Units and Related Mysteries

In Chapter 3, you learned how to write standard Pascal programs. What
about non-standard programming—more specifically, PC-style program-
ming, with screen control, DOS calls, and graphics? To write such
programs, you have to understand units or understand the PC hardware
enough to do the work yourself. This chapter explains what a unit is, how
you use it, what predefined units are available, how to go about writing
your own units, and how to compile them.

What's a Unit, Anyway?

Turbo Pascal gives you access to a large number of predefined constants,
data types, variables, procedures, and functions. Some are specific to Turbo
Pascal; others are specific to the IBM PC (and compatibles) or to MS-DOS.
There are dozens of them, but you seldom use them all in a given program.
Because of this, they are split into related groups called unifs. You can then
use only the units your program needs. _

A unit is a collection of constants, data types, variables, procedures, and
functions. Each unit is almost like a separate Pascal program: It can have a
main body that is called before your program starts and does whatever
initialization is necessary. In short, a unit is a library of declarations you
can pull into your program that allow your program to be split up and
separately compiled. '

Chapter 4, Units and Related Mysterias 61

All the declarations within a unit are usually related to one another. For
example, the Crf unit contains all the declarations for screen-oriented
routines on your PC.

Turbo Pascal provides seven standard units for your use. Five of
them—System, Graph, Dos, Crt, and Printer—provide support for your
regular Turbo Pascal programs. The other two—Turbo3 and Graph3 are
designed to help maintain compatibility with programs and data files
created under version 3.0 of Turbo Pascal. All seven are stored in the file
TURBQ.TPL. Some of these are explained more fully in Chapter 5, but we’ll
look at each one here and explain its general function.

A Unit’s Structure

A unit provides a set of capabilities through procedures and functions—
with supporting constants, data types, and variables—but it hides how
those capabilities are actually implemented by separating the unit into two
sections: the interface and the implementation. When a program uses a unit,
all the unit's declarations become available, as if they had been defined
within the program itself.

A unit’s structure is not unlike that of a program, but with some significant
differences. Here’s a unit, for example:

unit <identifier>;

interface

vses <list of unitsd; { Optional }
{ public declarations }

implementation
| private declarations |
{ procedures and functions }

bagin
[initialization code }
end,

The unit header starts with the reserved word unit, followed by the unit’s
name (an identifier), exactly like a program has a name. The next item in a
unit is the keyword interface. This signals the start of the interface section
of the unit—the section visible to any other units or programs that use this
unit.

A unit can use other units by specifying them in a uses clause. If present,
the uses clause appears immediately after the keyword interface. Note that
the general rule of a uses clause still applies: If a unit named in a uses

62 Turbo Pascal Owner’s Handbook

clause employs other units, those units must be named in the uses clause,
and their names must appear in the list before the unit using them.

Interface Section

The interface portion—the “public” part—of a unit starts at the reserved
word interface, which appears after the unit header and ends when the
reserved word implementation is encountered. The interface determines
what is “visible” to any program (or other unit) using that unit; any
program using the unit has access to these “visible” items.

In the unit interface, you can declare constants, data types, variables,
procedures, and functions. As with a program, these can be arranged in
any order, and sections can repeat themselves (for example, type ... var ...
<procs> ... const ... type ... const ... var).

The procedures and functions visible to any program using the unit are
declared here, but their actual bodies—implementations—are found in the
implementation section. If the procedure (or function) is external, the
keyword external should appear in the interface, and a second declaration
of the procedure need not occur in the implementation. If the procedure (or
function} is an inline directive, the machine code (list of integer constants)
will appear in the interface section, and another declaration of the
procedure cannot occur in the implementation. forward declarations are
neither necessary nor allowed. The bodies of all the regular procedures and
functions are held in the implementation section after all the procedure and
function headers have been listed in the interface section.

Implementation Section

The implementation section—the “private” part—starts at the reserved
word implementation. Everything declared in the interface portion is
visible in the implementation: constants, types, variables, procedures, and
functions. Furthermore, the implementation can have additional
declarations of its own, although these are not visible to any programs
using the unit. The program doesn’t know they exist and can’t reference or
call them. However, these hidden items can be (and usually are) used by
the “visible” procedures and functions—those routines whose headers
appear in the interface section.

If any procedures have been declared external, one or more ($L filename)
directive(s) should appear anywhere in the source file. If there is no
initialization section, then the {$L filename) directive can be anywhere before

Chapter 4, Unlts and Related Mysterles 63

the final end of the unit. The $L directive lets you link in assembly language
object modules that resolve the external procedures.

The normal procedures and functions declared in the interface—those that
are not inline—must reappear in the implementation. The
procedure/function header that appears in the implementation should
either be identical to that which appears in the interface or should be in the
short form. For the short form, type in the keyword (procedure or
function), followed by the routine’s name (identifier). The routine will then
contain all its local declarations (labels, constants, types, variables, and
nested procedures and functions), followed by the main body of the routine
itself. Say the following declarations appear in the interface of your unit:

procedure ISwap(var V1,V2 : integer);
function IMax(V1,V2 : integer} : integer;

The implementation could look like this:

procedure ISwap;
var

Temp : integer;
begin

Temp := V1; V1 := ¥2; V2 := Temp
end; { of proc Swap |}

function IMax(V1,V2 : integer) : integer;

begin
if vl > V2
thea IMax := V1

alse IMax := V2
and; { of func Max |}

Routines local to the implementation (that is, not declared in the interface
section) must have their complete procedure/function header intact.

Initialization Section

The entire implementation portion of the unit is normally bracketed within
the reserved words implementation and end. However, if you put the
reserved word begin before end, with statements between the two, the
resulting compound statement—looking very much like the main body of a
program—becomes the initialization section of the unit.

The initialization section is where you initialize any data structures
{variables) that the unit uses or makes available (through the interface} to
the program using it. You can use it to open files for the program to use
later. For example, the standard unit Printer uses its initialization section to

64 ‘ Turbo Pascal Owner’s Handbook

make all the calls to open {for output) the text file Lst, which you can then
use in your program'’s Wrife and Wrifeln statements.

When a program using that unit is executed, the unit’s initialization section
is called before the program’s main body is run. If the program uses more
than one unit, each unit’s initialization section is called (in the order
specified in the program’s uses statement) before the program’s main body
is executed.

How Are Units Used?

The units your program uses have already been compiled, stored as
machine code not Pascal source code; they are not Include files. Even the
interface section is stored in the special binary symbol table format that
Turbo Pascal uses. Furthermore, certain standard units are stored in a
special file (TURBO.TPL) and are automatically loaded into memory along
with Turbo Pascal itself.

As a result, using a unit or several units adds very little time (typically less
than a second) to the length of your program’s compilation. If the units are
being loaded in from a separate disk file, a few additional seconds may be
required because of the time it takes to read from the disk.

As stated earlier, to use a specific unit or collection of units, you must place
a uses clause at the start of your program, followed by a list of the unit
names you want to use, separated by commas:

program MyProg;
usas thisUnit,thatUnit,theQtherUnit;

When the compiler sees this uses clause, it adds the interface information in
each unit to the symbol table and links the machine code that is the
implementation to the program itself.

The units are added to the symbol table in the order given; this ordering
can be important when one unit uses another unit. For example, if thisUnit
used thatlinit, the uses clause would be

uses thatUnit,thisUnit,thedtherlnit;

or
uses thatUnit,theOtherUait,thislnit;

In short, a unit must be listed after any units it uses.

Chapter 4, Units and Related Mysteriss 65

If you don't put a uses clause in your program, Turbo Pascal links in the
System standard unit anyway. This unit provides some of the standard
Pascal routines as well as a number of Turbo Pascal-specific routines.

Referencing Unit Declarations

Once you include a unit in your program, all the constants, data types,
variables, procedures, and functions declared in that unit’s interface
become available to you. For example, suppose the following unit existed:

unit Mystuff;
interface
const
MyValue = 915;
typs
MyStars = (Deneb,Antares,Betelqeuse};
var

MyWord : stringl20];

procedure SetMyWord(Star : MyStars);
function TheAnswer i integer;

What you sce here is the unit’s interface, the portion that is visible to (and
used by) your program. Given this, you might write the following

program:

program TestStuff;
uses MyStuff;

VaI
I : integer;
AStar : MyStars;
begin

Writeln{MyValue};
AStar ;= Deneb;
SetMyWord (AStar) ;
Writeln (MyWord);
I := TheAnswer;
Writeln(I)

and,

Now that you have included the statement uses MyStuff in your program,
you can refer to all the identifiers declared in the interface section in the
interface of MyStuff (MyWord, MyValue, and so on). However, consider the
following situation:

program TestStuff;

uses MyStuff;

const
MyValue = 22;

&6 Turbo Pascal Owner’s Handbook

var
1 : integer;
AStar . MyStars;

function TheAnswer : integer;

bagin
TheAnswer := -1
and;
begin
Writeln{MyValue);

AStar := Deneb;
SetMyWord{AStar);
Writeln{MyWord);
I := TheAnswer;
Writeln(I)

and,

This program redefines some of the identifiers declared in MyStuff. It will
compile and run, but will use its own definitions for MyValue and The-
Answer, since those were declared more recently than the ones in MyStuff.

You're probably wondering whether there’s some way in this situation to
still refer to the identifiers in MyStuff? Yes, preface each one with the

identifier MyStuff and a period (.). For example, here’s yet another version
of the earlier program:

program TestStuff;
uses MyStuff;

const

MyValue = 22;
var

I ! Integer;

AStar ; MyStars;

function TheAnswer : integer;
beglin

TheAnswer := -1;
end;

begin
Writeln(MyStuff.MyValue);
AStar := Deneb;
SetMyWord (AStar);
Writeln (MyWord);
T = MyStuff,TheAnswer
Writeln{I)

and.

This program will give you the same answers as the first one, even though
you've redefined MyValue and TheAnswer. Indeed, it would have been

perfectly legal (although rather wordy) to write the first program as
follows:

Chapter 4, Unifs and Related Mysterles 67

program TestStuff;
uses MyStuff;

var

I : integer;

AStar : MyStuff._MyStars;
bagin

Writeln (MyStuff.MyValue);
AStar := MyStuff.Deneb;
MyStuff.SelMyWord{AStar);
Writeln (MyStuff.MyWord);
I := MyStuff.TheAnswer;
Writeln{I)

and,

Note that you can preface any identifier—constant, data type, variable, or
subprogram-—with the unit name.

TURBO.TPL

The file TURBQO.TPL contains the standard units: System, Crt, Dos, Printer,
Graph, Turbo3, and Graph3. These are the units loaded into memory with
Turbo Pascal; they're always readily available to you. You will normally
keep the file TURBQ.TPL in the same directory as TURBO.EXE (or
TPC.EXE). However, you can keep it somewhere else, as long as that
“somewhere else” is defined as the Turbo directory. That's done using
TINST.EXE to install the Turbo directory directly in the TURBO.EXE file.

System Units used: none
System contains all the standard and built-in procedures and functions of
Turbo Pascal. Every Turbo Pascal routine that is not part of standard Pascal
and that is not in one of the other units is in Sysfem. This unit is always
linked into every program.

68 Turbo Pascal Owner’s Handbook

Dos Units used: none

Deos defines numerous Pascal procedures and functions that are equivalent
to the most commonly used DOS calls, such as GetTime, SetTime, DiskSize,
and so on. It also defines two low-level routines, MsDos and Infr, which
allow you to directly invoke any MS-DOS call or system interrupt. Registers
is the data type for the parameter to MsDos and Infr. Some other constants
and data types are also defined.

Crt Units used: none

Crt provides a set of PC-specific declarations for input and output:
constants, variables, and routines. You can use these to manipulate your
text screen (do windowing, direct cursor addressing, text color and
background). You can also do “raw” input from the keyboard and control
the PC’s sound chip. This unit provides a lot of routines that were standard
in version 3.0.

Printer Units used: Crt

Printer declares the text-file variable Lst and connects it to a device driver
that (you guessed it) allows you to send standard Pascal output to the
printer using Write and Writeln. For example, once you include Prinfer in
your program, you could do the following:

Write(Lst,’The sum of *,A:4,’ and ', B:4, i{s ?);

C:=A+0;
Writeln{Lst,C:8};

Graph Units used: Crt

Graph supplies a set of fast, powerful graphics routines that allow you to
make full use of the graphics capabilities of your PC. It implements the
device-independent Borland graphics handler, allowing support of CGA,
EGA, Hercules, AT &T 400, MCGA, 3270 PC, and VGA graphics.

Chapter 4. Units and Related Mysterles &9

Graph3 Units used: Crit

Graph3 supports the full set of graphics routines—basic, advanced, and
turtlegraphics—from version 3.0. They are identical in name, parameiers,
and function to those in version 3.0.

Turbo3 Units used: Crt

This unit contains two variables and several procedures that are no longer
supported by Turbo Pascal. These include the predefined file variable Kbd,
the Boolean variable CBreak, and the original integer versions of MemAvail
and MaxAvail (which return paragraphs free instead of bytes free, as do the
current versions).

Writing Your Own Units

Say you've written a unit called IntLib, stored it in a file called INTLIB.PAS,
and compiled it to disk; the resulting code file will be called INTLIB.TPU.
To use it in your program, you must include a uses statement to tell the
compiler you're using that unit. Your program might look like this:

program MyProg;
uses IntLib;

Note that Turbo Pascal expects the unit code file to have the same name (up
to eight characters) of the unit itself. If your unit name is MyUtilities, then
Turbo is going to look for a file called MYUTILIT.PAS. You can override
that assumption with the $U compiler directive. This directive is passed the
name of the .PAS file and must appear just before the unit’s name in the
uses statement. For example, if your program uses Dos, Crt, and
Muylltilities, and the last one is stored in a file called UTIL.PAS, then you
would write

uses Dos, Crt, {SU UTIL.PAS} MyUtilities;

Compiling a Unit

You compile a unit exactly like you'd compile a program: Write it using
the editor and select the Compile/Compile command (or press Alt-C).
However, instead of creating an .EXE file, Turbo Pascal will create a .TPU

70 Turbo Pascal Owner’s Handbook

{Turbo Pascal Unit) file. You can then leave this file as is or merge it into
TURBO.TPL using TPUMOVER.EXE (see Chapter 7).

In any case, you probably want to move your .TPU files (along with their
source) to the unit directory you specified with the O/D/Unit directories
command. That way, you can reference those files without having to give a
{$U1} directive (The Unit directories command lets you give multiple
directories for the compiler to search for in unit files.)

You can only have one unit in a given source file; compilation stops when
the final end. statement is encountered.

An Example

Okay, now let’s write a small unit. We'll call it IntLib and put in two simple
integer routines—a procedure and a function:

unit IntLib;
interface
procedura ISwap(var I,J ; integer);
funotion IMax(I,J : integer) : integer;
implemantation

procedure ISwap;
var
Temp : lnteger;

bagin
Temp 3= I; I := J; J := Temp
and; { of proc ISwap |

function IMax;
begia
ifI>3
then IMax := I
else IMax := J
end; [of func IMax }

W

end. { of unit IntiLib }

Type this in, save it as the file INTLIB.PAS, then compile it to disk. The
resulting unit code file is INTLIB.TPU. Move it to your unit directory
(whatever that might happen to be).

This next program uses the unit IntLib:

program IntTest;
uses IntLib;

vax

Chapter 4, Units andl Related Mysterles 71

AB ! integer;
bagin
Write(’Enter two integer values: ');
ReadlniA,B);
ISwap{(A,B};
Writeln("A = ',A," B = ",B);
Writeln(’The max is f,IMax{A,B});
eaad. [of program IntTest |

Congratulations! You've just created your first unit!

Units and Large Programs

Up until now, you’ve probably thought of units only as
libraries—collections of useful routines to be shared by several programs.
Another function of a unit, however, is to break up a large program into
modules.

Two aspects of Turbo Pascal make this modular functionality of units work:
(1) its tremendous speed in compiling and linking and (2) its ability to
manage several code files simultaneously, such as a program and several
units.

Typically, a large program is divided into units that group procedures by
their function. For instance, an editor application could be divided into
initialization, printing, reading and writing files, formatting, and so on.
Also, there could be a “global” unit—one used by all other units, as well as
the main program—that defines global constants, data types, variables,
procedures, and functions.

The skeleton of a large program might look like this:
prograa Editor;

nses
Dos,Crt,Printer { Standard urits from TURBO.TPL)}
EditGlobals, { User-written units }
EditInit,
EditPrint,
EditRead,EditRrite,
EditFormat;

{ program’s declarations, procedures, and functions }

begin { main program }
snd. [of program Editor |

72 Turbo Pascal Owner’s Handbook

Note that the units in this program could either be in TURBO.TPL or in
their own individual .TPU files. If the latter is true, then Turbo Pascal will
manage your project for you. This means when you recompile the program
Editor, Turbo Pascal will check the last update for each of the .TPU files
and recompile them if necessary.

Another reason to use units in large programs has to do with code segment
limitations. The 8086 (and related) processors limit the size of a given
chunk, or segment, of code to 64K. This means that the main program and
any given segment cannot exceed a 64K size. Turbo Pascal handles this by
making each unit a separate code segment. Your upper limit is the amount
of memory the machine and operating system can support—640K on most
PCs. Without units, you're limited to 64K of code for your program. (See
Chapter 6, “Project Management,” for more information about how to deal
with large programs.)

TPUMOVER

You don’t have to use a ($U <filename>) directive when using the standard
runtime units (System, Dos, and so on). That’s because all those units have
been moved into the Turbo Pascal unit file (TURBO.TPL). When you
compile, those units are always ready to be used when you want them.

Suppose you want to add a well-designed and thoroughly debugged unit
to the standard units so that it's automatically loaded into memory when
you run the compiler. Is there any way to move it into the Turbo Pascal
standard unit library file? Yes, by using the TP'UMOVER.EXE utility.

You can also use TPUMOVER to remove units from the Turbo Pascal
standard unit library file, reducing its size and the amount of memory it
takes up when loaded. (More details on using TPUMOVER can be found in
Chapter 7.)

As you've seen, it’s really quite simple to write your own units. A well-
designed, well-implemented unit simplifies program development; you
solve the problems only once, not for each new program. Best of all, a unit
provides a clean, simple mechanism for writing very large programs.

Chapter 4, Units and Related Mysteries 73

