Thèse presentée par
Fernando OSORIO
Dans cette thèse, nous avons développé des recherches sur les systèmes hybrides neuro-symboliques, et en particulier sur l'acquisition incrémentale de connaissances à partir de connaissances théoriques (règles) et empiriques (exemples). Un nouveau système hybride, nommé système INSS - Incremental Neuro-Symbolic System, a été étudié et réalisé. Ce système permet le transfert de connaissances déclaratives (règles symboliques) d'un module symbolique vers un module connexionniste (réseau de neurones artificiel - RNA) à travers un convertisseur de règles en réseau. Les connaissances du réseau ainsi obtenu sont affinées par un processus d'apprentissage à partir d'exemples. Ce raffinement se fait soit par ajout de nouvelles connaissances, soit par correction des incohérences, grâce à l'utilisation d'un réseau constructif de type Cascade-Correlation. Une méthode d'extraction incrémentale de règles a été intégrée au système INSS, ainsi que des algorithmes de validation des connaissances qui ont permis de mieux coupler les modules connexionniste et symbolique. Le système d'apprentissage automatique INSS a été conçu pour l'acquisition constructive (incrémentale) de connaissances. Le système a été testé sur plusieurs applications, en utilisant des problèmes académiques et des problèmes réels (diagnostic médical, modélisation cognitive et contrôle d'un robot autonome). Les résultats montrent que le système INSS a des performances supérieures et de nombreux avantages par rapport aux autres systèmes hybrides du même type.
Mots-Clés :
Intelligence Artificielle, Apprentissage Automatique
Réseaux de Neurones Artificiels, Système Hybride Neuro-Symbolique,
Acquisition Constructive de Connaissances, Réseau Connexionniste
Incrémental, Insertion et Extraction de Règles, Cascase-Correlation,
INSS.
Fernando S. Osorio
(osorioimag.fr)
Equipe RESEAUX
Laboratoire LEIBNIZ - INPG / IMAG
46, avenue Felix-Viallet
38031 Grenoble CEDEX - France