Dia da Computação - Cursos de Informática UNOCHAPECÓ, Março 2004

Robótica Inteligente e Veículos Autônomos: Novos Desafios para a Computação

Prof. Dr. <u>Fernando Osório</u> - osorio@exatas.unisinos.br http://inf.unisinos.br/~osorio/

Prof. MSc Farlei Heinen - farlei@exatas.unisinos.br http://ncg.unisinos.br/robotica/

Prof. Dr. Christian Kelber - kelber@eletrica.unisinos.br (Eng. Elel **Prof. Dr. Cláudio Jung** - jung@exatas.unisinos.br (Eng. da Comp

Colaboradores

Prof. Dr. Adelmo Cechin - cechin@exatas.unisinos.br MSc. Adiléa Wagner - adilea@exatas.unisinos.br MSc. Túlio Bender - bender@euler.unisinos.br

Mestrado em Computação Aplicada - PIPCA Web: Http://www.pipca.unisinos.br/

Grupo de inteligência Artificial - PIPCA - Unisinos Web: Http://www.inf.unisinos.br/gia-pipca.html

Grupo de Pesquisas em Veículos Autônomos: Web: http://www.eletrica.unisinos.br/~autonom/

GIA / PIPCA GPVA - Unisinos

Robótica Inteligente e Veículos Autônomos GIA / GPVA - Unisinos

Temas Principais:

- Introdução ← Parte I
- Tipos de Robôs Parte II

Manipuladores, Robôs Móveis Terrestres, Aquáticos, Aéreos, ...

- <u>Sensores e Atuadores</u> Parte III
- Inteligência & Robôs
- Modelos Sensoriais
- Modelos Cinemáticos
- <u>Controle Robótico</u>: ← Parte IV


Reativo, Deliberativo, Hierárquico

- Mapas do Ambiente:
 Construção de Mapas, SMPA
 SMPA Sense Model Plan Act
- Problemas: Desvio de Obstáculos, Posicionamento
- Soluções: Controle Robusto Híbrido
- Simulação SimRob3D

Robótica Autônoma Sensores e Atuadores

* Sensores: Percepção do Ambiente

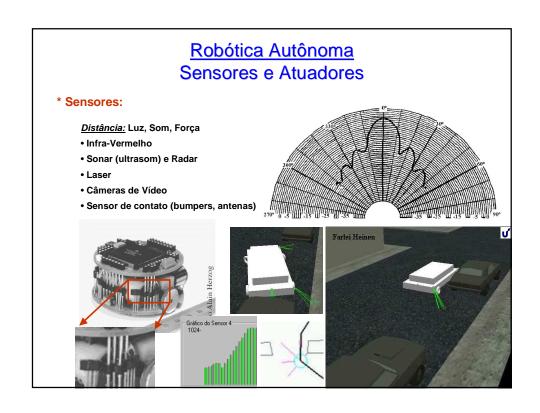
* Atuadores: Ações e Movimentação do Robô

Robótica Autônoma Sensores e Atuadores

* Sensores:

Distância: Luz, Som, Força _

- Infra-Vermelho
- Sonar (ultrasom) e Radar
- Laser
- Câmeras de Vídeo Linear / Matricial, Mono ou Binocular > Fumaça, Odores, etc.
- Sensor de contato (bumpers, antenas)


Posicionamento e Orientação

- GPS
- Bússolas
- Giroscópio
- Odômetros
- Faróis (ex. rádio) ou Câmera de Vídeo

* Atuadores...

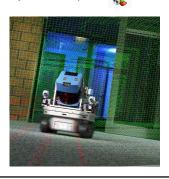
Outros Componentes

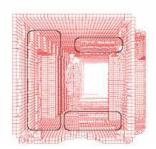
- > Medidor de carga da bateria
- > Temperatura, Pressão
- > Umidade

Robótica Autônoma Sensores e Atuadores

* Sensores:

Distância: Luz, Som, Força


- Infra-Vermelho
- Sonar (ultrasom) e Radar
- Laser
- Câmeras de Vídeo
- Sensor de contato (bumpers, antenas)



- > Medidor de carga da bateria
- > Temperatura, Pressão
- > Umidade
 - > Fumaça, Odores, etc.

Robótica Autônoma Sensores e Atuadores

* Atuadores:

Locomoção:

- Motor de Passo: rodas, esteiras velocidade, direção, rotação
- Pernas e pés (problema do equilíbrio)
- Propulsão (submarino, aéreo)

Manipulação:

- Garras e Pinças (grippers)
- Braço robótico

- J. LEIDs
 S. Serial line (S) connector.

 Reset button.
 J. Impers for the running mode selection.
 Infra-Red proximity sensors.
 Battery recharge connector.

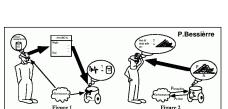
 ON OFF battery switch.
 S. Second reset button (same function as 3).

Robótica Autônoma Inteligente Inteligência e Robótica

- * Planejamento das Ações
- * Capacidade de Agir
- * Capacidade de Sentir o Ambiente
- * Reação: Integração Sensorial-Motora
- * Previsão: Ambiente, Comportamento, Interação
- * Aprendizado e Adaptação
- * Robustez: Situações Imprevistas
- => Por onde começar?

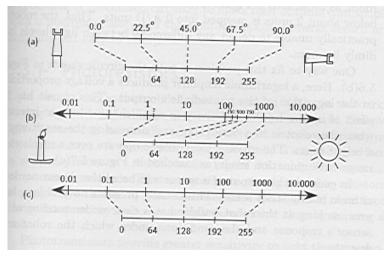
Robótica Autônoma Inteligente Inteligência e Robótica

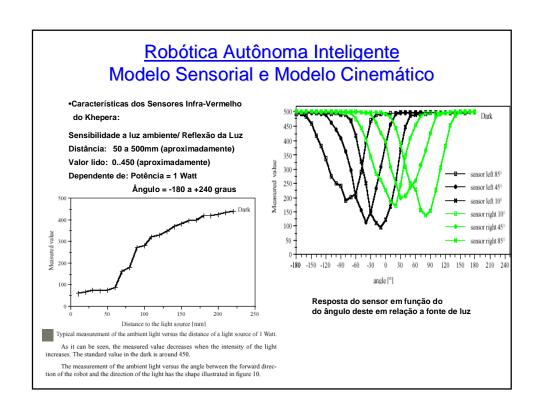
- * Planejamento das Ações
- * Capacidade de Agir
- * Capacidade de Sentir o Ambiente
- * Reação: Integração Sensorial-Motora
- * Previsão: Ambiente, Comportamento, Interação
- * Aprendizado e Adaptação
- * Robustez: Situações Imprevistas
- => Por onde começar?

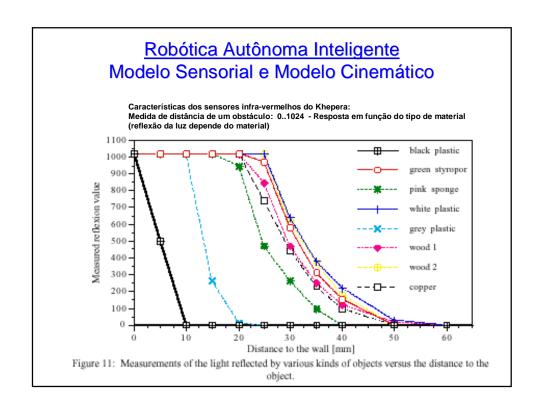


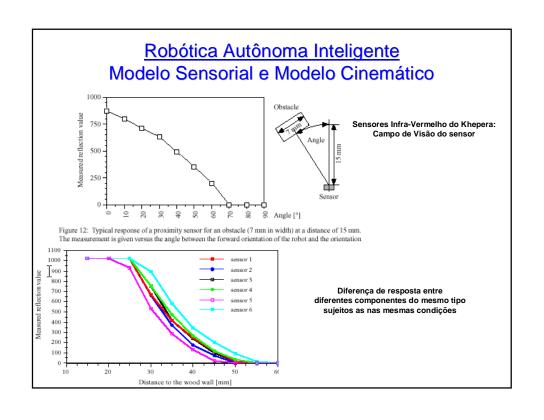
Robótica Autônoma Inteligente Inteligência e Robótica

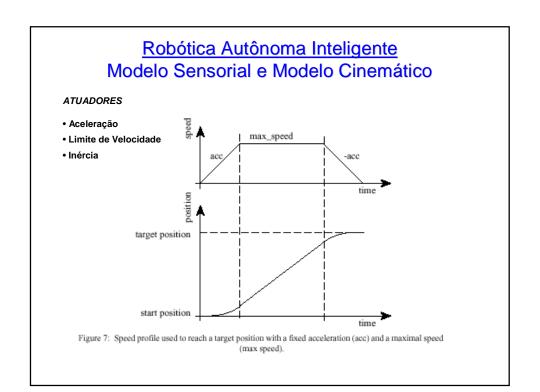
- * Planejamento das Ações
- * Capacidade de Agir
- * Capacidade de Sentir o Ambiente
- * Reação: Integração Sensorial-Motora
- * Previsão: Ambiente, Comportamento, Interação
- * Aprendizado e Adaptação
- * Robustez: Situações Imprevistas
- => Por onde começar?

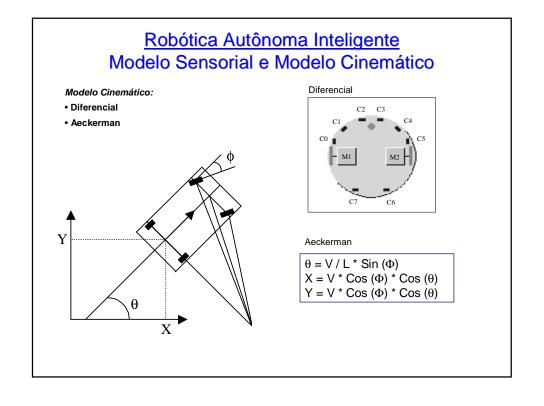

- 1. Modelar os sensores, atuadores e comportamento do robô
- 2. Simular o robô, validando os modelos
- 3. Controlar o robô real em um ambiente real

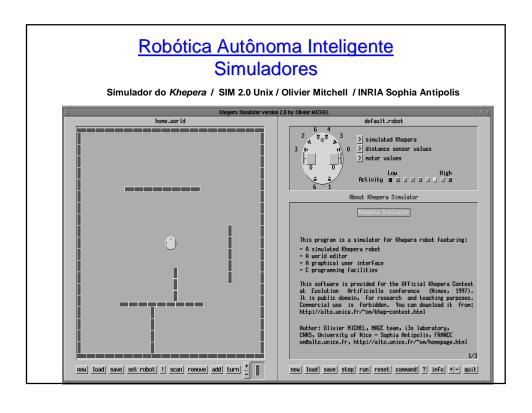


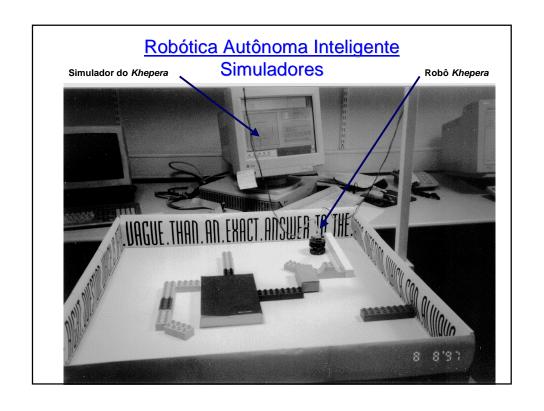

Robótica Autônoma Inteligente Modelo Sensorial e Modelo Cinemático

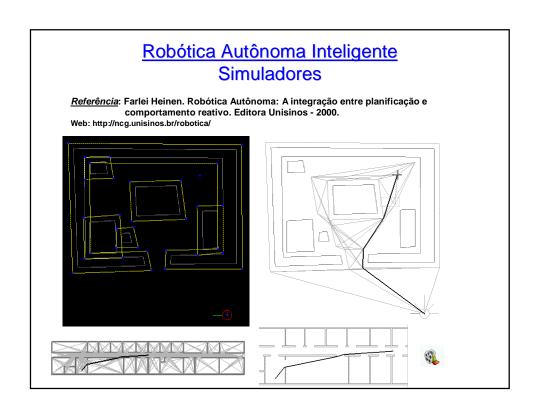

SENSORES

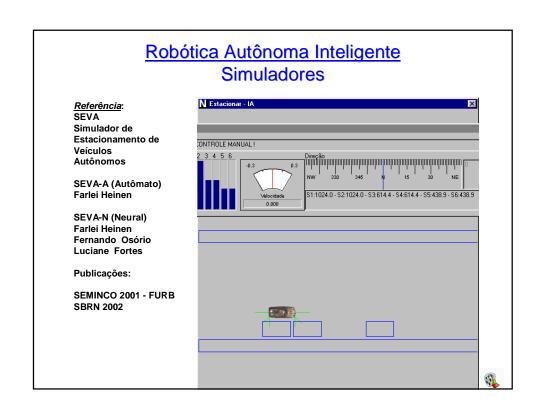

• Sensibilidade e Intervalo de Valores...











Robótica Inteligente e Veículos Autônomos GIA / GPVA - Unisinos **Temas Principais:** • Introdução Parte I • Tipos de Robôs Parte II Manipuladores, Robôs Móveis Terrestres, Aquáticos, Aéreos, ... • <u>Sensores e Atuadores</u> Parte III • Inteligência & Robôs Modelos Sensoriais • Modelos Cinemáticos Parte IV Controle Robótico: Reativo, Deliberativo, Hierárquico • Mapas do Ambiente: Construção de Mapas, SMPA SMPA - Sense Model Plan Act • Problemas: Desvio de Obstáculos, Posicionamento • Soluções: Controle Robusto Híbrido • Simulação - SimRob3D