

Simulação Virtual de Carros em Jogos e Aplicações de Inteligência Artificial

Denis Fernando Wolf

Eduardo do Valle Simões

LRM – Laboratório de Robótica Móvel

Fernando Santos Osório

INCT – SEC: Sistemas Embarcados Críticos

Gustavo Pessin SENA – Sistema Embarcado de Navegação Autônoma

Kalinka R.L.J. Castelo Branco FOG – The Fellowship Of the Game

(PS), STINTO DE CONTRADO DE 2009 IO A 23 DE OUTUBRO DE 2009 INSTITUTO DE CIÊNCIAS MATEMATICAS E DE COMPUTAÇÃO - USP SÃO CARLOS

Agenda

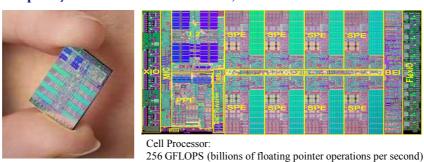
Simulação Virtual de Carros: Jogos e I.A.

Web: http://www.icmc.usp.br/~fosorio/

- Introdução: Jogos de Corrida Histórico, Evolução, Conceitos
- Realismo em Jogos de Corrida
 Realismo Gráfico, Realismo Físico, Realismo Comportamental
- Veículos Virtuais Simulação / Trajetória
 2D, 3D: Modelo Pontual de Partícula, Modelo Ackerman
- Simulação Física Simulação Física de Corpos Rígidos Articulados (ODE)
- · Agentes Autônomos: Controle, Comportamento e I.A.
- Desafios: Jogos de Corrida e I.A.

SemComp 12 - MiniCurso Simulação Virtual de Carros #2 Agenda

(23, SEIJEND) (2011) PUTECED 19 a 23 06 OUTUBRO DE 2009 INSTITUTO DE CIÊNCIAS MATEMATICAS E DE COMPUTAÇÃO - USP SÃO CARLOS



Realismo em Jogos

Realismo Gráfico

• Computação Gráfica... Multi-Core, GPU

Sony PS3 CPU:

Cell Processor + NVIDIA/SCEI RSX 'Reality Synthesizer'
3.2 GHz - 1 Power Processing Element (PPE) + 6/7/8 Synergistic Processing Elements (SPEs)

SemComp 12 - MiniCurso Simulação Virtual de Carros

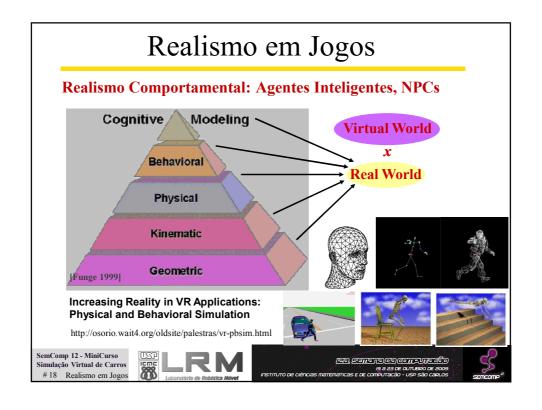
Realismo em Jogos

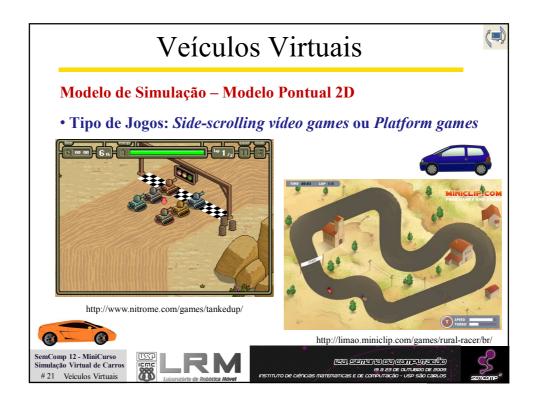
Realismo Gráfico: PlayStation 2 versus PlayStation 3

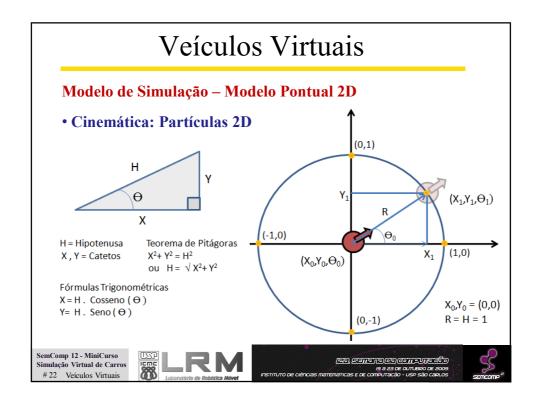
	Sony Emotion Engine	Cell Processor	
CPU Core ISA	MIP64	64-bit Power Architecture	
Core Issue Rate	Dual	Dual	
Core Frequency	300MHz	~4GHz (est.)	
Core Pipeline	6 stages	21 stages	
Core L1 Cache	16KB I-Cache + 8KB D-Cache	32KB I-Cache + 32KB D-Cache	
Core Additional Memory	16KB scratch	512KB L2	
Vector Units	2	8	
Vector Registers (#, width)	32, 128-bit + 16, 16-bit	128, 128-bit	
Vector Local Memory	4K/16KB I-Cache + 4K/16KB D-Cache	256KB unified	
Memory Bandwidth	3.2GB/s peak	25.6GB/s peak (est.)	
Total Chip Peak FLOPS	6.2GFLOPS	256GFLOPS	
Transistor Count	10.5 million	235 million	
Power	15W @ 1.8V	~80W (est.)	
Die Size	240mm ²	235mm ²	
Process	250nm, 4LM	90nm, 8LM + LI	

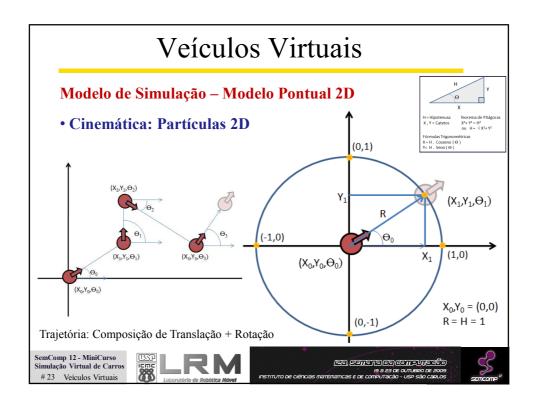
Krewell, Kelvin. Cell moves into the limelight (Microprocessor Report: Feb 14, 2005)

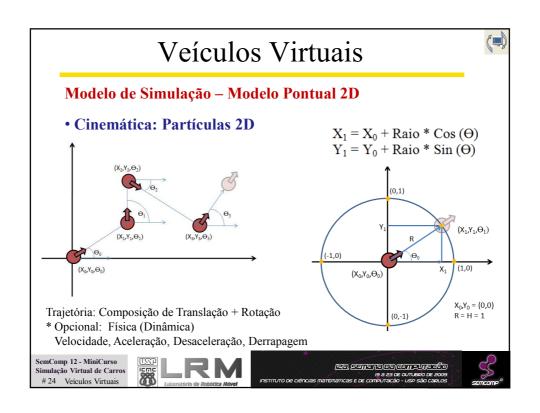
SemComp 12 - MiniCurso Simulação Virtual de Carros #14 Realismo em Jogos

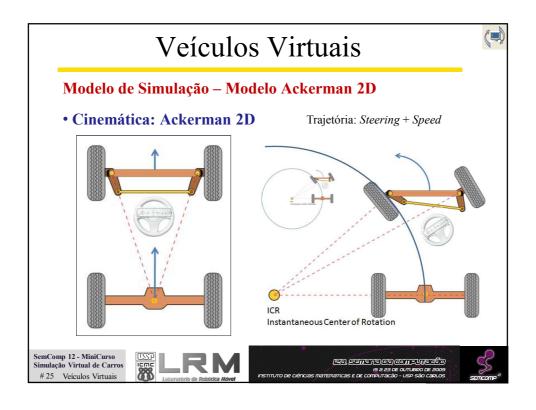


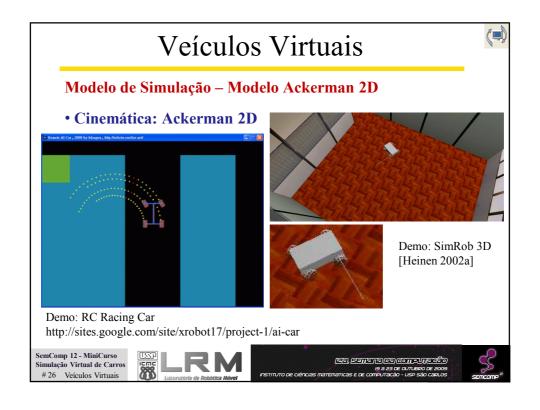


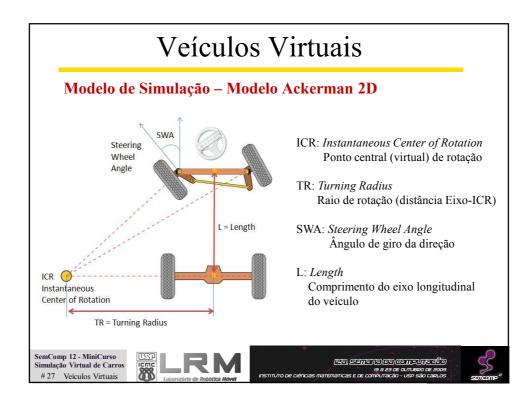


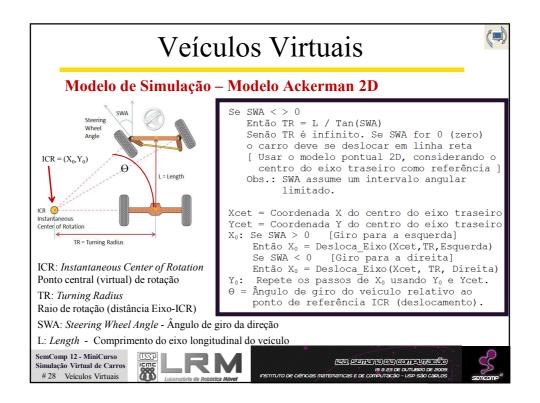


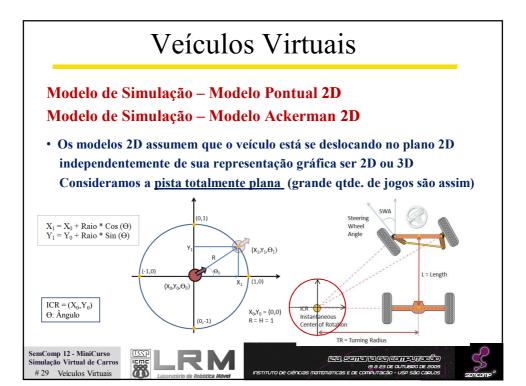

	From Simple VR Visualization Tools to Realistic VR Simulation Tools				
Realismo	Visualization	Geometry [3D Meshes]	Static Objects Animated Objects (Key-Frame)		
Realistic VR Cognitive Modeling Behavioral Physical Kinematic Geometric	Simulation of Motion	Physics [3D Objects]	Rigid Body (Physically based) Kinematics (Movement) Collision (Solid Objects) Collision Response Articulations Particles (Fire, Smoke, Water) Springs (Mass-spring Systems) Deformable Objects (Cloths, Elastic, Fluids) External Forces: Interaction Interaction Object x Object Interaction Camera x Object Interaction User x Object		
Virtual World x Real World	Simulation of Behavior	Artificial Intelligence "Simple A.I." Behavior [Agents] [Characters]	Agents Control Scripts Finite State Automata (FSA) Perception (Sensorial) Action (Motor) Control: Reactive Control: Deliberative Control: Modular / Hybrid Memory, Beliefs, Intentions, Biomechanics Simple Autonomous Agents		
Serious Game: Real-Time Real World Simulation SemComp 12 - MiniCurso	Simulation of Intelligent Behavior	Artificial Intelligence "Advanced A.I." Cognitive [Autonomous Agents] [Multi-Agents]	Knowledge Reasoning Cognition Communication Cooperation Coordination Adaptation: Learning, Optimization, Evolution Robust Autonomous Agents		
Simulação Virtual de Carros # 19 Realismo em Jogos	rigure II-1: Models and Components of a Virtual Reality Environment Figure II-1: Models and Components of a Virtual Reality Environment applied into Realistic Simulations [Osorio et al. 2006]				

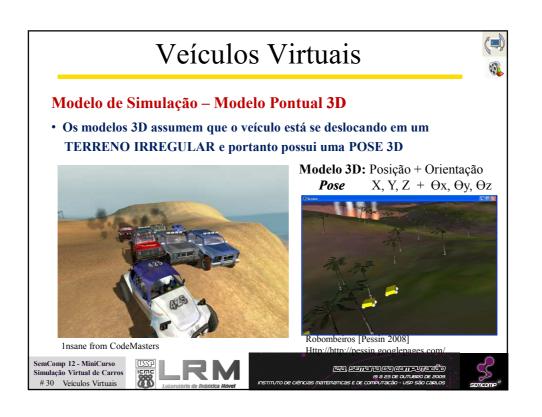












Veículos Virtuais

Modelo de Simulação - Modelo Pontual 3D

· Os modelos 3D assumem que o veículo está se deslocando em um TERRENO IRREGULAR e portanto possui uma POSE 3D

Modelo 3D: Posição + Orientação Pose $X, Y, Z + \Theta x, \Theta y, \Theta z$

Deslocamento tipo "nave": Relativos a posição e orientações atuais

Rotação:

Ox (Pitch) [Tilt] Oy (Yaw) [Pan]

 Θ z (Roll)

SemComp 12 - MiniCurso Simulação Virtual de Carros #31 Veículos Virtuais

Veículos Virtuais

Modelo de Simulação - Modelo 3D

Simulação Virtual Realística: Gráfica + Física + Comportamental

- Modelos 3D da pista: TERRENO IRREGULAR
- Modelos 3D dos carros: POSE 3D
- Modelos Físicos:
- Cinemática de Veículos Reais (Ackerman)
- Dinâmica de Corpos Rígidos Articulados
 - > Aceleração: Modelo de Troca de Marchas (Forças e Torques)
 - > Desaceleração: Frenagem, Desaceleração (Atrito)
 - > Inércia, Derrapagem, Gravidade (Saltos)
 - > Acidentes: Colisões + Reação as Colisões Quedas, Rolamentos, Choques contra Obstáculos Fixos, etc

Simulação Virtual de Carros # 32 Veículos Virtuais

Simulação Física

Simulação Física de Corpos Rígidos Articulados

Simulação Virtual Realística: Gráfica + Física + Comportamental

- Modelos 3D da pista: TERRENO IRREGULAR
- Modelos 3D dos carros: POSE 3D
- Modelos Físicos:

Tempo Real

- Cinemática de Veículos Reais (Ackerman)
- Dinâmica de Corpos Rígidos Articulados

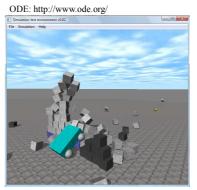
Engines Físicas: [Physics_Engine 2009]

Havok [Havok 2009], Chipmunk 2D [Chip-munk 2009] OpenSteer [OpenSteer 2009], Newton Game Dynamics [Newton 2009] Tokamak [Tokamak 2009], PhysX [PhysX 2009] e ODE [ODE 2009]

SemComp 12 - MiniCurso Simulação Virtual de Carros # 33 Simulação Física

Simulação Física

Simulação Virtual Realística: Gráfica + Física em Tempo Real


ODE - Open Dynamics Engine

ODE - Simulação Física de Corpos Rígidos Articulados

- Modelos 3D de Terrenos
- Modelos Físicos com bom Realismo:
 - Cinemática de Veículos Reais (Ackerman)
 - Dinâmica de Corpos Rígidos Articulados

Engines Física ODE:

Engine Free de Código Livre e Aberto Biblioteca de Funções (.lib, .dll) compatível com ambiente Linux e Windows (C/C++) Possibilidade de integração com outras ferramentas

SemComp 12 - MiniCurso Simulação Virtual de Carros #34 Simulação Física

[23], S31) E (25) [26] [27] [28]
Is a 23 DE CUMURRO DE 2003
INSTITUTO DE CIÉNCIAS MATEMATICAS E DE COMPUTAÇÃO - USP SÃO CAPLOS

Simulação Física

Simulação Virtual Realística: Gráfica + Física em Tempo Real

ODE - Open Dynamics Engine

Como fazer...

- 1) Criar 2 mundos duplicados, um mundo de objetos do ambiente virtual 3D e um mundo de objetos do ambiente da ODE (simulação física ODE);
- 2) Cada objeto do mundo virtual (VR) deve ser posicionado e orientado de acordo com o objeto correspondente do mundo físico (ODE);
- 3) Executa-se o laço de simulação da seguinte forma:
 - a) Aplica forças sobre os objetos no espaço de objetos da ODE;
 - b) A ODE irá integrar todos os dados numéricos e gerar novas posições e orientações de cada objeto como resultado da simulação física;
 - c) Usando as informações atualizadas de posição e orientação de cada objeto no mundo físico (ODE), atualiza-se as informações de posição e orientação dos objetos do mundo virtual (VR).

SemComp 12 - MiniCurso Simulação Virtual de Carros #35 Simulação Física

Simulação Física

Simulação Virtual Realística: Gráfica + Física em Tempo Real

ODE - Open Dynamics Engine Simulação...

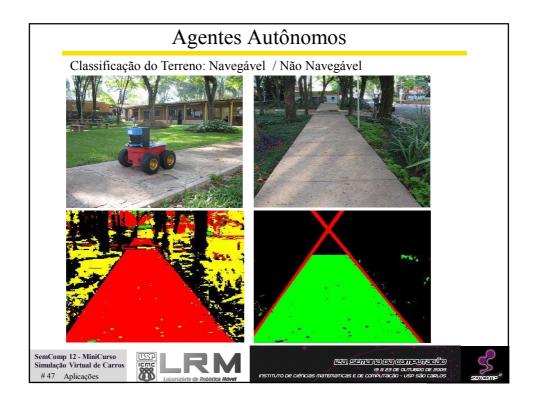
Os corpos rígidos possuem propriedades: primitivas + juntas + motores

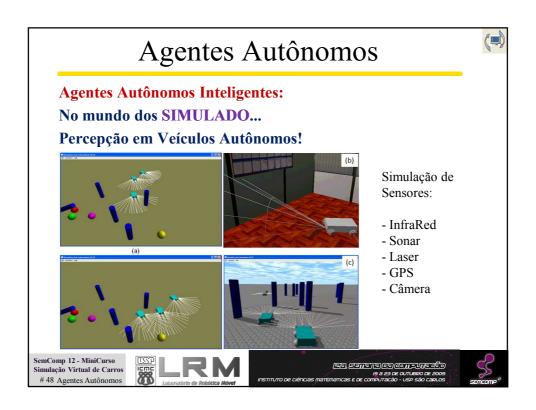
- Vetor de posição que corresponde ao centro de massa do corpo;
- · Velocidade linear;
- Orientação espacial do corpo;
- Vetor de velocidade angular;

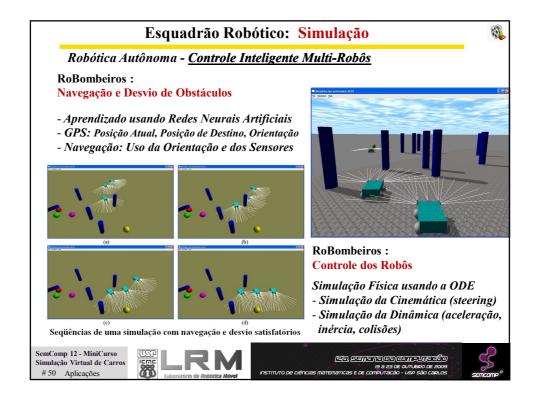
- Massa do corpo;
- Posição do centro de massa (relativa ao corpo);
- Matriz inercial (distribuição da massa ao redor do corpo);

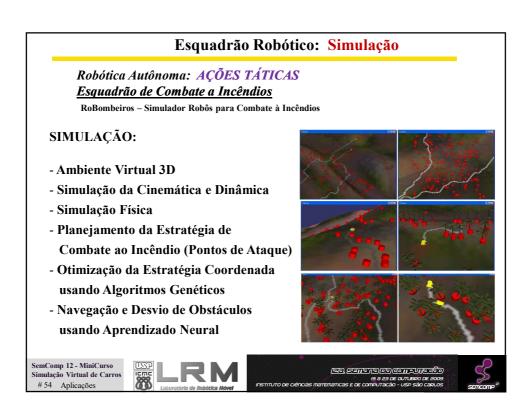
(123, SEITETE) (DE) (COTT PUTE CÉD) is a 23 DE OUTUBRO DE 2009 INSTITUTO DE CIÉTICIAS MATEMATICAS E DE COMPUTAÇÃO - USP SÃO CARLOS

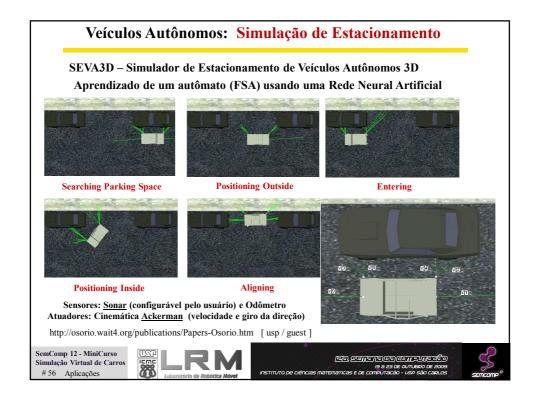
Need for Speed - Most Wanted SemComp 12 - MiniCurso Simulação Virtual de Carros #37 Agentes Autônomos











Agentes Autônomos Inteligentes:

Agentes Autônomos

- Capacidade para perceber o ambiente SENSORES
- Capacidade para planejar e decidir suas ações RACIOCÍNIO
- Capacidade para agir e se locomover **ATUADORES**

Agentes Inteligentes

SemComp 12 - MiniCurso Simulação Virtual de Carros # 57 Agentes Autônomos

Algoritmos de Navegação Local

- Segue em uma direção
- Evita Obstáculos
- Campos Potenciais
- Steering Behaviors (Reynolds)
- Line Follow
- Follow me

Algoritmos de Navegação Global

- Way-Point
- A Star (A*)
- D Star
- Grafo de Visibilidade

IZCI, ESTITATI DE CONTRUTAÇÃO 19 a 23 DE CUMBRO DE 2009 INSTITUTO DE CIÉNCIAS MATEMATICAS E DE COMPUTAÇÃO - USP SÃO CARLOS

Agentes Autônomos

Agentes Autônomos Inteligentes:

Agentes Autônomos

- Capacidade para perceber o ambiente SENSORES
- Capacidade para planejar e decidir suas ações RACIOCÍNIO
- Capacidade para agir e se locomover **ATUADORES**

Agentes Inteligentes

SemComp 12 - MiniCurso Simulação Virtual de Carros # 58 Agentes Autônomos

Arquiteturas de Controle

- Reativa
- Deliberativa
- Hierárquica
- Híbrida

REFERÊNCIAS:

- JBCS 1998
- SBC JAIA 2001
- SBC JAI 2003
- SBC JAI 2005
- SBC JAI 2009
- SBGames 2007

(23), SEINE NO DED (CONTRANTE CE) en a as os cumusos de acos instituto de ciéncias inatignamicas é de computação - use são casuos

Agentes Autônomos Inteligentes:

REFERÊNCIAS:

- JBCS 1998: Medeiros, Adelardo A.D. (1998). "A Survey of Control Architectures for Autonomous Mobile Robots". JBCS Journal of the Brazilian Computer Society, vol. 4, n. 3.
- SBC JAIA 2001: Ribeiro, C.; Reali, A. e Romero, R., (2001) "Robôs Móveis Inteligentes: Princípios e Técnicas", I Jornada de Atualização em Inteligência Artificial - JAIA'2001, Anais do XXI Congresso da SBC, vol. 3, pp.257-306.
- SBC JAI 2003: Pio, J. L. de Souza e Campos, M. F. M. (2003). "Navegação Robótica".
 Anais do XXII Congresso da SBC Anais JAI '03. Campinas, SP.
- SBC JAI 2005: Jung, C. R.; Osório, F. S.; Kelber, C.; Heinen, F. (2005)
 "Computação embarcada: Projeto e implementação de veículos autônomos inteligentes",
 Anais do CSBC'05 XXIV Jornada de Atualização em Informática (JAI). SBC, v. 1, p. 1358–1406.
- SBC JAI 2009: Wolf, Denis F.; Osório, Fernando S.; Simões, Eduardo; Trindade Jr., Onofre. "Robótica Inteligente: da Simulação às Aplicações no Mundo Real.".

 Anais do SBC - JAI: Jornada de Atualização em Informática. Rio de Janeiro (2009). v. 1, p. 279-330.
- SBGames 2007: Osório, Fernando; Pessin, Gustavo; Ferreira, Sandro; Nonnenmacher, Vinícius.
 "Inteligência Artificial para Jogos: Agentes Especiais com Permissão para Matar... e Raciocinar! "Tutorial SBGames 2007 SBC, São Leopoldo, RS.

SemComp 12 - MiniCurso Simulação Virtual de Carros # 59 Agentes Autônomos

CESTRE LICENTE COLCILER, CSCI COCOS SO CONTROL SE CES CES COCOS COSTRE CONTROL SE CONTRO S

Agentes Autônomos

Agentes Autônomos: Competições de I.A. Desenvolvendo Agentes Inteligentes

SemComp 12 - MiniCurso Simulação Virtual de Carros # 60 Agentes Autônomos

(P28), SEJIJE NIDIO (COJI) EVIJE (SE) Is a as ac cumuso de acos Instituto de ciéncias matematicas é de comeutação - use são caeuos

Agentes Autônomos: Competições de I.A. Desenvolvendo Veículos Autônomos REAIS

Darpa Grand Challenge Defafio do Deserto, USA 2005

Vencedor: Stanley / Stanford

Darpa Urban Challenge Desafio Urbano, USA 2007

Vencedor: Boss / CMU

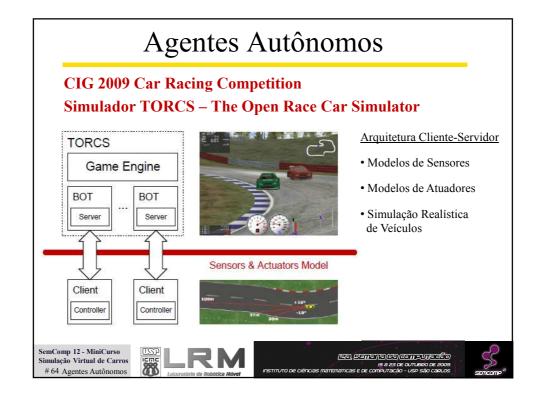
SemComp 12 - MiniCurso Simulação Virtual de Carros # 61 Agentes Autônomos

Agentes Autônomos

Agentes Autônomos: Competições de I.A.

Desenvolvendo Veículos Autônomos SIMULADOS

CIG 2009 Car Racing Competition CEC 2009 e GECCO 2009


IEEE CIG - Computational Intelligence in Games Conference

SemComp 12 - MiniCurso Simulação Virtual de Carros # 62 Agentes Autônomos

CIG 2009 Car Racing Competition Simulador TORCS – The Open Race Car Simulator

Os sensores disponíveis ao usuário são:

- Angle: ângulo entre a direção do carro e a direção do eixo da pista (bússola carro + orientação pista);
- Curlaptime: tempo decorrido na volta corrente;
- Damage: dano atual do carro (quanto maior o dano, maior é o valor desta variável);
- DistFromStart: distância percorrida pelo carro a partir da linha de partida;
- DistRaced: distância total percorrida desde o início da corrida;
- Fuel: nível atual de combustível;
- · Gear: marcha corrente;
- LastLapTime: tempo da última volta;
- Opponents: vetor de 36 sensores que detecta os oponentes (sensor laser: de 10 em 10 graus, 100 mts);
- RacePos: Posição na corrida em relação aos demais oponentes;
- Rpm: Número de rotações por minuto do motor;
- SpeedX: Velocidade do carro, considerando o sentido longitudinal do carro;
- SpeedY: Velocidade do carro, considerando o sentido transversal do carro;
- Track: vetor de 19 sensores laser, mede distância até a borda da pista (frontal 180 graus, 100 mts);
- TrackPos: distância entre o carro e o centro do eixo da pista. A largura da pista é normalizada;
- Wheel Spin Vel: 4 sensores que medem de modo independente a velocidade de rotação das rodas.

(PS), (SEI) EN COMO DO COMO DE COMO DECOMO DE COMO DE COMO DE COMO DE COMO DE

Agentes Autônomos

CIG 2009 Car Racing Competition Simulador TORCS – The Open Race Car Simulator

Os atuadores disponíveis são:

- Accel: pedal do acelerador virtual, indicando o grau de aceleração.
 Note que assim como o pedal do acelerador, este pedal tem um intervalo de atuação, indo de "não pressionado" até "pisando a fundo";
- Brake: pedal do freio virtual;
- Gear: Troca de marchas (são usadas 7 marchas, mais neutro e ré);
- Steering: Valor do giro da direção (ângulo de esterçamento da direção);
- Meta: Sinaliza para o servidor reinicializar a corrida.

SemComp 12 - MiniCurso Simulação Virtual de Carros # 66 Agentes Autônomos

(123), SENTENTA (PO) (GONTA VIJE CÉTO) Is a as de cumuso de axos Instituto de ciéncias matematicas e de computação - usp são capuos

SemComp 12 - MiniCurso Simulação Virtual de Carros # 67 Agentes Autônomos

INCT-SEC: Veículo Terrestre Autônomo

VTNT: Veículo Terrestre Não Tripulado

INCT-SEC - Grupo de Trabalho: Veículo Terrestre Autônomo

Parceria Projeto SENA - USP EESC/ICMC Parceira CTI/CENPRA

Objetivo:

Desenvolvimento de sistemas de navegação autônoma e assistida para veículos terrestres

SemComp 12 - MiniCurso Simulação Virtual de Carros #69 Aplicações

INCT-SEC: Veículo Terrestre Autônomo

Navegação assistida para veículos terrestres

Detecção de Obstáculos e de Pedestres

Sensores:

- Laser SICK
- GPS
- Câmera de Vídeo
- Unidade Inercial (IMU)

Alerta em Situações de Perigo

SemComp 12 - MiniCurso Simulação Virtual de Carros # 70 Aplicações

OBRIGADO!

Instituto Nacional de Ciência e Tecnologia em **Sistemas Embarcados Críticos**

Http://inct-sec.org/

Denis Fernando Wolf - denis@icmc.usp.br
Eduardo do Valle Simões - simoes@icmc.usp.br
Fernando Santos Osório - fosorio@icmc.usp.br
Gustavo Pessin - pessin@gmail.com
Kalinka R.L.J. Castelo Branco - kalinka@icmc.ups.br

Coord. do INCT: José Carlos Maldonado / USP - ICMC

Grupo de Trabalho: Desenvolvimento de Veículos Terrestres Autônomos

SemComp 12 - MiniCurso Simulação Virtual de Carros #75 Aplicações

OBRIGADO!

Sistema Embarcado de Navegação Autônoma Http://www.eesc.usp.br/sena/

EESC - Glauco Caurin Valdir Grassi Jr.

Marcelo Becker Daniel Varela Magalhães

Daniel Vareta Magain

ICMC - Denis Fernando Wolf Alberto Hata
Eduardo do Valle Simões Leandro Couto

Fernando Santos Osório Leandro Carlos Fernandes Gustavo Pessin Patrick Shinzato

Gustavo Pessin Patrick Shinza Maurício Dias

SemComp 12 - MiniCurso Simulação Virtual de Carros # 76 Aplicações

(22), SEITENDIDO (CONTUNECED 19 a 23 DE CUMBRIO DE 2005 INSTITUTO DE CIÉNCIAS MATEMATICAS E DE COMPUTAÇÃO - USP SÃO CARLOS

