

XXIX CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

Os Grandes Desafios Científicos e os Impactos da Computação na Sociedade

20 A 24 DE JULHO DE 2009 BENTO GONÇALVES : RS

Robótica Móvel Inteligente: Da Simulação às Aplicações no Mundo Real

Denis Fernando Wolf

Universidade de São Paulo – USP - ICMC

Eduardo do Valle Simões

Grupo de Sist. Embarcados, Evolutivos e Robóticos

Fernando Santos Osório

LRM – Laboratório de Robótica Móvel

Onofre Trindade Junior

INCT – Sistemas Embarcados Críticos

Instituto Nacional de Ciência e Tecnologia em **Sistemas Embarcados Críticos**

Robótica Móvel Inteligente: Da Simulação às Aplicações no Mundo Real

Denis Fernando Wolf

Eduardo do Valle Simões

Fernando Santos Osório

Onofre Trindade Junior

Universidade de São Paulo – USP - ICMC

Grupo de Sist. Embarcados, Evolutivos e Robóticos

LRM – Laboratório de Robótica Móvel

INCT – Sistemas Embarcados Críticos

Julho/2009

Instituto Nacional de Ciência e Tecnologia em Sistemas Embarcados Críticos

Fundamentos de Robótica Móvel

• Introdução à Robótica:

Robôs Manipuladores e Robôs Móveis

• Elementos dos Robôs Móveis

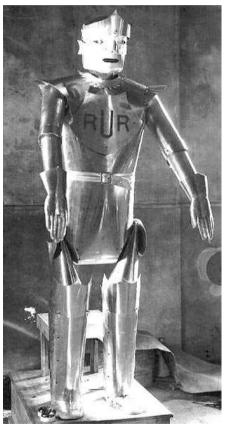
Sensores, Atuadores, Comportamento e Controle

• Arquiteturas de Controle

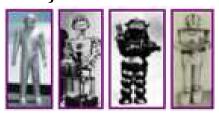
Arquiteturas Reativa, Deliberativa, Hierárquica e Híbrida

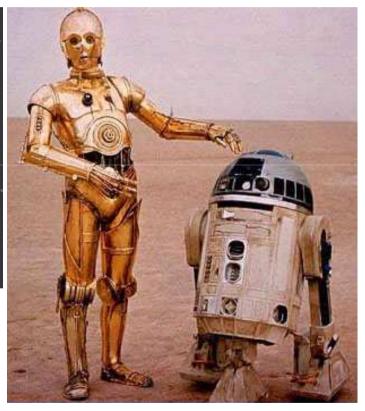
• Modelos de Simulação

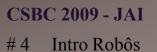
Sensores, Atuadores, Cinemática e Comportamento


• Ferramentas de Simulação Virtual

Bibliotecas: OpenGL, SDL, ODE, OSG, GALib, SNNS, Weka...




• Robôs: O Início... RUR



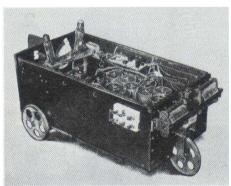
Ficção Científica

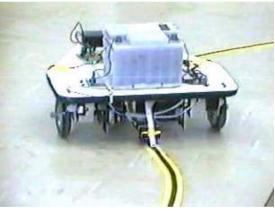


• Robôs Manipuladores de Base Fixa:

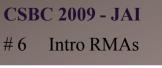
Braços Manipuladores – Aplicações Industriais

Robôs Soldadores Robôs de Pintura Exemplos: PUMA, KUKA, CanadaARM



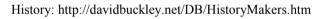


- Robôs Móveis: Robôs com capacidade de deslocamento no ambiente
 - * Robôs Móveis Tele-Operados, Guiados por Marcações (AGV)
 - * Robôs Móveis Semi-Autônomos


Mars Rovers
AGV – Automated Guided Vehicles
Robôs Submarinos

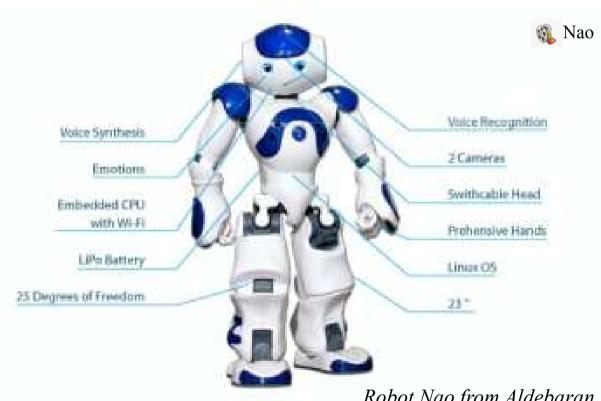
1912 - Electric Dog: http://davidbuckley.net/DB/HistoryMakers.htm

• Robôs Móveis: Robôs com capacidade de deslocamento no ambiente Em busca do desenvolvimento de *Robôs Móveis Autônomos e Inteligentes*


History Making Mobile-Robots - HM

Nova Geração: Pioneer, iRobot Roomba, Boston Dynamics Big Dog, Sony Aibo, Honda Asimo, Aldebaran NÃO

7 Intro RMAs



Instituto Nacional de Ciência e Tecnologia em **Sistemas Embarcados Críticos**

• Robôs Móveis: Robôs com capacidade de deslocamento no ambiente Em busca do desenvolvimento de Robôs Móveis Autônomos e Inteligentes

Robot Nao from Aldebaran

CSBC 2009 - JAI Fundamentos

Robôs Móveis

Scientific American - January 2007

A Robot in Every Home
The leader of the PC revolution predicts that
the next hot field will be robotics
By Bill Gates

Imagine being present at the birth of a new industry. It is an industry based on groundbreaking new technologies, wherein a handful of well-established corporations sell highly specialized devices for business use and a fast-growing number of start-up companies produce innovative toys, gadgets for hobbyists and other interesting niche products. But it is also a highly fragmented industry with few common standards or platforms. Projects are complex, progress is slow, and practical applications are relatively rare. In fact, for all the excitement and promise, no one can say with any certainty when--or even if--this industry will achieve critical mass. If it does, though, it may well change the world.

Of course, the paragraph above could be a description of the computer industry during the mid-1970s, around the time that Paul Allen and I launched Microsoft.

CSBC 2009 - JAI

Fundamentos

Instituto Nacional de Ciência e Tecnologia em **Sistemas Embarcados Críticos**

• Robô Móvel: Agente capaz de PERCEBER o ambiente e AGIR sobre este ambiente

Percepção:

Sensores

Ação:

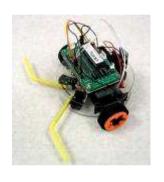
Atuadores

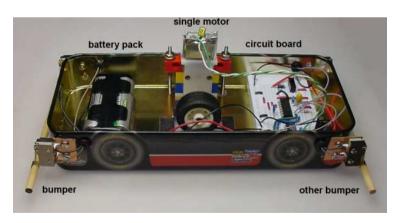
Agente:

Comportamento
Decisão
Controle

•	eı	10	re	36
		LN		

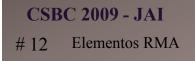
Sensor	Principal Função	Exemplos	
De Posição e Orientação	Determinar a posição absoluta	GPS (Sistema de Posicionamento Global)	
	ou direção de orientação do robô	Bússola [Compass]	
		Inclinômetro	
		Triangulação usando marcas (Beacons)	
De Obstáculos	Determinar a distância até um objeto	Sensor Infra-Vermelho (IR - Infrared)	
	ou obstáculo	Ultrassom (Sonar)	
		Radar	
		Sensor Laser (Laser rangefinder)	
		Sistemas de Visão Estéreo (Stereo Vision)	
De Contato	Determinar o contato com um objeto	Sensores de Contato (Bumbers, Switches)	
	ou posição de contato com marcação	Antenas e "bigodes" (Animal whiskers)	
		Marcações (barreiras óticas e magnéticas)	
De Deslocamento	Medir o deslocamento do robô	Inercial (Giroscópio, Acelerômetros)	
e Velocidade	Medidas relativas da posição e	Odômetro (Encoders: Optical, Brush)	
	orientação do robô	Potenciômetros (Angular)	
		Sensores baseados em Visão	
Para Comunicação	Envio e recepção de dados e sinais	Sistemas de Visão e Sensores Óticos	
	externos (troca de informação)	Sistemas de Comunicação (RF)	
Outros tipos	Sensores magnéticos, indutivos, capacitivos, reflexivos		
	Sensores de temperatura, carga (bateria), pressão e forç		
	Detectores: detector de movimento, de marcações, de gás/odores		

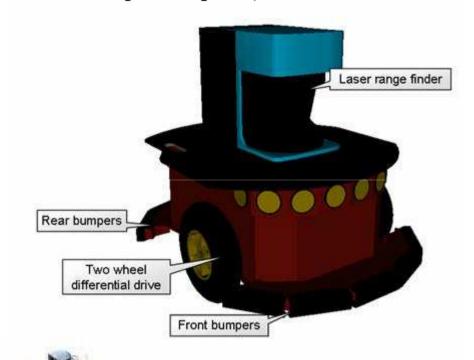




Tipos de Sensores

Sensor do Tipo Bumper (Sensor de Contato / "Pára-choque")



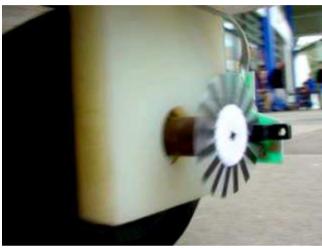


Tipos de Sensores

Sensor do Tipo Bumper (Sensor de Contato / "Pára-choque")

Whiskers: "Bigodes de Gato"

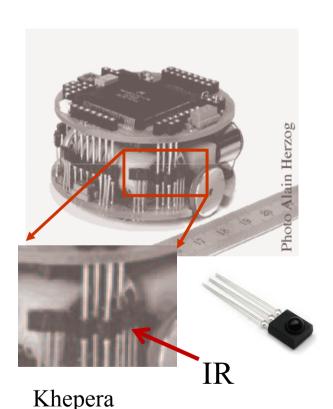



Tipos de Sensores

Sensores do tipo Encoder/Odômetro

Encoder: Controle do giro da roda

CSBC 2009 - JAI
14 Elementos RMA

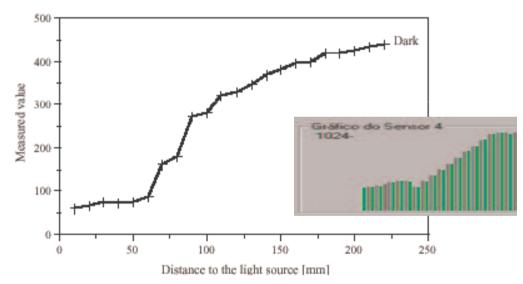


Sensores

Tipos de Sensores

Sensores Infra-Vermelho (IR)

•Características dos Sensores Infra-Vermelho do Khepera:


Sensibilidade a luz ambiente/ Reflexão da Luz

Distância: 50 a 500mm (aproximadamente)

Valor lido: 0..450 (aproximadamente)

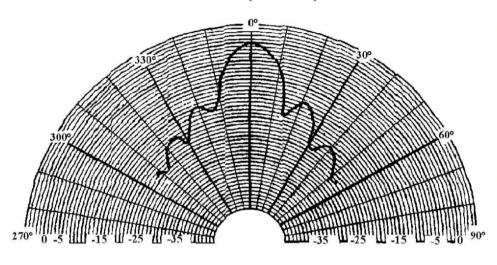
Dependente de: Potência = 1 Watt

 \hat{A} ngulo = -180 a +240 graus

Typical measurement of the ambient light versus the distance of a light source of 1 Watt.

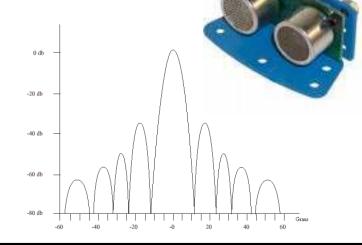
As it can be seen, the measured value decreases when the intensity of the light increases. The standard value in the dark is around 450.

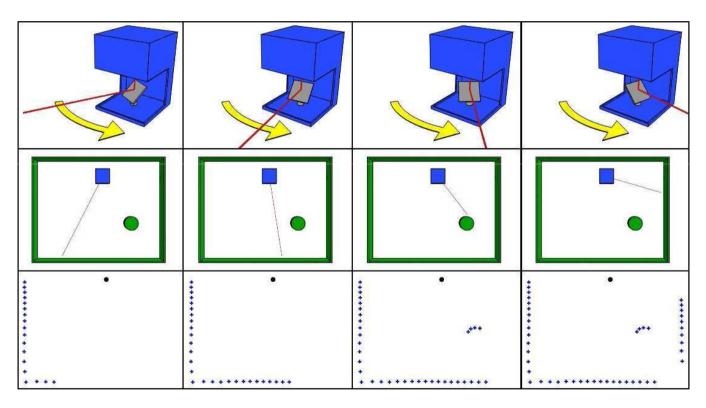
The measurement of the ambient light versus the angle between the forward direction of the robot and the direction of the light has the shape illustrated in figure 10.

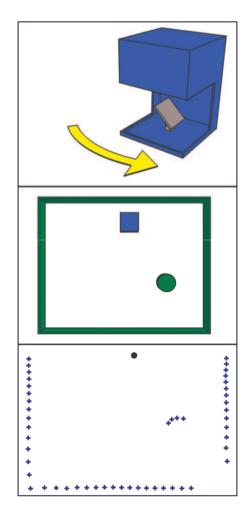

CSBC 2009 - JAI # 15 Elementos RMA

Tipos de Sensores

Sensores Ultra-Som (Sonar)




CSBC 2009 - JAI

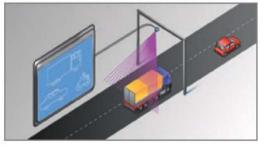


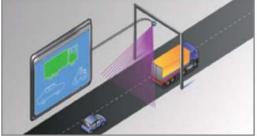
Tipos de Sensores

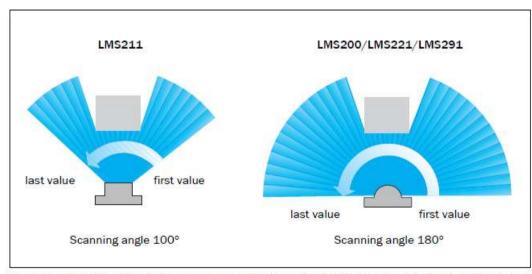
Sensores LASER (Lidar - Light Detection and Ranging)

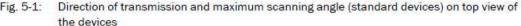
Wikipedia: Lidar

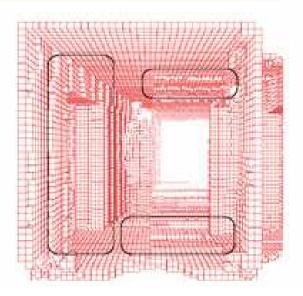
Percepção:

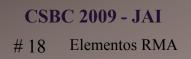

Sensores

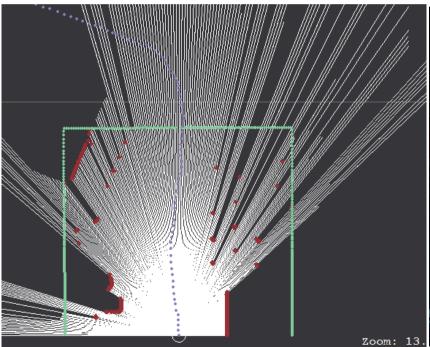

Elementos dos Robôs Móveis


Tipos de Sensores


Sensores LASER (Lidar)


SICK IBEO VELODYNE




Tipos de Sensores

Sensores LASER (Lidar) + GPS + Câmera

Veículo equipado com Laser SICK LMS2xx Resolução: ~10 mm Distância Máxima: 80 mts - Varredura: 180° de 0.5 em 0.5 graus

Projeto Sena

Sensores: Laser SICK, GPS, Câmera de Vídeo

Adicional: Bússola, IMU (Inercial)

CSBC 2009 - JAI
19 Elementos RMA

Sensores

Tipos de Atuadores

Atuadores mais comuns...

- **Motor DC**
- **Motor de Passo (Step-Motor)**

Servomotor

Atuador	Principal Tipo/Função	Exemplos
Base Fixa	Braço robótico com base fixa	Robôs industriais PUMA
Base Móvel: Rodas	2 Rodas independentes (diferencial)	Robôs Khepera e Pioneer P3-DX
	3 Rodas (triciclo, omni-directionais)	Robô BrainStem PPRK
	4 Rodas (veículos robóticos - ackermann)	Stanley - Stanford (Darpa Challenge)
Base Móvel: Esteira	Esteira (Slip/Skid locomotion - tracks)	Tanques e veículos militares
Base Móvel: Juntas e	Bípedes	Robôs Humanóides
Articulações	4 Patas (quadpods)	Robôs Sony Aibo, BigDog
	6 Patas (hexapods)	Robôs Inseto (Lynxmotion Hexapods)
Base Móvel: Propulsão	Veículos aéreos com hélices	Aviões, Helicópteros e Dirigíveis
Hélices ou Turbinas	Veículos aquáticos com hélices	Barcos autônomos
	Veículos sub-aquáticos	Submarinos autônomos
Outros tipos	Braços manipuladores com base móvel	Garras (Grippers) embarcadas
	Garras com ou sem feed-back sensorial	Mão robótica
	Mecanismos de disparo	Disparo do chute (futebol de robôs)

Tipos de Atuadores

Atuadores

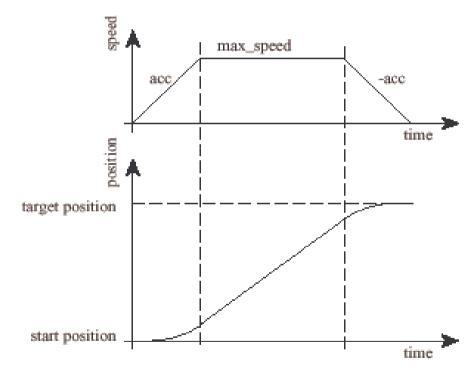
- Aceleração
- Limite de Velocidade
- Inércia

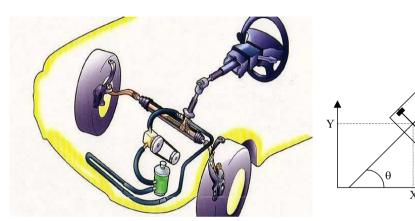
ACIONAMENTO

- AC/DC Servo Motors
- Step Motors

MALHA DE CONTROLE

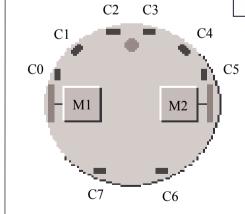
- Open Loop
- Closed Loop: P, PI, PID SET POINT




Figure 7: Speed profile used to reach a target position with a fixed acceleration (acc) and a maximal speed (max speed).

Tipos de Atuadores

Atuadores: Robôs Móveis



Comportamentos: Controle de Robôs

Robôs Móveis: Agentes Autônomos dotados de SENSORES e ATUADORES

Percepção: Sensores

Ação: **Atuadores**

Agente:
Comportamento
Decisão
Controle

Integração Sensorial-Motora

Como Agir?

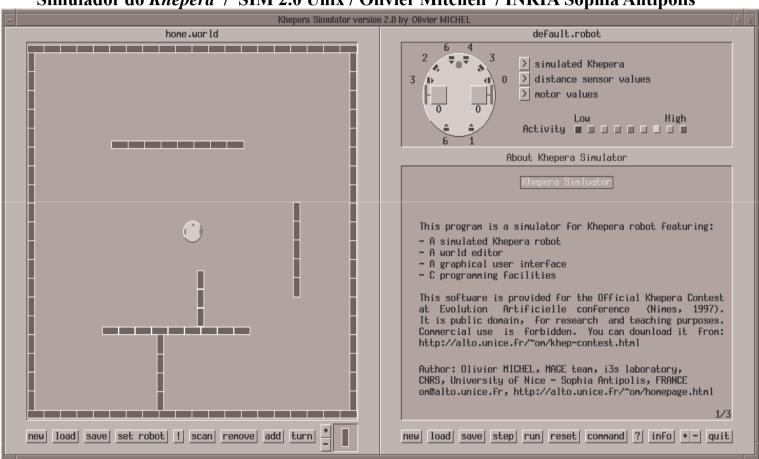
Como Interpretar as Percepções?

Como Tomar Decisões?

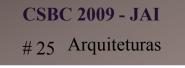
Arquitetura REATIVA [Pura]

Reativo: Percepção => Ação

- Reage diretamente aos estímulos externos;
- Esquema sensorio-motor;


Comportamentos Típicos: Reactive Behaviour

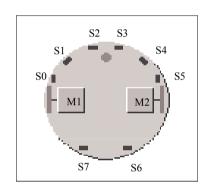
- Vagar pelo ambiente, evitando colisões e obstáculos;
- Acompanhar uma parede ou corredor;
- Comportamento direcionado pela luz;
- Ir em direção a uma determinada orientação Composição de Comportamentos: Direção x Obstáculo

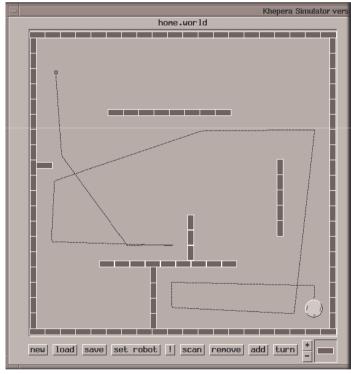

Arquitetura REATIVA [Pura]

Simulador do Khepera / SIM 2.0 Unix / Olivier Mitchell / INRIA Sophia Antipolis

Sensores: 8 IR / Atuadores: 2 motores com cinemática diferencial

1997/98





Arquitetura REATIVA [Pura]

• Reativo: Integração Sensorial-Motora

Evitar colisões e obstáculos

Controle Reativo

IF S1 < Limite and

S2 < Limite and

S3 < Limite and

S4 < Limite

THEN Action (Go Forward)

IF S1 < Limite and

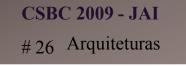
S2 < Limite and

S3 > Limite *and*

S4 > Limite

THEN Action(Turn_Left)

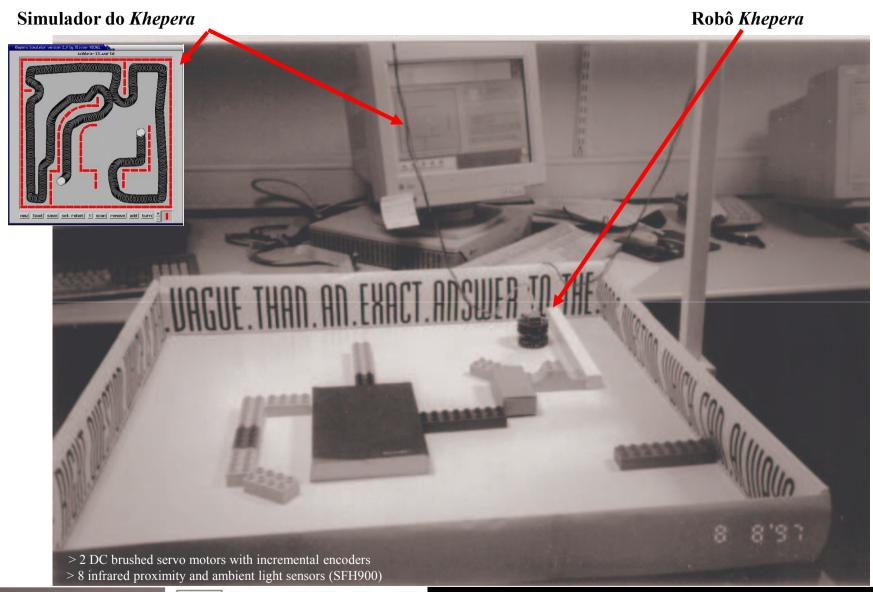
IF S2 > Limite and


S3 > Limite and

S2 > S3 and

S1 > S4

THEN Action(Turn_Right)


Sensorial-Motor: Sentir => Agir

Arquitetura de Controle: Reativo

CSBC 2009 - JAI # 27 Arquiteturas

Arquitetura de Controle: Reativo

Navegação: Direcionamento + Desvio de Obstáculos

28 Arquiteturas

Arquitetura de Controle: Reativo

Aplicações práticas comerciais:

Arquitetura DELIBERATIVA [Pura]

Deliberativo: Planejamento => Seqüência de Ações

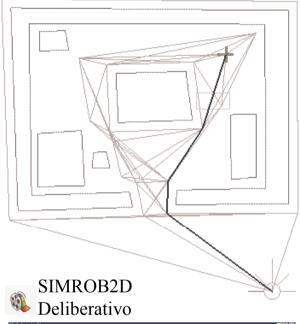
- Possui conhecimento sobre a situação do robô e do ambiente;
- Usualmente baseado no uso de mapas e planejamento de trajetórias.

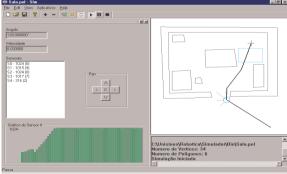
Comportamentos Típicos: Deliberative Behaviour

- Execução de scripts de ações planejadas previamente;
- Executar uma sequência de ações previamente determinada;
- Seguir trajetórias especificadas com uso de mapas;
- Execução de Tarefas de Alto Nível;

Arquitetura DELIBERATIVA [Pura]

SIMROB2D - Referência:


Farlei Heinen (Orientador: Fernando Osório)


Robótica Autônoma: A integração entre planificação e

comportamento reativo. 2000.

Robô tipo Khepera: Sensores: 5 IR / Atuadores: 2 motores (diferencial)

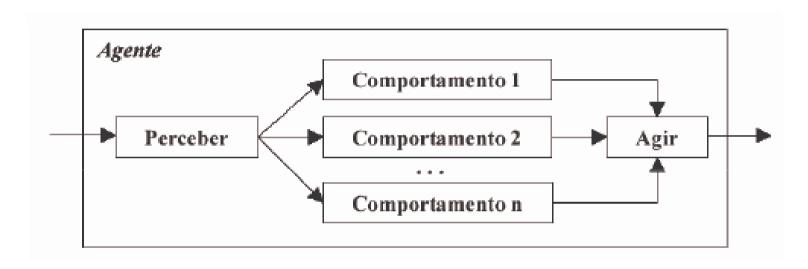
CONTROLE: Arquiteturas Reativas

Abordagens "puras"

CONTROLE: Arquiteturas Deliberativas

Ambas possuem problemas e limitações!

Solução?


Buscar aproveitar o que de melhor tem cada uma das duas abordagens...

ARQUITETURA HIERÁRQUICA ARQUITETURA HÍBRIDA

Controle Hierárquico

Hierarquia de Comportamentos:

- Evitar/Desviar de obstáculos
- Seguir em uma determinada direção
- Seguir uma determinada rota

Controle Hierárquico: Vertical

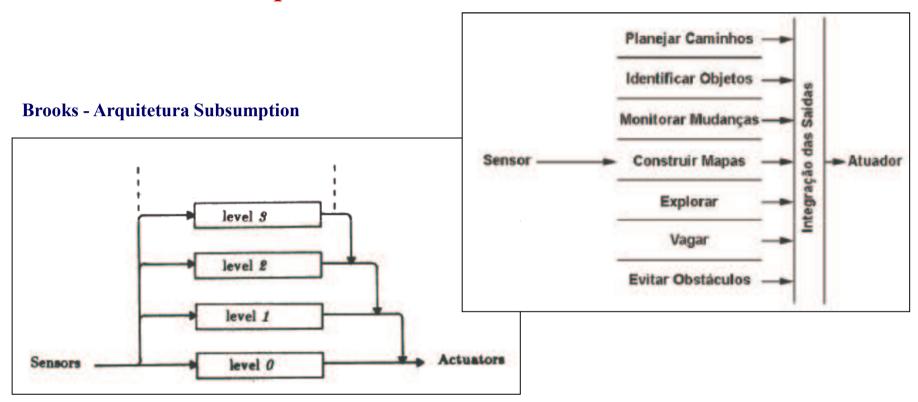
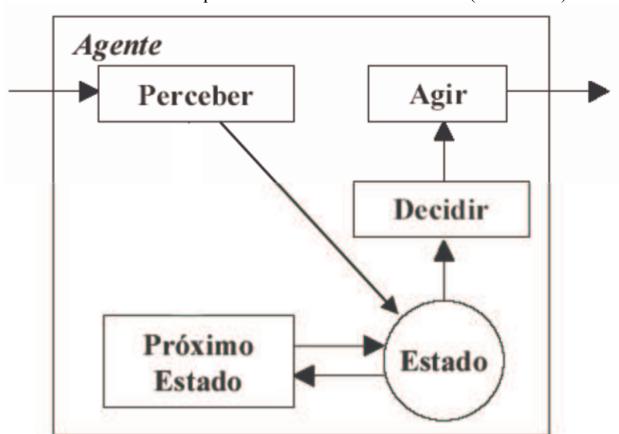


Figure From:
Brooks, R. A.
MIT A.I. Memo 864
Sept. 1985

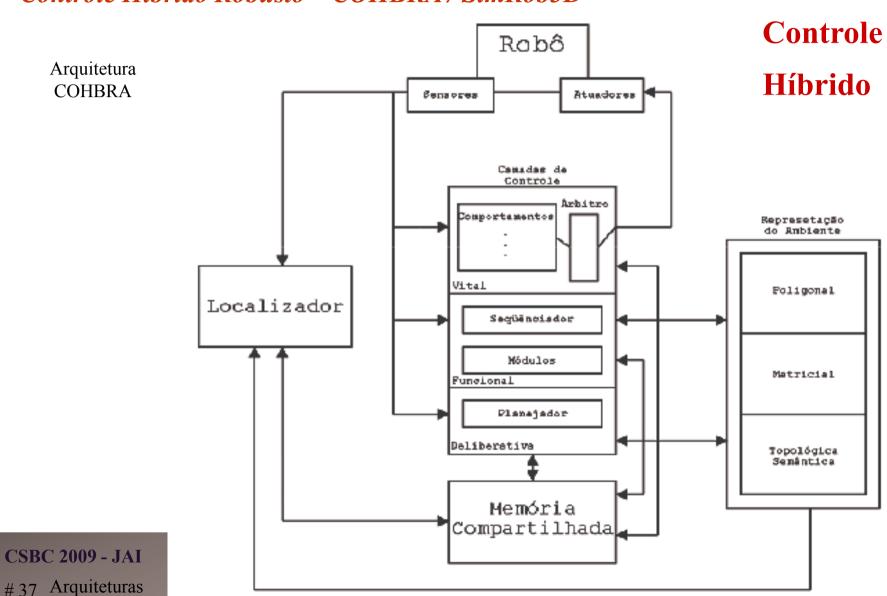
Controle Hierárquico: Horizontal

Arquiteturas Hierárquicas

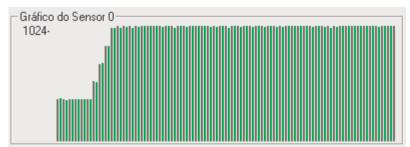

SMPA: Decomposição tradicional do sistema de controle de um robô móvel em módulos funcionais

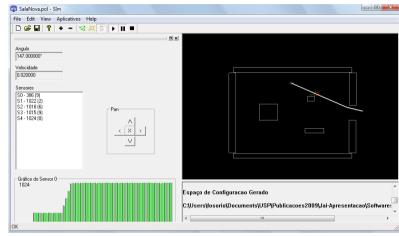
Arquiteturas Híbridas

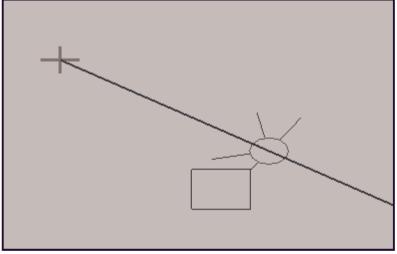
Controle Híbrido: Arquitetura com Estados Internos (Autômato)


Percepção + Mapas + Estado Interno

Arquiteturas de Controle

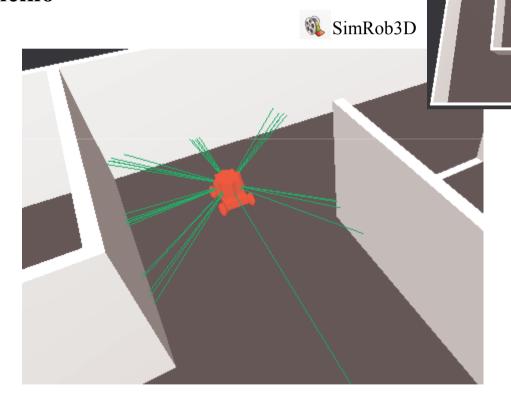

Controle Híbrido Robusto – COHBRA / SimRob3D




Modelagem: Sensores e Atuadores

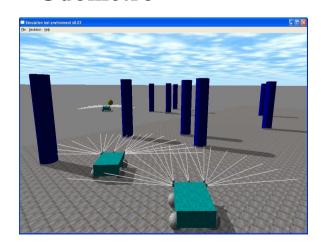
SimRob2D

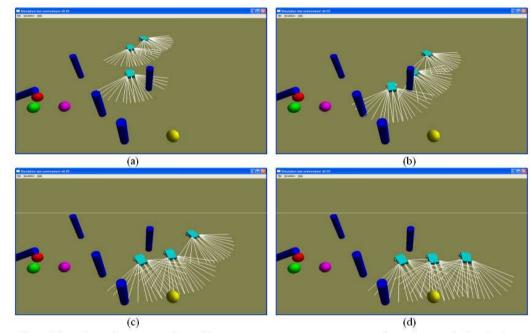
- Infra-Vermelho
- Sonar
- Laser
- GPS
- Odômetro
- Vídeo



Modelagem: Sensores e Atuadores

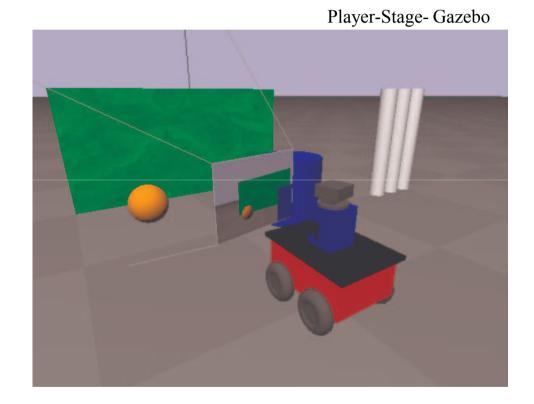
- Infra-Vermelho
- Sonar
- Laser
- GPS
- Odômetro
- Vídeo





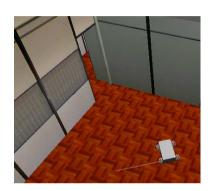
Modelagem: Sensores e Atuadores

- Infra-Vermelho
- Sonar
- Laser
- GPS
- Odômetro

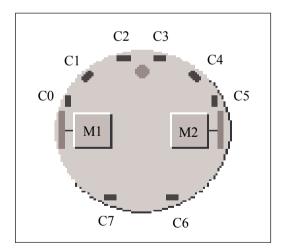

Seqüências de uma simulação com navegação e desvio satisfatórios Robombeiros

Modelagem: Sensores e Atuadores

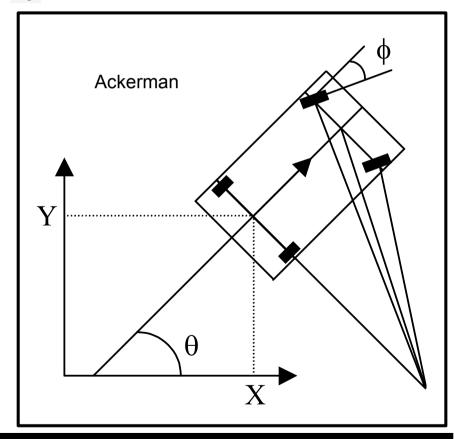
- Infra-Vermelho
- Sonar
- Laser
- GPS
- Odômetro
- Vídeo



Kinematics


Modelagem: Sensores e Atuadores

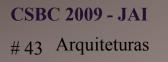
Atuadores


- Rodas
- Esteiras
- Pernas/Patas

Diferencial

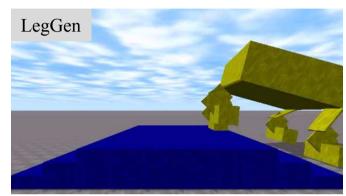
Cinemática do Robô

Modelagem: Sensores e Atuadores

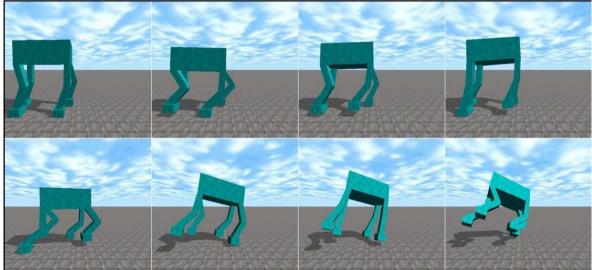

Atuadores

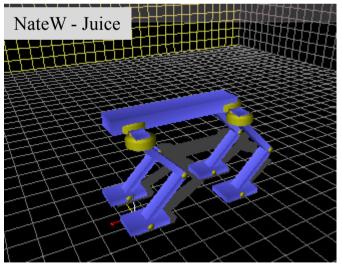
- Rodas
- Esteiras
- Pernas/Patas

Cinemática do Robô Dinâmica do Robô



Modelagem: Sensores e Atuadores


Atuadores


- Rodas
- Esteiras
- Pernas/Patas

Cinemática do Robô Dinâmica do Robô

Bibliotecas:

OpenGL

SDL

ODE

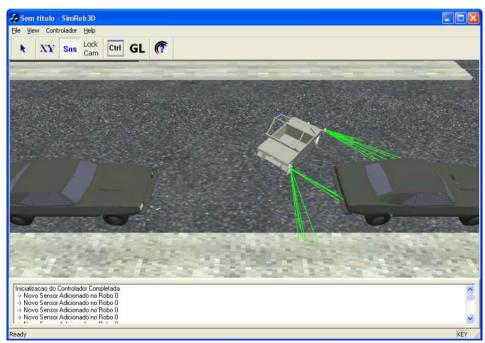
OSG

GALib

SNNS

Weka

Simuladores


Completos

Visualização 2D e 3D

Simulação Sensores/Atuadores

Simulação Física: Cinemática e Dinâmica

Controle Inteligente: Evolução e Aprendizado

Seva3D

Bibliotecas: Visualização 2D e 3D

OpenGL Simulação Sensores/Atuadores

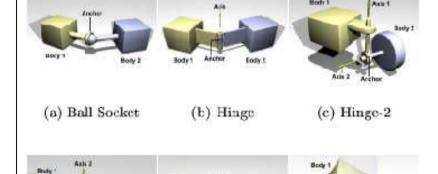
SDL Simulação Física: Cinemática e Dinâmica

ODE | Controle Inteligente: Evolução e Aprendizado

OSG ODE

GALib Open Dynamics Engine

SNNS Rigid Body Physics Simulation:


Gravity, inertia, friction, collision,

Weka joints, actuators, etc

http://www.ode.org/

Physics Engine

Simuladores

Bibliotecas:

OpenGL

SDL

ODE

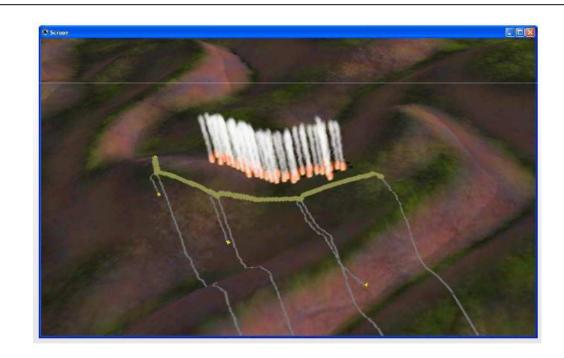
OSG

GALib

SNNS

Weka

Simuladores


Completos

Visualização 2D e 3D

Simulação Sensores/Atuadores

Simulação Física: Cinemática e Dinâmica

Controle Inteligente: Evolução e Aprendizado

Bibliotecas:

Visualização 2D e 3D

OpenGL

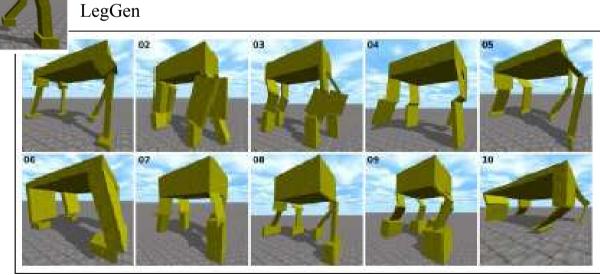
Simulação Sensores/Atuadores

SDL

Simulação Física: Cinemática e Dinâmica

ODE

Controle Inteligente: Evolução e Aprendizado


OSG

GALib

SNNS

Weka

Simuladores

Bibliotecas:

Visualização 2D e 3D

OpenGL

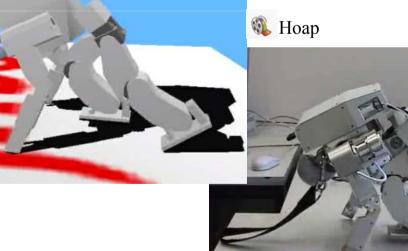
Simulação Sensores/Atuadores

SDL

Simulação Física: Cinemática e Dinâmica

ODE

Controle Inteligente: Evolução e Aprendizado


OSG

GALib

SNNS

Weka

Simuladores

Bibliotecas:

Visualização 2D e 3D

OpenGL

Simulação Sensores/Atuadores

SDL

Simulação Física: Cinemática e Dinâmica

ODE

Controle Inteligente: Evolução e Aprendizado

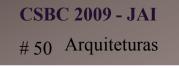
OSG

GALib

SNNS

Weka

Simulated Car Racing


Simuladores

Completos

The simulated car racing competition of CIG-2009 is the final event of the 2009 Simulated Car Racing Championship, an event joining the three competitions held at CEC-2009, GECCO-2009, and CIG-2009.

http://www.ieee-cig.org/ Competitions

Bibliotecas:

OpenGL

SDL

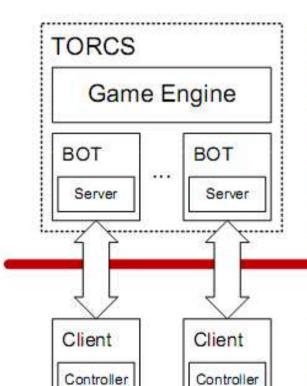
ODE

OSG

GALib

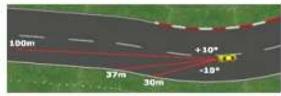
SNNS

Weka


Simuladores

Completos

TORCS:


The Open Racing Car Simulator http://torcs.sourceforge.net/

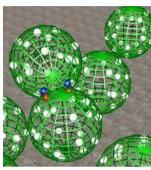
Sensors & Actuators Model

Bibliotecas:

OpenGL

SDL

ODE


OSG

GALib

SNNS

Weka

Simuladores

Simulação: Sem Limites!

Claytronics – http://www.cs.cmu.edu/~claytronics/

OBRIGADO!

LRM: Http://www.icmc.usp.br/~lrm

Denis Fernando Wolf - denis@icmc.usp.br

Eduardo do Valle Simões - simoes@icmc.usp.br

Fernando Santos Osório - fosorio@icmc.usp.br

Onofre Trindade Junior - otjunior@icmc.usp.br

F.Osório: Http://www.icmc.usp.br/~fosorio [Login: "usp" Password: "guest"]

