 Styling Conventions

Here is a description of the style conventions used:

Input which occurs on a Unix command line or which is part of the batch program will
be displayed in typewriter writing. Such an input should be adopted without any mod-
ification.

236 CHAPTER 12. BATCHMAN

For example:
/Unix> batchman -h

This is an instruction which should be entered in the Unix command line, where /Unix> is
the shell prompt which expects input from the user. Its appearance may change depending
on the Unix-system installed. The instruction batchman -h starts the interpreter with the
-h help option which tells the interpreter to display a help message. Every form of input
has to be confirmed with Enter (Return). Batch programs or part of batch programs will
also be displayed in typewriter writing. Batch programs can be written with a conventional
text editor and saved in a file. Commands can also be entered in the interactive mode
of the interpreter. If a file is used as a source to enter instructions, the name of the file
has to be provided when starting the interpreter. Typewriter writing is also used for wild
cards. Those wild cards have to be replaced by real names.

12.1.2 Calling the Batch Interpreter

The Interpreter can be used in an interactive mode or with the help of a file, containing
the batch program. When using a file no input from the keyboard is necessary. The
interactive mode can be activated by just calling the interpreter:

/Unix> batchman

which produces:

SNNS Batch Interpreter V1.0. Type batchman -h for help.
No input file specified, reading input from stdin.
batchman>

Now the interpreter is ready to accept the user’s instructions, which can be entered with
the help of the keyboard. Once the input is completed the interpreter can be put to work
with Ctrl-D. The interpreter can be aborted with Ctrl-C. The instructions entered are
only invoked after Ctrl-D is pressed.

If the user decides to use a file for input the command line option -f has to be given
together with the name of the interpreter:

/Unix> batchman -f myprog.bat

Once this is completed, the interpreter starts the program contained in the file myprog.bat
and executes its commands.

The standard output is usually the screen but with the command line option -1 the output
can be redirected in a protocol file. The name of the file has to follow the command line
option:

/Unix> batchman -1 logfile

Usually the output is redirected in combination with the reading of the program out of a
file:

12.2. DESCRIPTION OF THE BATCH LANGUAGE 237

/Unix> batchman -f myprog.bat -1 logfile

The order of the command line options is arbitrary. Note, that all output lines of batchman
that are generated automatically (e.g. Information about with pattern file is loaded or
saved) are preceded by the hash sign “#”. This way any produced log file can be processed
directly by all programms that treat “#” as a comment delimiter, e.g. gnuplot.

The other command line options are:

-p: Programs should only be parsed but not executed. This option tells the
interpreter to check the correctness of the program without executing the
instructions contained in the program. Run time errors can not be detected.
Such a run time error could be an invalid SNNS function call.

-q: No messages should be displayed except those caused by the print()-
function.

-s: No warnings should be displayed.

-h: A help message should be displayed which describes the available command
line options.

All following input will be printed without the shell-text.

12.2 Description of the Batch Language

This section explains the general structure of a batch program, the usage of variables of
the different data types and usage of the print function. After this an introduction to
control structures follows.

12.2.1 Structure of a Batch Program

The structure of a batch program is not predetermined. There is no declaration section
for variables in the program. All instructions are specified in the program according to
their execution order. Multiple blanks are allowed between instructions. Even no blanks
between instructions are possible if the semantics are clear. Single instructions in a line
don’t have to be completed by a semicolon. In such a case the end of line character
(Ctrl-D) is separating two different instructions in two lines. Also key words which have
the responsibility of determining the end of a block (endwhile, endif, endfor, until
and else) don’t have to be completed by a semicolon. Multiple semicolons are possible
between two instructions. However if there are more than two instructions in a line the
semicolon is necessary. Comments in the source code of the programs start with a '#’
character. Then the rest of the line will be regarded as a comment.

A comment could have the following appearance:

#This is a comment
a:=4 #This is another comment

238 CHAPTER 12. BATCHMAN

The second line begins with an instruction and ends with a comment.

12.2.2 Data Types and Variables

The batch language is able to recognize the following data types:

e Integer numbers
e Floating point numbers
e Boolean type TRUE’ and ’FALSE’

e Strings

The creation of float numbers is similar to a creation of such numbers in the language
C because they both use the exponential representation. Float numbers would be: 0.42,
3e3, or 0.7E-12. The value of 0.7E-12 would be 0.7 * 10~'? and the value of 3e3 would be
3% 10°

Boolean values are entered as shown above and without any kind of modification.

Strings have to be enclosed by " and can not contain the tabulator character. Strings also
have to contain at least one character and can not be longer than one line. Such strings
could be:

"This is a string"
"This is also a string (0.7E-12)"

The following example would yield an error

"But this
is not a string"

12.2.3 Variables

In order to save values it is possible to use variables in the batch language. A variable is
introduced to the interpreter automatically once it is used for the first time. No previous
declaration is required. Names of variables must start with a letter or an underscore.
Digits, letters or more underscores could follow. Names could be:

a, numl, _test, firstmet, k17_u, Test_buffer_1i

The interpreter distinguishes between lower and upper case letters. The type of a variable
is not known until a value is assigned to it. The variable has the same type as the assigned
value:

a=>5
filename := "first.net"
init_flag := TRUE

12.2. DESCRIPTION OF THE BATCH LANGUAGE 239

NET_ERR = 4.7e+11
a := init_flag

7 ¢ 7

The assignment of variables is done by using ‘=’ or “:=’. The comparison operator is

¢ 7

==’'. The variable ‘a’ belongs to the type integer and changes its type in line 5 to
boolean. Filename belongs to the type string and NET ERR to the type float.

12.2.4 System Variables

System variables are predefined variables that are set by the program and that are read-
only for the user. The following system variables have the same semantics as the displayed
variables in the graphical user interface:

SSE Sum of the squared differences of each output neuron
MSE SSE divided by the number of training patterns

SSEPU | SSE divided by the number of output neurons of the net
CYCLES | Number of the cycles trained so far.

Additionally there are three more system variables:

PAT The number of patterns in the current pattern set
EXIT_CODE | The exit status of an execute call
SIGNAL The integer value of a caught signal during execution

12.2.5 Operators and Expressions

An expression is usually a formula which calculates a value. An expression could be a
complex mathematical formula or just a value. Expressions include:

3

TRUE

3+ 3

17 - 4 *a+ (2 * In 5) / 0.3

The value or the result of an expression can be assigned to a variable. The available
operators and their precedence are given in table 12.1. Higher position in the table means
higher priority of the operator.

If more than one expression occurs in a line the execution of expressions starts at the left
and proceeds towards the right. The order can be changed with parentheses ‘(’ ‘)’

The type of an expression is determined at run time and is set with the operator except
in the case of integer number division, the modulo operation, the boolean operation and
the compare operations.

If two integer values are multilpied, the result will be an integer value. But if an integer
and a float value are multilpied, the result will be a float value. If one operator is of
type string, then all other operators are transformed into strings. Partial expressions are
calculated before the transformation takes place:

240 CHAPTER 12. BATCHMAN

Operator | Function
+,— Sign for numbers
not, ! Logic negation for boolean numbers
sqrt Square root
In Natural logarithm to the basis e
log Logarithms to the basis 10
*x, " Exponential function
* Multiplication
/ Division
div Even number division with an even result
mod, % | Result after an even number division
+ Addition
— Subtraction
< smaller than
<=,=< | smaller equal
> greater than
>=,=> | greater equal
== equal
<>,! = | not equal
and, && | logic AND for boolean values
or, || logic OR for boolean values

Table 12.1: The precedence of the batchman operators

a:=5+"plus " +4+ "is " + (8 + 1)

is transformed to the string:

5 plus 4 is 9

Please note that if the user decides to use operators such as sqrt, In, log or the exponential
operator, no parentheses are required because the operators are not function calls:

Square root: sqrt 9

natural logarithm: 1n 2

logarithm to the base of 10: 1log alpha
Exponential function: 10 ** 4 oder a”b

However parentheses are possible and some times even necessary:

sqrt (9 + 16)
1n (2°16)
log (alpha * sqrt tau)

12.2. DESCRIPTION OF THE BATCH LANGUAGE 241

12.2.6 The Print Function

So far the user is able to generate expressions and to assign a value to a variable. In order
to display values, the print function is used. The print function is a real function call
of the batch interpreter and displays all values on the standard output if no input file is
declared. Otherwise all output is redirected into a file. The print function can be called
with multiple arguments. If the function is called without any arguments a new line will
be produced. All print commands are automatically terminated with a newline.

Instruction: generates the output:

print(5) 5

print (3*4) 12

print("This is a text") This is a text

print ("This is a text and values:",1,2,3) | This is a text and values:123
print ("Or: ",1," ",2," " /3) Or: 1 23

print(ln (2716)) 11.0904

print (FALSE) FALSE

print (25e-2) 0.25

If a variable, which has not been assigned a value yet, is tried to be printed, the print
function will display < > undef instead of a value.

12.2.7 Control Structures

Control structures are a characteristic of a programming language. Such structures make
it possible to repeat one or multiple instructions depending on a condition or a value.
BLOCK has to be replaced by a sequence of instructions. ASSIGNMENT has to be replaced by
an assignment operation and EXPRESSION by an expression. It is also possible to branch
within a program with the help of such control structures:

if EXPRESSION then BLOCK endif

if EXPRESSION then BLOCK else BLOCK endif
for ASSIGNMENT to EXPRESSION do BLOCK endfor
while EXPRESSION do BLOCK endwhile

repeat BLOCK until EXPRESSION

The If Instruction

There are two variants to the if instruction. The first variant is:
If EXPRESSION then BLOCK endif
The block is executed only if the expression has the boolean value TRUE.

EXPRESSIONS can be replaced by any complex expression if it delivers a boolean value:

if sqrt (9)-5<0 and TRUE<>FALSE then print("hello world") endif

242 CHAPTER 12. BATCHMAN

produces:
hello world

Please note that the logic operator ‘and’ is the operator last executed due to its lowest
priority. If there is confusion about the execution order, it is recommended to use brackets
to make sure the desired result will be achieved.

The second variant of the if operator uses a second block which will be executed as an
alternative to the first one. The structure of the second if variant looks like this:

if EXPRESSION then BLOCK1 else BLOCK2 endif

The first BLOCK, here described as BLOCKI1, will be executed only if the resulting
value of EXPRESSION is ‘TRUE’. If EXPRESSION delivers ‘FALSE’, BLOCK2 will be
executed.

The For Instruction

The for instruction is a control structure to repeat a block, a fixed number of times. The
most general appearance is:

for ASSIGNMENT to EXPRESSION do BLOCK endfor

A counter for the for repetitions of the block is needed. This is a variable which counts
the loop iterations. The value is increased by one if an loop iteration is completed. If
the value of the counter is larger then the value of the EXPRESSIONS, the BLOCK won’t
be executed anymore. If the value is already larger at the beginning, the instructions
contained in the block are not executed at all. The counter is a simple variable. A for
instruction could look like this:

for i := 2 to 5 do print (” here we are: ”,i) endfor
produces:

here we are:
here we are:
here we are:

g W N

here we are:

It is possible to control the repetitions of a block by assigning a value to the counter
or by using the continue, break instructions. The instruction break leaves the cycle
immediately while continue increases the counter by one and performs another repetition
of the block. One example could be:

for counter := 1 to 200 do

a := a * counter

c :=c+ 1

if test == TRUE then break endif
endfor

12.3. SNNS FUNCTION CALLS 243

In this example the boolean variable test is used to abort the repetitions of the block early.

While and Repeat Instructions

The while and the repeat instructions differ from a for instruction because they don’t
have a count variable and execute their commands only while a condition is met (while) or
until a condition is met (repeat). The condition is an expression which delivers a boolean
value. The formats of the while and the repeat instructions are:

while EXPRESSION do BLOCK endwhile
repeat BLOCK until EXPRESSION

The user has to make sure that the cycle terminates at one point. This can be achieved
by making sure that the EXPRESSION delivers once the value ‘TRUE’ in case of the
repeat instruction or ‘FALSE’ in case of the while instruction. The for example from
the previous section is equivalent to:

i:=2
while i <= 5 do
print ("here we are: ",i)
i :=1 + 1 endwhile
or to:
i:=2
repeat
print ("here we are: ",i)
i=1i+1

until i > 5

The main difference between repeat and while is that repeat guarantees that the BLOCK
is executed at least once. The break and the continue instructions may also be used
within the BLOCK.

12.3 SNNS Function Calls

The SNNS function calls control the SNNS kernel. They are available as function calls in
batchman. The function calls can be divided into four groups:

e Functions which are setting SNNS parameters :
— setInitFunc()
— setLearnFunc()
— setUpdateFunc()
setPruningFunc()
setRemapFunc()
— setActFunc()
setCascadeParams()

244 CHAPTER 12. BATCHMAN

— setSubPattern()
— setShuffle()

— setSubShuffle()
— setClassDistrib()

e Functions which refer to neural nets :
— loadNet()
— saveNet()
— saveResult()
~ initNet()
— trainNet()
resetNet ()
jogWeights()
— jogCorrWeights()
— testNet()

e Functions which refer to patterns :
loadPattern()
setPattern()
— delPattern()

e Special functions :
pruneNet()
pruneTrainNet()
— pruneNetNow/()
— delCandUnits()
— execute()
— print()
— exit()

setSeed()

The format of such calls is:
function name (parameterl, parameter2...)

No parameters, one parameter, or multiple parameters can be placed after the function
name. Unspecified values take on a default value. Note, however, that if the third value
is to be modified, the first two values have to be provided with the function call as well.
The parameters have the same order as in the graphical user interface.

12.3. SNNS FUNCTION CALLS 245

12.3.1 Function Calls To Set SNNS Parameters

The following functions calls to set SNNS parameters are available:

setInitFunc() Selects the initialization function and its parameters
setLearnFunc () Selects the learning function and its parameters
setUpdateFunc () Selects the update function and its parameters
setPruningFunc () Selects the pruning function and its parameters
setRemapFunc () Selects the pattern remapping function and its parameters
setActFunc () Selects the activation function for a type of unit
setCascadeParams () | Set the additional parameters required for CC
setSubPattern() Defines the subpattern shifting scheme
setShuffle() Change the shuffle modus

setSubShuffle () Change the subpattern shuffle modus
setClassDistrib() | Sets the distribution of patterns in the set

The format and the usage of the function calls will be discussed now. It is an enormous help
to be familiar with the graphical user interface of the SNNS especially with the chapters
“Parameters of the learning functions”, “Update functions”, “Initialization functions”,
“Handling patterns with SNNS”, and “Pruning algorithms”.

setInitFunc

This function call selects the function with which the net is initialized. The format is:
setInitFunc (function name, parameter...)

where function name is the initialization function and has to be selected out of:

ART1_Weights DLVQ_Weights Random_Weights_Perc
ART2_Weights Hebb Randomize_Weights
ARTMAP _Weights Hebb_Fixed_Act RBF_Weights
CC_Weights JE_Weights RBF_Weights_Kohonen
ClippHebb Kohonen_Rand_Pat RBF_Weights_Redo

CPN_Weights_v3.2 Kohonen_Weights_v3.2 RM_Random_Weights
CPN_Weights_v3.3 Kohonen_Const
CPN_Rand_Pat PseudolInv

It has to be provided by the user and the name has to be exactly as printed above. The
function name has to be embraced by "".

After the name of the initialization function is provided the user can enter the parameters
which influence the initialization process. If no parameters have been entered default values
will be selected. The selected parameters have to be of type float or integer. Function
calls could look like this:

setInitFunc ("Randomize Weights")
setInitFunc("Randomize Weights", 1.0, -1.0)

246 CHAPTER 12. BATCHMAN

where the first call selects the Randomize Weights function with default parameters. The
second call uses the Randomize Weights function and sets two parameters. The batch
interpreter displays:

Init function is now Randomize Weights
Parameters are: 1.0 -1.0

setLearnFunc

The function call setLearnFunc is very similar to the setinitFunc call. setLearnFunc
selects the learning function which will be used in the training process of the neural net.
The format is:

setLearnFunc (function name, parameters....)

where function name is the name of the desired learning algorithm. This name is manda-
tory and has to match one of the following strings:

ART1 Counterpropagation Quickprop

ART2 Dynamic_LVQ RadialBasisLearning
ARTMAP Hebbian RBF-DDA
BackPercolation JE_BP RM_delta
BackpropBatch JE_BP_Momentum Rprop

BackpropChunk JE_Quickprop Sim_Ann_SS
BackpropMomentum JE_Rprop Sim_Ann_WTA
BackpropWeightDecay Kohonen Sim_Ann_WWTA

BPTT Monte-Carlo Std_Backpropagation
BBPTT PruningFeedForward TimeDelayBackprop
cC QPTT TACOMA

After the name of the learning algorithm is provided, the user can specify some parameters.
The interpreter is using default values if no parameters are selected. The values have to be
of the type float or integer. A detailed description can be found in the chapter “Parameter
of the learning function”. Function calls could look like this:

setLearnFunc ("Std Backpropagation")
setLearnFunc("Std Backpropagation", 0.1)

The first function call selects the learning algorithm and the second one additionally
provides the first learning parameter. The batch interpreter displays:

Learning function is now: Std backpropagation
Parameters are: 0.1

setUpdateFunc

This function is selecting the order in which the neurons are visited. The format is:

setUpdateFunc (function name, parameters...)

12.3. SNNS FUNCTION CALLS 247

where function name is the name of the update function. The name of the update algorithm
has to be selected as shown below.

Topological_(Order BAM_Order JE_Special
ART1_Stable BPTT_Order Kohonen_QOrder
ART1_Synchronous CC_Order Random_QOrder
ART2_Stable CounterPropagation Random_Permutation
ART2_Synchronous Dynamic_LVQ Serial_Order
ARTMAP_Stable Hopfield_Fixed_Act Synchonous_0Order
ARTMAP_Synchronous Hopfield_Synchronous TimeDelay_QOrder
Auto_Synchronous JE_Order

After the name is provided several parameters can follow. If no parameters are selected,
default values are chosen by the interpreter. The parameters have to be of the type float
or integer. The update functions are described in the chapter Update functions. A
function call could look like this:

setUpdateFunc ("Topological Order")
The batch interpreter displays:

Update function is now Topological_Order

setPruningFunc

This function call is used to select the different pruning algorithms for neural networks.
(See chapter Pruning algorithms). A function call may look like this:

setPruningFunc (function namel, function name2, parameters)
where function namel is the name of the pruning function and has to be selected from:

MagPruning OptimalBrainSurgeon OptimalBrainDamage
Noncontributing_Units Skeletonization

Function name2 is the name of the subordinated learning function and has to be selected
out of:

BackpropBatch Quickprop BackpropWeightDecay
BackpropMomentum Rprop Std_Backpropagation

Additionally the parameters described below can be entered. If no parameters are entered
default values are used by the interpreter. Those values appear in the graphical user
interface in the corresponding widget of the pruning window.

1. Maximum error increase in % (float)
2. Accepted error (float)

3. Recreate last pruned element (boolean)

248 CHAPTER 12. BATCHMAN

4. Learn cycles for first training (integer)
5. Learn cycles for retraining (integer)
Minimum error to stop (float)

Initial value of matrix (float)

Input pruning (boolean)

© oo N O

Hidden pruning (boolean)
Function calls could look like this:

setPruningFunc ("OptimalBrainDamage" ,"Std Backpropagation")
setPruningFunc ("MagPruning", "Rprop", 15.0, 3.5, FALSE, 500, 90,
1le6, 1.0)

In the first function call the pruning function and the subordinate learning function is
selected. In the second function call almost all parameters are specified. Please note that
a function call has to be specified without a carriage return. Long function calls have to
be specified within one line. The following text is displayed by the batch interpreter:

Pruning function is now MagPruning
Subordinate learning function is now Rprop
Parameters are: 15.0 3.5 FALSE 500 90 1.0 1e-6 TRUE TRUE

The regular learning function PruningFeedForward has to be set with the function call
setLearnFunc(). This is not necessary if PruningFeedForward is already set in the
network file.

setRemapFunc

This function call selects the pattern remapping function. The format is:
setRemapFunc (function name, parameter...)
where function name is the pattern remapping function and has to be selected out of:

None Binary Inverse
Norm Threshold

It has to be provided by the user and the name has to be exactly as printed above. The
function name has to be enclosed in "*".

After the name of the pattern remapping function is provided the user can enter the
parameters which influence the remapping process. If no parameters have been entered
default values will be selected. The selected parameters have to be of type float or integer.
Function calls could look like this:

setRemapFunc ("None")
setRemapFunc ("Threshold", 0.5, 0.5, 0.0, 1.0)

12.3. SNNS FUNCTION CALLS 249

where the first call selects the default function None that does not do any remapping. The
second call uses the Threshold function and sets four parameters. The batch interpreter
displays:

Remap function is now Threshold
Parameters are: 0.5 0.5 0.0 1.0

setActFunc
This function call changes the activation function for all units in the network of a specific
type. The format is:

setActFunc (Type, function name)

where function name is the activation function and has to be selected out of the available
unit activation functions:

Act_Logistic Act_Elliott Act_BSB
Act_TanH Act_TanH_Xdiv2 Act_Perceptron
Act_Signum Act_SignumO Act_Softmax
Act_StepFunc Act_HystStep Act_BAM
Logistic_notInhibit Act_MinOutPlusWeight Act_Identity
Act_IdentityPlusBias Act_LogisticTbl Act_RBF_Gaussian
Act_RBF_MultiQuadratic Act_RBF_ThinPlateSpline Act_less_than_0O
Act_at_most_0 Act_at_least_2 Act_at_least_1
Act_exactly_1 Act_Product Act_ART1_NC
Act_ART2_Identity Act_ART2_NormP Act_ART2_NormV
Act_ART2_NormW Act_ART2_NormIP Act_ART2_Rec
Act_ART2_Rst Act_ARTMAP_NCa Act_ARTMAP_NCb
Act_ARTMAP_DRho Act_LogSym Act_CC_Thresh
Act_Sinus Act_Exponential Act_TD_Logistic
Act_TD_Elliott Act_Euclid Act_Component
Act_RM Act_TACOMA

It has to be provided by the user and the name has to be exactly as printed above. The
function name has to be embraced by "".

Type is the type of the units that are to be assigned the new function. It has to be specified
as an integer with the following meaning;:

‘ Type ‘ affected units || Type | affected units

‘ 0 all units in the network 5 special units only
1 input units only 6 special input units only
2 output units only 7 special output units only
3 hidden units only 8 special hidden units only
4 dual units only 9 special dual units only

See section 3.1.1 and section 6.5 of this manual for details about the various unit types.

250 CHAPTER 12. BATCHMAN

setCascadeParams

The function call setCascadeParams defines the additional parameters required for train-
ing a cascade correleation network. The parameters are the same as in the Cascade window
of the graphical user interface. The order is the same as in the window from top to bottom.
The format of the function call is:

setCascadeParams (parameter, ...)
the order and meaning of the parameters are:

e max output unit error (float). Default value is 0.2.

e subordinate learning function (string). Has to be one of: ”Quickprop”, ”BatchBack-
prop”, "Backprop”, or "Rprop”. Default is Quickprop.

e modification (string). Has to be one of: "no”, ?SDCC”, "LFCC”, "RLCC”, ”Static”,
"ECC”, or ”GCC”. Default is no modification.

e print covariance and error (TRUE or FALSE). Default is TRUE.
e cache unit activations (TRUE or FALSE). Default is TRUE.
e prune new hidden unit (TRUE or FALSE). Default is FALSE.

e minimization function (string). Has to be one of: "SBC”, "AIC”, or "CMSEP”.
Default is SBC.

e the additional parameters (5 float values). Default is 0, 0, 0, 0, 0.
e min. covar. change (float). Default value is 0.04.

e cand. patience (int). Default value is 25.

e max number of covar. updates (int). Default value is 200.

e max no of candidate units (int). Default value is 8.

e activation function (string). Has to be one of: ”Act Logistic”, ”Act LogSym”,
7Act_TanH”, or "Act_Random”. Default is Act_LogSym.

e error change (float). Default value is 0.01.
e output patience (int). Default value is 50.

e max no of epochs (int). Default value is 200.

For a detailed description of these parameters see section 10 of the manual. As usual with
batchman, latter parameters may be skipped, if the default values are to be taken. The
function call:

setCascadeParams (0.2, ¢‘Quickprop’’, no, FALSE, TRUE, FALSE, ‘‘SBC’’,
0.0, 0.0, 0.0, 0.0, 0.0, 0.04, 25, 200, 8, ‘‘Act_LogSym’’, 0.01, 50,
200)

will display:

12.3. SNNS FUNCTION CALLS 251

Cascade Correlation
Parameters are: 0.2 Quickprop no FALSE TRUE FALSE SBC 0.0 0.0 0.0
0.0 0.0 0.04 25 200 8 Act_LogSym 0.01 50 200

Note that (like with the graphical user interface in the learning function widgets) in the
batchman call setLearnFunc() CC has to be specified as learning function, while the the
parameters will refer to the subordinate learning function given in this call.

setSubPattern

The function call setSubPattern defines the Subpattern-Shifting-Scheme which is de-
scribed in chapter 5.3. The definition of the Subpattern-Shifting-Scheme has to fit the
used pattern file and the architecture of the net. The format of the function call is:

setSubPattern(InputSize, InputStepl, OutputSizel, OutputStepl)

The first dimension of the subpatterns is described by the first four parameters. The
order of the parameters is identical to the order in the graphical user interface (see
chapter “Sub Pattern Handling”). All four parameters are needed for one dimension. If
a second dimension exists the four parameters of that dimension are given after the four

parameters of the first dimension. This applies to all following dimensions. Function calls
could look like this:

setSubPattern (5, 3, 5, 1)
setSubPattern(5, 3, 5, 1, 5, 3, 5, 1)

A one-dimensional subpattern with the InputSize 5, InputStep 3, OutputSize 5, Output-
Step 1 is defined by the first call. A two-dimensional subpattern as used in the example
network watch net is defined by the second function call. The following text is displayed
by the batch interpreter:

Sub-pattern shifting scheme (re)defined
Parameters are: 53515351

The parameters have to be integers.

setShuffle, setSubShuffle

The function calls setShuffle and setSubShuffle enable the user to work with the
shuffle function of the SNNS which selects the next training pattern at random. The
shuffle function can be switched on or off. The format of the function calls is:

setShuffle (mode)
setSubShuffle (mode)

where the parameter mode is a boolean value. The boolean value TRUE switches the
shuffle function on and the boolean value FALSE switches it off. setShuffe relates to
regular patterns and setSubShuffle relates to subpatterns. The function call:

252 CHAPTER 12. BATCHMAN

setSubShuffle (TRUE)
will display:

Subpattern shuffling enabled

setClassDistrib

The function call setClassDistrib defines the composition of the pattern set used for
training. Without this call, or with the first parameter set to FLASE, the distribution
will not be altered and will match the one in the pattern file. The format of the function
call is:

setClassDistrib(flag, parameters....)

The flag is a boolean value which defines whether the distribution defined by the following
parameters is used (== TRUE), or ignored (== FALSE).

The next parameters give the relative amount of patterns of the various classes to be used
in each epoch or chunk. The ordering asumes an alphanumeric ordering of the class names.
Function calls could look like this:

setClassDistrib(TRUE, 5, 3, 5, 1, 2)

Given class names of “alpha”, “beta”, “gamma”, “delta”, “epsilon”, this would result in
training 5 times the alpha class patterns, 3 times the beta class patterns, 5 times the
delta class patterns, once the epsilon class patterns, and twice the gamma class patterns.
This is due to the alphanumeric ordering of those class names “alpha”, “beta”, “delta”,
“epsilon”, “gamma”.

If the learning function BackpropChunk is selected, this would also recommend a chunk size
of 16. However, the chunk size parameter of BackpropChunk is completely independent
from the values given to this function.

The following text is displayed by the batch interpreter:

Class distribution is now ON
Parameters are: 5 3 5 1 2

The parameters have to be integers.

12.3.2 Function Calls Related To Networks

This section describes the second group of function calls which are related to network or
network files. The second group of SNNS functions contains the following function calls:

12.3. SNNS FUNCTION CALLS 253

loadNet () Load a net

saveNet () Save a net

saveResult () Save a result file

initNet () Initialize a net

trainNet () Train a net

jogWeights () Add random noise to link weights
jogCorrWeights() | Add random noise to link weights
testNet () Test a net

resetNet () Reset unit values

The function calls 1loadNet and saveNet both have the same format:

loadNet (file_name)
saveNet (file_name)

where file_name is a valid Unix file name enclosed in " ". The function loadNet loads
a net in the simulator kernel and saveNet saves a net which is currently located in the
simulator kernel. The function call loadNet sets the system variable CYCLES to zero.
This variable contains the number of training cycles used by the simulator to train a net.
Examples for such calls could be:

loadNet ("encoder.net")
saveNet ("encoder.net")
The following result can be seen:

Net encoder.net loaded
Network file encoder.net written

The function call saveResult saves a SNNS result file and has the following format:
saveResult (filemname, start, end, inclIn, inclOut, file_mode)

The first parameter (file_name) is required. The file name has to be a valid Unix file
name enclosed by " ". All other parameters are optional. Please note that if one specific
parameter is to be entered all other parameters before the entered parameter have to be
provided also. The parameter start selects the first pattern which will be handled and
end selects the last one. If the user wants to handle all patterns the system variable
PAT can be entered here. This system variable contains the number of all patterns. The
parameters inclIn and inclOut decide if the input patterns and the output patterns
should be saved in the result file or not. Those parameters contain boolean values. If
inclIn is TRUE all input patterns will be saved in the result file. If inc1In is FALSE the
patterns will not be saved. The parameter inc10ut is identical except for the fact that it
relates to output patterns. The last parameter file mode of the type string, decides if a
file should be created or if data is just appended to an existing file. The strings ”create”
and "append” are accepted for file mode. A saveResult call could look like this:

254 CHAPTER 12. BATCHMAN

saveResult ("encoder.res")
saveResult ("encoder.res", 1, PAT, FALSE, TRUE, '"create'")

both will produce this:
Result file encoder.res written

In the second case the result file encoder.res was written and contains all output patterns.

The function calls initNet, trainNet, testNet are related to each other. All functions
are called without any parameters:

initNet ()
trainNet ()
testNet ()

initNet () initializes the neural network. After the net has been reset with the function
call setInitFunc, the system variable CYCLE is set to zero. The function call initNet is
necessary if an untrained net is to be trained for the first time or if the user wants to set
a trained net to its untrained state.

initNet ()

produces:
Net initialized

The function call trainNet is training the net exactly one cycle long. After this, the
content of the system variables SSE, MSE, SSEPU and CYCLES is updated.

The function call testNet is used to display the user the error of the trained net, without
actually training it. This call changes the system variables SSE , MSE, SSEPU but leaves
the net and all its weights unchanged.

Please note that the function calls trainNet, jogWeights, and jogCorrWeights are usu-
ally used in combination with a repetition control structure like for, repeat, or while.

Another function call without parameters is
resetNet ()

It is used to bring all unit values to their original settings. This is useful to clean up gigantic
unit activations that sometimes result from large learnign rates. It is also necessary for
some special algorithms, e.g. training of Elman networks, that save a history of the
training in certain unit values. These need to be cleared , e.g. when a new pattern is
loaded.

Note that the weights are not changed by this function!

The function call jogWeights is used to apply random noise to the link weights. This
might be useful, if the network is stuck in a local minimum. The function is called like

jogWeights(minus, plus)

12.3. SNNS FUNCTION CALLS 255

where minus and plus define the maximum random weight change as a factor of the
current link weight. E.g. jogWeights(-0.05, 0.02) will result in new random link
weights within the range of 95% to 102% of the current weight values.

jogCorrWeights is a more sophisticated version of noise injection to link weights. The idea
is only to jog the weights of non-special hidden units which show a very high correlation
during forward propagation of the patterns. The function call

jogCorrWeights(minus, plus, mincorr)

first propagates all patterns of the current set through the network. During propagation,
statistical parameters are collected for each hidden unit with the goal to compute the
correlation coefficient between any two arbitrary hidden units:

o cov(X,Y) Y (X - X) (Y —Y) (12.1)
Yo (G - X (Y - TP

Py € [—1.0,1.0] denotes the correlation coefficient between the hidden units = and y,
while X; and Y; equal the activation of these two units during propagation of pattern 1.
Now the hidden units 2 and y are determined which yield the highest correlation (or anti-
correlation) which is als higher than the parameter mincorr: |p;,| > mincorr. If such
hidden units exist, one of them is chosen randomly and its weights are jogged accoring to
the minus and plus parameters. The computing time for one call to jogCorrWeights() is
about the same as the time consumed by testNet () or half the time used by trainNet ().
Reasonable parameters for mincorr are in the range of [0.8,0.99].

12.3.3 Pattern Function Calls

The following function calls relate to patterns:

loadPattern() | Loads the pattern file
setPattern() Replaces the current pattern file
delPattern() | Deletes the pattern file

The simulator kernel is able to store several pattern files (currently 5). The user can
switch between those pattern files with the help of the setPattern() call. The function
call delPattern deletes a pattern file from the simulator kernel. All three mentioned calls
have file name as an argument:

loadPattern (file_name)
setPattern (file name)
delPattern (file_name)

All three function calls set the value of the system variable Pat to the number of patterns
of the pattern file used last. The handling of the pattern files is similar to the handling of
such files in the graphical user interface. The last loaded pattern file is the current one.
The function call setPattern (similar to the button of the graphical user interface

256 CHAPTER 12. BATCHMAN

of the SNNS.) selects one of the loaded pattern files as the one currently in use. The call
delPattern deletes the pattern file currently in use from the kernel. The function calls:

loadPattern ("encoder.pat")
loadPattern ("encoderl.pat")
setPattern("encoder.pat")
delPattern("encoder.pat")

produce:

Patternset encoder.pat loaded; 1 patternset(s) in memory
Patternset encoderl.pat loaded; 2 patternset(s) in memory
Patternset is now encoder.pat
Patternset encoder.pat deleted; 1 patternset(s) in memory
Patternset is now encoderl.pat

12.3.4 Special Functions

There are seven miscelaneous functions for the use in batchman

pruneNet () Starts network pruning

pruneTrainNet () | Starts network training with pruning

pruneNetNow () Perfom just one network pruning step

delCandUnits() | no longer in use

execute () Executes any unix shell comand or program

exit () Quits batchman

setSeed() Sets a seed for the random number generator
pruneNet

The function call pruneNet () is pruning a net equivalent to the pruning in the graphical
user interface. After all functions and parameters are set with the call setPruningFunc
the pruneNet () function call can be executed. No parameters are necessary.

pruneTrainNet

The function call pruneTrainNet () is equivalent to TrainNet () but is using the subordi-
nate learning function of pruning. Use it when you want to perform a training step during
your pruning algorithm. It has the same parameter syntax as TrainNet ().

pruneNetNow

The function call pruneNetNow () performs one pruning step and then calculates the SSE,
MSE, and SSEPU values of the resulting network.

12.3. SNNS FUNCTION CALLS 257

delCandUnits

This function has no functionality. It is kept for backward compatibility reasons. In earlier
SNNS versions Cascade Correlation candiate-units had to be deleted manually with this
function. Now they are deleted automatically at the end of training.

execute

An interface to the Unix operation system can be created by using the function execute.
This function call enables the user to start a program at the Unix command line and
redirect its output to the batch program. All Unix help programs can be used to make
this special function a very powerful tool. The format is:

execute (instruction, variablel, variable2.....)

where ‘instruction’ is a Unix instruction or a Unix program. All output, generated by the
Unix command has to be separated by blanks and has to be placed in one line. If this is
not done automatically please use the Unix commands AWK or grep to format the output
as needed. Those commands are able to produce such a format. The output generated
by the program will be assigned, according to the order of the output sequences, to the
variables variablel, variable2.. The data type of the generated output is automatically
set to one of the four data types of the batch interpreter. Additionally the exit state of
the Unix program is saved in the system variable EXIT CODE. An example for execute is:

execute ("date'", one, two, three, four)
print ("It is ", four, " o’clock")

This function call calls the command date and reads the output "Fri May 19 16:28:29
GMT 1995" in the four above named variables. The variable ‘four’ contains the time. The
batch interpreter produces:

It is 16:28:29 o’clock

The execute call could also be used to determine the available free disk space:

execute ("df .| grep dev", dmy, dmy, dmy, freeblocks)
print ("There are ", freeblocks, "Blocks free")

In this examples the Unix pipe and the grep command are responsible for reducing the
output and placing it into one line. All lines, that contain dev, are filtered out. The
second line is read by the batch interpreter and all information is assigned to the named
variables. The first three fields are assigned to the variable dmy. The information about
the available blocks will be stored in the variable freeblocks. The following output is
produced:

There are 46102 Blocks free

The examples given above should give the user an idea how to handle the execute com-
mand. It should be pointed out here that execute could as well call another batch
interpreter which could work on partial solutions of the problem. If the user wants to

258 CHAPTER 12. BATCHMAN

accomplish such a task the command line option -q of the batch interpreter could be used
to suppress output not caused by the print command. This would ease the reading of the
output.

exit

This function call leaves the batch program immediately and terminates the batch inter-
preter. The parameter used in this function is the exit state, which will be returned to
the calling program (usually the Unix shell). If no parameter is used the batch interpreter
returns zero. The format is:

exit (state)

The integer state ranges from -128 to +127. If the value is not within this range the
value will be mapped into the valid range and an error message displayed. The following
example will show the user how this function call could be used:

if freeblocks < 1000 then
print ("Not enough disk space")
exit (1)

endif

setSeed

The function setSeed sets a seed value for the random number generator used by the
initialization functions. If setSeed is not called before initializing a network, subsequent
initializiations yield the exact same initial network conditions. Thereby it is possible to
make an exact comparison of two training runs with different learning parameters.

setSeed(seed)

SetSeed may be called with an integer parameter as a seed value. Without a parameter
it uses the value returned by the shell command ‘date’ as seed value.

12.4 Batchman Example Programs

12.4.1 Example 1

A typical program to train a net may look like this:

loadNet ("encoder.net")
loadPattern("encoder.pat")
setInitFunc("Randomize_Weights", 1.0, -1.0)
initNet ()

while SSE > 6.9 and CYCLES < 1000 and SIGNAL == 0 do

12.4. BATCHMAN EXAMPLE PROGRAMS 259

if CYCLES mod 10 == O then
print ("cycles = ", CYCLES, " SSE = ", SSE) endif
trainNet ()
endwhile

saveResult ("encoder.res", 1, PAT, TRUE, TRUE, "create'")
saveNet ("encoder.trained.net")

if SIGNAL != O then
print ("Stopped due to signal reception: signal " + SIGNAL")
endif

print ("Cycles trained: ", CYCLES)
print ("Training stopped at error: ", SSE)

This batch program loads the neural net ‘encoder.net’ and the corresponding pattern file.
Now the net is initialized. A training process continues until the SSE error is smaller
or equal to 6.9, a maximum number of 1000 training cycles was reached, or an external
termination signal was caught (e.g. due to a Ctrl-C). The trained net and the result file
are saved once the training is stopped. The following output is generated by this program:

Net encoder.net loaded

Patternset encoder.pat loaded; 1 patternset(s) in memory
Init function is now Randomize_Weights

Net initialised

cycles = 0 SSE = 3.40282e+38

cycles = 10 SSE = 7.68288
cycles = 20 SSE = 7.08139
cycles = 30 SSE = 6.95443

Result file encoder.res written

Network file encoder.trained.net written
Cycles trained: 40

Training stopped at error: 6.89944

12.4.2 Example 2

The following example program reads the output of the network analyzation program
analyze. The output is transformed into a single line with the help of the program
analyze.gawk. The net is trained until all patterns are classified correctly:

loadNet ("encoder.net")
loadPattern ("encoder.pat")
initNet (O

while (TRUE)
for i := 1 to 500 do
trainNet ()
endfor

260

CHAPTER 12. BATCHMAN

resfile := "test.res"
saveResult (resfile, 1, PAT, FALSE, TRUE, "create")
saveNet("encl.net")

command := "analyze -s -e WTA -i " + resfile + " | analyze.gawk"
execute(command, w, r, u, €)
print("wrong: ",w, " right: ",r, " unknown: ",u, " error: ",e)
if (right == 100) break

endwhile

The following output is generated:

Net encoder.net loaded
Patternset encoder.pat loaded; 1 patternset(s) in memory
—-> Batchman warning at line 3:
Init function and params not specified; using defaults
Net initialised
Result file test.res written
Network file encl.net written
wrong: 87.5 right: 12.5 wunknown: O error: 7
Result file test.res written
Network file encl.net written
wrong: 50 right: 50 unknown: O error: 3
Result file test.res written
Network file encl.net written
wrong: O right: 100 unknown: O error: O

12.4.3 Example 3

The last example program shows how the user can validate the training with a second
pattern file. The net is trained with one training pattern file and the error, which is
used to determine when training should be stopped, is measured on a second pattern file.
Thereby it is possible to estimate if the net is able to classify unknown patterns correctly:

loadNet ("test.net")
loadPattern ("validate.pat")
loadPattern ("training.pat")
initNet ()

repeat
for i := 1 to 20 do
trainNet ()
endfor
saveNet ("test." + CYCLES + "cycles.net")
setPattern ("validate.pat")
testNet ()
valid_error := SSE
setPattern ("training.pat")

12.5. SNNSBAT - THE PREDESSOR 261

until valid_error < 2.5
saveResult ("test.res")

The program trains a net for 20 cycles and saves it under a new name for every iteration
of the repeat instruction. Each time the program tests the net with the validation pattern
set. This process is repeated until the error of the validation set is smaller than 2.5

12.5 Snnsbat — The predessor

This section describes snnsbat, the old way of controling SNNS in batch mode. Please
note that we do encourage everybody to use the new batchman facility and do not support
snnsbat any longer!

12.5.1 The Snnsbat Environment

snnsbat runs very dependably even on unstable system configurations and is secured
against data loss due to system crashes, network failures etc.. On UNIX based systems
the program may be terminated with the command ’kill -15" without loosing the currently
computed network.

The calling syntax of snnsbat is:
snnsbat [< configuration file > [< log file >]]

This call starts snnsbat in the foreground. On UNIX systems the command for back-
ground execution is ‘at’, so that the command line

echo ’snnsbat default.cfg log.file’ | at 22:00
would start the program tonight at 10pm’.

If the optional file names are omitted, snnsbat tries to open the configuration file ‘. /snns-
bat.cfg’ and the protocol file ‘./snnsbat.log’.

12.5.2 Using Snnsbat

The batch mode execution of SNNS is controlled by the configuration file. It contains
entries that define the network and parameters required for program execution. These
entries are tuples (mostly pairs) of a keyword followed by one or more values. There is
only one tuple allowed per line, but lines may be separated by an arbitrary number of
comment lines. Comments start with the number sign '#’. The set of given tuples specify
the actions performed by SNNS in one execution run. An arbitrary number of execution
runs can be defined in one configuration file, by separating the tuple sets with the keyword
"PerformActions:’. Within a tuple set, the tuples may be listed in any order. If a tuple is
listed several times, values that are already read are overwritten. The only exception is

!This construction is necessary since ‘at’ can read only from stdin.

262 CHAPTER 12. BATCHMAN

the key 'Type:’, which has to be listed only once and as the first key. If a key is omitted,
the corresponding value(s) are assigned a default.

Here is a listing of the tuples and their meaning;:

Key Value Meaning

InitFunction: <string> Name of the initialization function.

InitParam: <float> - - - "NoOfInitParam’ parameters for initiali-
zation function, separated by blanks.

LearnParam: <float> - - - "NoOfLearnParam’ parameters for learn-
ing function, separated by blanks.

UpdateParam: <float> --- 'NoOfUpdateParam’ parameters for the
update function, separated by blanks.

LearnPatternFile: <string> Filename of the learning patterns.

MaxErrorToStop: <float> Network error when learning is to be
halted.

MaxLearnCycles: <int> Maximum number of learning cycles to
be executed.

NetworkFile: <string> Filename of the net to be trained.

NoOfInitParam: <int> Number of parameters for the initializa-
tion function.

NoOfLearnParam: <int> No of parameters for learning function.

NoOfUpdateParam: <int> No of parameters for update function.

NoOfVarDim: <int> <int> Number of variable dimensions of the in-
put and output patterns.

PerformActions: none Execution run separator.

PruningMaxRetrainCycles: <int> maximum no. of cycles per retraining

PruningMaxErrorIncrease: <float> Percentage to be added to the first net

error. The resulting value cannot be ex-
ceeded by the net error, unless it is lower
than the accepted error

PruningAcceptedError: <float> Maximum accepted error.

PruningRecreate: [YES | NO | Flag for reestablishing the last state of
the net at the end of pruning

PruningOBSInitParam: <float> initial value for OBS

PruningInputPruning: [YES | NO] Flag for input unit pruning

PruningHiddenPruning: [YES | NO] Flag for hidden unit pruning

ResultFile: <string> Filename of the result file.

ResultIncludelnput: [YES | NO | Flag for inclusion of input patterns in the
result file.

ResultIncludeOutput: [YES | NO] Flag for inclusion of output learning pat-
terns in the result file.

SubPatternOSize: <int> --- NoOfVarDim(2] int values that specify

the shape of the sub patterns of each out-
put pattern.

12.5. SNNSBAT - THE PREDESSOR 263

| Key Value Meaning

SubPatternOStep: <int> --- NoOfVarDim|[2] int values that specify the
shifting steps for the sub patterns of each
output pattern.

TestPatternFile: <string> Filename of the test patterns.

TrainedNetworkFile: <string> Filename where the net should be stored
after training / initialization.

Type: <string> The type of grammar that corresponds to

this file. Valid types are:
"'SNNSBATCH_1": performs only one exe-
cution run.
"'SNNSBATCH 2': performs multiple exe-
cution runs.

ResultMinMaxPattern: <int> <int> Number of the first and last pattern to be
used for result file generation.

Shuffle: [YES | NO | Flag for pattern shuffling.

ShuffleSubPat: [YES | NO | Flag for subpattern shuffling.

SubPatternlSize: <int> --- NoOfVarDim|[1] int values that specify the
shape of the sub patterns of each input
pattern.

SubPatternlStep: <int> --- NoOfVarDim[1] int values that specify the

shifting steps for the sub patterns of each
input pattern.

Please note the mandatory colon after each key and the upper case of several letters.

snnsbat may also be used to perform only parts of a regular network training run. If the
network is not to be initialized, training is not to be performed, or no result file is to be
computed, the corresponding entries in the configuration file can be omitted.

For all keywords the string '<OLD>’ is also a valid value. If <OLD> is specified, the value
of the previous execution run is kept. For the keys 'NetworkFile:’ and ’'LearnPatternFile:’
this means, that the corresponding files are not read in again. The network (patterns)
already in memory are used instead, thereby saving considerable execution time. This
allows for a continuous logging of network performance. The user may, for example, load
a network and pattern file, train the network for 100 cycles, create a result file, train
another 100 cycles, create a second result file, and so forth. Since the error made by the
current network in classifying the patterns is reported in the result file, the series of result
files document the improvement of the network performance.

The following table shows the behavior of the program caused by omitted entries:

264

CHAPTER 12. BATCHMAN

missing key

resulting behavior

InitFunction:
InitParam:
LearnParam:
UpdateParam:
LearnPatternFile:

MaxErrorToStop:
MaxLearnCycles:

MaxErrorToStop:
MaxLearnCycles:

NetworkFile:
NoOfInitParam:

NoOfLearnParam:

NoOfUpdateParam:
NoOfVarDim:
PerformActions:

ResultFile:
ResultIncludelnput:
ResultIncludeOutput:

ResultMinMaxPattern:

Shuffle:
ShuffleSubPat:
SubPatternISize:
SubPatternlStep:
SubPatternOSize:
SubPatternOStep:

TestPatternFile:

TrainedNetworkFile:

Type:

The net is not initialized.

Init function gets only zero values as parameters.
Learning function gets only zero values as parameters.
Update function gets only zero values as parameters.
Abort with error message if more than 0 learning cy-
cles are specified. Initialization can be performed if
init function does not require patterns.

Training runs for '"MaxLearnCycles:’ cycles.

No training takes place. If training is supposed to run
until MaxFErrorToStop, a rather huge number should
be supplied here. (skipping this entry would inhibit
training completely).

Training runs for '"MaxLearnCycles:’ cycles.

No training takes place. If training is supposed to run
until MaxErrorToStop, a rather huge number should
be supplied here. (skipping this entry would inhibit
training completely).

Abort with error message.

No parameters are assigned to the initialization func-
tion. Error message from the SNNS kernel possible.
No parameters are assigned to the learning function.
Error message from the SNNS kernel possible.

No parameters are assigned to the update function.
Network can not handle variable pattern sizes.

Only one execution run is performed. Repeated key-
words lead to deletion of older values.

No result file is generated.

The result file does NOT contain input Patterns.
The result file DOES contain learn output Patterns.
All patterns are propagated.

Patterns are not shuffled.

Subpatterns are not shuffled.

Abort with error message if ‘NoOfVarDim:’
specified.

Result file generation uses the learning patterns. If
they are not specified either, the program is aborted
with an error message when trying to generate a result
file.

Network is not saved after training / initialization. It
is used for result file generation.

Abort with error message.

was

12.5. SNNSBAT - THE PREDESSOR 265

Here is a typical example of a configuration file:

#
Type: SNNSBATCH_2

If a key is given twice, the second appearance is taken.

Keys that are not required for a special run may be omitted.
If a key is omitted but required, a default value is assumed.
The lines may be separated with comments.

Please note the mandatory file type specification at the beginning and
the colon following the key.

H oH B O H O O B R

FHHABRRHER AR H R AR AR H AR ERHR BRI R R AR BB AR RRRR AR R R R AR
NetworkFile: /home/SNNSv\currver/examples/letters.net

#

InitFunction: Randomize_Weights

NoOfInitParam: 2

InitParam: -1.0 1.0

#

LearnPatternFile: /home/SNNSv\currver/examples/letters.pat
NoOfVarDim: 2 1

SubPatternISize: 5 5

SubPattern0Size: 26

SubPatternIStep: 5 1

SubPatternOStep: 1

NoOfLearnParam: 2

LearnParam: 0.8 0.3

MaxLearnCycles: 100

MaxErrorToStop: 1

Shuffle: YES

#

TrainedNetworkFile: trained_letters.net

ResultFile: lettersl.res

ResultMinMaxPattern: 1 26

ResultIncludelInput: NO

ResultIncludeQutput: YES

#

#This execution run loads a network and pattern file with variable
#pattern format, initializes the network, trains it for 100 cycles
#(or stops, if then error is less than 0.01), and finally computes
#the result file lettersl.

PerformActions:

#

NetworkFile: <QOLD>
#

LearnPatternFile: <Q0LD>
NoOfLearnParam: <OLD>
LearnParam: <0OLD>
MaxLearnCycles: 100
MaxErrorToStop: 1

Shuffle: YES

#

ResultFile: letters2.res
ResultMinMaxPattern: <0OLD>
ResultIncludeInput: <OLD>
ResultIncludeQutput: <OLD>

266 CHAPTER 12. BATCHMAN

#
#This execution run continues the training of the already loaded file
#for another 100 cycles before creating a second result file.

#

PerformActions:

#

NetworkFile: <OLD>
#

LearnPatternFile: <OLD>

NoOfLearnParam: <OLD>

LearnParam: 0.2 0.3

MaxLearnCycles: 100

MaxErrorToStop: 0.01

Shuffle: YES

#

ResultFile: letters3.res

ResultMinMaxPattern: <0OLD>

ResultIncludeInput: <OLD>

ResultIncludeOutput: <OLD>

TrainedNetworkFile: trained_letters.net

#

#This execution run concludes the training of the already loaded file.
#After another 100 cycles of training with changed learning
#parameters the final network is saved to a file and a third result
#file is created.

#

The file <log_file> collects the SNNS kernel messages and contains statistics about running
time and speed of the program.

If the <log_file> command line parameter is omitted, snnsbat opens the file ‘snnsbat.log’
in the current directory. To limit the size of this file, a maximum of 100 learning cycles
are logged. This means, that for 1000 learning cycles a message will be written to the file
every 10 cycles.

If the time required for network training exceeds 30 minutes of CPU time, the network is
saved. The log file then shows the message:

Temporary network file ’SNNS_Aaaa00457°’ created. ###i##

Temporay networks always start with the string ‘SNNS_’. After 30 more minutes of CPU
time, snnsbat creates a second security copy. Upon normal termination of the program,
these copies are deleted from the current directory. The log file then shows the message:

Temporary network file ’SNNS_Aaaa00457°’ removed.

In an emergency (powerdown, kill, alarm, etc.), the current network is saved by the pro-
gram. The log file, resp. the mailbox, will later show an entry like:

Signal 15 caught, SNNS V4.2Batchlearning terminated.

SNNS V4.2Batchlearning terminated at Tue Mar 23 08:49:04 1995
System: Sun0S Node: matisse Machine: sunédm

12.5. SNNSBAT - THE PREDESSOR 267

Networkfile ’./SNNS_BAAa02686° saved.
Logfile ’snnsbat.log’ written.

12.5.3 Calling Snnsbat

snnsbat may be called interactively or in batch mode. It was designed, however, to be
called in batch mode. On Unix machines, the command ‘at’ should be used, to allow
logging the program with the mailbox. However, ‘at’ can only read from standard input,
so a combination of ‘echo’ and ‘pipe’ has to be used.

Three short examples for Unix are given here, to clarify the calls:
unix>echo ’snnsbat mybatch.cfg mybatch.log’ | at 21:00 Friday

starts snnsbat next Friday at 9pm with the parameters given in mybatch.cfg and writes
the output to the file mybatch.log in the current directory.

unix>echo ’snnsbat SNNSconfigl.cfg SNNSlogl.log’ | at 22
starts snnsbat today at 10pm
unix>echo ’snnsbat’ | at now + 2 hours

starts snnsbat in 2 hours and uses the default files snnsbat.cfg and snnsbat.log

The executable is located in the directory ‘.../SNNSv4.2/tools/<machine_type>/’.
The sources of snnsbat can be found in the directory ‘.../SNNSv4.2/tools/sources/’.
An example configuration file was placed in ‘.../SNNSv4.2/examples’.

