Universidade do Vale do Rio dos Sinos

Virtual Reality Tools

OSG - Open Scene Graph ODE - Open Dynamics Engine

M.Sc. Milton Roberto Heinen - Unisinos / UFRGS E-mail: miheinen@gmail.com

Dr. Fernando S. Osório - Unisinos E-mail: fosorio@unisinos.br

Artificial Intelligence Group - GIA

Open Scene Graph - OSG

http://www.openscenegraph.org/

- OSG: Open and Free Software
 Object Oriented (C++) Software Library (API)
- The OSG Library is an abstraction layer over the OpenGL, allowing to easily create complex visual scenes
- With OSG you do not need to use other APIs like MFC, GTK or Glut (windows and device libs)
- With OSG you can read/show several 3D file formats as for example VRML, OBJ, DirectX (.X), OSG using textures, lights, particles and other visual effects
- OSG works in Windows and Linux Environments creating portable graphical applications

PIPCA

Open Scene Graph - OSG

Concluding...

- OSG is a very powerful, fast and simple API used to create Games and VR applications
- <u>Simple</u>: few commands used to load, visualize and compose 3D scenes
- <u>Limited</u>: OSG can only visualize scenes.
 User needs to define object movements and animations.
 Even the *collision detection/reaction* usually should be carefully programmed by the user!

http://www.openscenegraph.org/

PIPCA

Simulation in VR

- Perception
- Action
- Kinematics
- Dynamic
- Collision

PIPCA

Programa de Pós-Graduação em Computação Aplicada Grupo de Inteligência Artificial - GIA

Virtual Reality Tools U UNISINOS OSG (Open Scene Graph) + ODE (Open Dynamics Engine) Simulation in VR Elements: Perception ⇒ Action Kinematics Dynamics Realistic simulation: virtual must behave ⇒ Physics Laws should be respected... specially kinematics and dynamics (rigid body) Considering: Gravity, Acceleration, Inertia, Collision, Energy Conservation, Friction, etc. Programa de Pós-Graduação em Computação Aplicada **PIPCA** Grupo de Inteligência Artificial - GIA

Open Dynamics Engine - ODE

[www.ode.org]

- ODE is a physically based simulation tool Open source and free - C/C++ compatible
- API written in C (procedural)
- Simulation of physics laws:
 - Gravity, acceleration, friction, collision user can apply forces and torques to bodies
- Collision treatment:
 - Collision: objects x ground
 - Friction, bounce and rigid body kinematics
- Different joints (connections between objects) and Different actuators (vector of forces applied to objects)

PIPCA

Programa de Pós-Graduação em Computação Aplicada Grupo de Inteligência Artificial - GIA

Virtual Reality Tools
OSG (Open Scene Graph) + ODE (Open Dynamics Engine)

Open Dynamics Engine - ODE

- Supported Objects:
 - Cubes, spheres, cylinders, capped cylinders and composed objects (linked w/joints)
- Complex objects can be used... but the collision detection complexity will increase!
- ODE computational complexity: $O(n^2)$, where n is the number of objects
- Simulation loop: physical steps with a "step duration" pre-defined (can be measured in seconds)
 - ⇒ The greater the step is, the faster the simulation will be performed, BUT for big steps the simulation can generate big errors and instability.

PIPCA

ODE Joints

- Joint types:
 - Ball and socket, Hinge, Slider, Universal, Contact, etc
 - ⇒ Joints can have axes (one or more) and sometimes are limited in range (min-max angles)
 - ➡ We can obtain the actual angle from the joints (encoder)
 - ⇒ We can NOT set directly the angle for one specific joint. In order to change the angle, we must apply forces and use actuators (motors).
- Angular Motors:
 - User (manual) and Euler (automatic)
 - ⇒ We can specify the actuator rotation axe, the velocity and the maximum force in each motor.

PIPCA

Physically based Simulation The Future

- New hardware:
 - ⇒ AGEIA PhysX PPU = Physics co-processor card, like GPU
 - Multi-core processors with a dedicated processor only to physics simulation (PS3)
 - ⇒ GPU accelerated processing (NVidea, ATI)
 Use the GPU to accelerate physics processing

PIPCA

Programa de Pós-Graduação em Computação Aplicada Grupo de Inteligência Artificial - GIA

Virtual Reality Tools
OSG (Open Scene Graph) + ODE (Open Dynamics Engine)

Physically based Simulation The Future

- Real-Time Complex Physics Processing
- Videos:
 - ⇒ <u>ode-videos\physx_bundle.avi</u>
 - ⇒ ode-videos\divxphysxairtight720x400.avi
 - ⇒ <u>ode-videos\Movie-AGEIA.wmv</u>

_a PIPCA

