
Neural Networks Applied to Gait Control of Physically
Based Simulated Robots

Milton Roberto Heinen and Fernando Santos Osório
Universidade do Vale do Rio dos Sinos (UNISINOS) - Applied Computing

mheinen@turing.unisinos.br, fosorio@unisinos.br

Abstract

This paper describes our experiments with au-
tonomous robots, in which we use neural networks to
generate and control stable gaits of simulated legged
robots into a physically based simulation environment.
In our approach, the gait is accomplished using an El-
man network trained using a gradient descend method,
more specifically, the RPROP algorithm, a improvement
of the traditional Back-propagation. The model valida-
tion was performed by several experiments realized with
a simulated four legged robot using the ODE physical
simulation engine. The results showed that it is possi-
ble to generate stable gaits using neural networks in an
efficient manner.

1 Introduction

Control of locomotion in legged robots is a chal-
lenging multidimensional control problem[6, 2]. It re-
quires the specification and coordination of motions in
all robots’ legs while considering factors such as sta-
bility and surface friction[14]. This is a research area
which has obvious ties with the control of animal loco-
motion, and it is a suitable task to use to explore this
issue[23]. It has been a research area for a consid-
erable period of time, from the first truly independent
legged robots like the Phony Pony built by Frank and
McGhee[17], where each joint was controlled by a sim-
ple finite state machine, to the very successful algorith-
mic control of bipeds and quadrupeds by Raibert[22].

Lewis[16] evolved controllers for a hexapod robot,
where the controller was evaluated on a robot which
learn to walk inspired on insect-like gaits, after a staged
evolution where its behavior was shaped toward the fi-
nal goal of walking. Bongard[3] evolved the parameters
of a dynamic neural network to control various types of
simulated robots. Busch[5] used genetic programming

to evolve the control parameters of several robot types.
Jacob[13], on the other hand, used reinforcement learn-
ing to control a simulated tetrapod robot.

In these previous cited research works, when they in-
volved solutions based on neurons, they all used only the
topology of a neural network, but not the learning algo-
rithms based on gradient descend, like back-propagation
and its improvements. One of the techniques most used
to adjust the neural weights are the genetic algorithms
(GA)[8, 18], because they do not need local information
for the error minimization, nor the gradient calculation.
This is very useful in the robot control, because it is very
difficult to have some training data for the supervised
learning.

In our previous work[11, 12], we used genetic algo-
rithms [8] to automatically generate a finite state ma-
chine to control simulated legged robots with four and
six legs. Despite of its advantages, genetic algorithms
are a machine learning method[19] not much suitable
for the control generation of legged robots, because the
time spent to evolve the parameters is very long[26].

For this reason, we decided to use a supervised learn-
ing method to adjust the neural weights, more specifi-
cally, we adopted the RPROP algorithm[24]. This train-
ing method is more efficient than the evolutionary meth-
ods, and it is more robust faced to non expected situa-
tions than hand tuned methods.

2 Mobile robot simulation

When someone wants to make experiments in the
mobile robots research area, two alternatives are pos-
sible: to accomplish the experiments directly in a real
robot; or to make experiments using a simulated robot.
The use of a real robot is more realistic, but the simula-
tion have the following advantages[26, 15]:
• When using simulated robots, doesn’t exist the risk of

robot damages;
• Tasks as the exchange and recharge of batteries are not

1



necessary;
• The robot positioning in order to restart a simulation

can be accomplished automatically, without human
intervention;

• The simulation clock can be accelerated, reducing the
total amount of spent time for learning;

• Several different architectures and robot models can
be tested before to do an expensive practical construc-
tion of the robot. In this way it is possible to test and
select the best robot model to construct.
For these reasons, we chose to implement our initial

experiments using a simulated robot, through the im-
plementation of a very realistic robot simulator, using
a physical simulation engine, so we can build simulated
robots very similar to the real models.

2.1 Physics simulation engine

In order to do more realistic mobile robots simula-
tion, several elements of the real world should be present
in the simulated model, doing the simulated bodies to
behave in a similar way related to the reality. Especially,
it is necessary that the robot suffers from instability and
falls down if badly positioned and controlled, and also it
should interact and collide against the environment ob-
jects in a realistic manner. To accomplish that, it is nec-
essary to model the physics laws in the simulation envi-
ronment (e.g. gravity, inertia, friction, collision). Nowa-
days, several physics simulation tools exist used for the
implementation of physics laws in simulations. After
study different possibilities, we chose a widely adopted
free open source physics simulation library, called Open
Dynamics Engine - ODE1.

ODE is a software library for the simulation of ar-
ticulated rigid bodies dynamics. With this software
library, it’s possible to make autonomous mobile and
legged robots simulations with great physical realism.
In ODE, several rigid bodies can be created and con-
nected through different types of joints. To move bod-
ies using ODE, it’s possible to apply forces or torques
directly to the body, or it is possible to activate and con-
trol angular motors. An angular motor is a simulation
element that can be connected to two articulated bodies,
which have several control parameters like axis, angular
velocity and maximum force. With these elements, it’s
possible to reproduce articulations present in real robots,
humans or animals, with a high precision level.

2.2 Modeled robot

In order to maintain the simulation speed in an ac-
ceptable rate, we should use few and simple objects.

1ODE – http://www.ode.org

For this reason, the simulated robot was modeled with
simple objects, as rectangles and cylinders, and they
have only the necessary articulations to perform the gait.
Thus, body parts as the head and the tail are not present
in the modeled robot. In order to keep our robot project
simple, the joints used in the robots legs just move
around the z axis of the robot (the same axis of our
knees), and the simulations just used robots walking in
a straight line. In the near future, we plan to extend our
system to accept more complex robot models and joints.

Figure 1. Robot model used

Several robot types were developed and tested, before
we defined the final main model presented here, that is
shown in Figure 1. The Table 1 shows the dimensions of
the robot in centimeters. The simulated robots dimen-

Table 1. Dimensions of the robot
Dimensions

Part x y z
Body 45.0cm 15.0cm 25.0cm
Thigh 5.0cm 15.0cm 5.0cm
Shin 5.0cm 15.0cm 5.0cm
Paw 8.0cm 5.0cm 9.0cm

sions are approximately the dimensions of a medium
sized dog. The joint restrictions used in the simulated
robot are similar as they biological equivalent, as shows
the Table 2.

Table 2. Joints restrictions
Hip Knee Ankle

Legs min max min max min max
Front -30° 90° -120° 0° -15° 60°
Rear -90° 30° 0° 120° -60° 15°

3 Optimization methods

This section describes the optimization methods used
in this work, which are neural networks, used to gait

2



control, and Powell’s method, used to calculate the in-
verse kinematics and to generate the learning database
generation.

3.1 Artificial neural networks

Through the use of an abstract and simplified model
of human neurons, is possible to develop a neural sim-
ulator capable to classify, to generalize and to learn
how and approximate functions[10]. One of the most
used neural learning models is the so called Multi-
Layer Perceptron (MLP) with Back-propagation learn-
ing algorithm[25]. Some improved versions of the orig-
inal Back-Propagation algorithm were developed in the
few past years, and the RPROP algorithm[24] become
an interesting choice among them.

The RPROP algorithm performs a direct adaptation
of the weight step (learning rate) based on local gradient
information. To achieve this, each weight has its indi-
vidual update value ∆ij , which solely determines the
size of the weight update. This adaptive update-value
evolves during the learning process based on its local
sight of the error function E, according to the following
learning-rule[24]:

∆
(t)
ij =















η+ ∗ ∆
(t−1)
ij , if ∂E

∂wij

(t−1)
∗

∂E
∂wij

(t)
> 0

η− ∗ ∆
(t−1)
ij , if ∂E

∂wij

(t−1)
∗

∂E
∂wij

(t)
< 0

∆
(t−1)
ij , else

(1)
where 0 < η− < 1 < η+, ∂E

∂wij
is the partial derivative

of the error function for the weight wij , and ∆
(t−1)
ij is

the last weight update.
The network topology used in this work was an El-

man network, which are multi-layer back-propagation
networks with a feedback connection from the output of
the hidden layer to its input. This feedback path allows
Elman networks to learn to recognize and generate tem-
poral patterns, as well as spatial patterns[7]. The Fig-
ure 2 shows a diagram of the Elman networks.

Figure 2. Diagram of a Elman network

3.2 Powell direction set method

Powell’s gradient-free methods[20] provide direc-
tions of search that line up with directions conjugate
about the Hessian matrix of the quadratic approximation
to the objective function. The Powell method applied in
the current study is the version described in[21, 1], in
which an initial guess and a set of independent search di-
rections are provided to the algorithm. In each iteration
the method serially performs a sequence of line mini-
mizations along the various directions in the space of
parameters. At the end of each iteration the method re-
places one of the original directions with the line joining
the starting and ending points. The Figure 3 illustrates
the Powell method. Care is taken to ensure that the di-

Figure 3. Powell’s method[21]

rections remain linearly independent. The iteration is
terminated when either the convergence rate or the error
between the predicted and the exact solutions are smaller
than prescribed values. The Powell’s method described
above will converge to the minimum of a quadratic func-
tion in a finite number of iterations[4].

4 Half ellipse control

Initially, the robot gait control was accomplished
modeling the endpoints trajectory through a cyclical
function, specifically a half ellipse. The Figure 4, ex-
tracted from[9], illustrates the half ellipse used. For the
trajectory generation, the endpoints positions in the x
axis are obtained through the equation:

x(t) =











x0 −
l

2
+

2lt

T
if t < T/2

x0 +
l cos(α)

2
if t ≥ T/2

, (2)

where x(t) is the endpoint position at time t, x0 is the
ellipse origin (center) in the x axis (see Figure 4), T

3



Figure 4. Half ellipse trajectory[9]

is the cycle time (one complete step), t is the current
time, l is the ellipse length and α is the current endpoint
angle in relation to ellipse center, calculated through the
equation:

α =
2π

T

(

t −
T

2

)

. (3)

The endpoint position in the y axis is obtained through
the equation:

y(t) =

{

y0 if t < T/2
y0 + h sin(α) if t ≥ T/2

, (4)

where y(t) is the endpoint position at time t, y0 is the
ellipse origin in the y axis, and h is the ellipse height
(see Figure 4). When t >= T , the current time t is
reseted to 0 and a new robot step starts.

The ellipse parameters using in the above equations
are optimized using the Powell’s method[4]. The Table 3
shows the parameter values used in our simulations. The
positions x0 and y0 are in relation of the origin (hip) of
the leg.

Table 3. Ellipse parameters
Parameter Value

T 4.00 seconds
∆t 0.05 seconds
x0 3.50 centimeters
y0 -30.00 centimeters
l 15.00 centimeters
h 8.50 centimeters

After the endpoints coordinates generation, the in-
verse kinematics was calculated using the Powell’s
method, to obtain the expected angles of each joint. In
order to control the joints, the torque applied to each
joint angular motor was calculated by[3]:

τt+1 = max(I(ωt − k(θ − θd)), τmax), (5)

where where θ is the actual joint angle, θd is the desired
joint angle, τmax is the maximum torque ceiling, ω = θ̇
(joint angular velocity), and I is the inertia matrix.

The generated gait using this method was efficient,
but the resulting gait control behavior has shown to be
few robust in non expected situations. For these rea-
sons, we decided to use a neural network inspired in the
Elman-net model to implement the gait control, as de-
scribed below.

5 Neural control

The first step in the neural gait control was to cre-
ate the examples data set to be employed in the ANN
learning. The half-ellipse controller, described above,
was adapted in order to generate a log file, containing
records of: the current joint angles at time t, the sensors
state (bumpers below the paws indicating the leg phase
– 0 = swing phase; 1 = sustained phase), and the desired
joint angles for the next time t+1. In the near future we
plan to use motion capture devices to provide the exam-
ples for the training database.

The learning database was created with 6000 exam-
ples, (3000 for the learning and 3000 for the generaliza-
tion test), each one with 16 inputs and 12 outputs. The
first 12 inputs are the current joint angles, and the 4 last
inputs are obtained through bumpers. The 12 outputs
are the expected joint angles at time t + 1. With the
neural network controller, there is no need to calculate
the inverse kinematics. The neural network used in the
experiments was an Elman network, as shows the Fig-
ure 5. This figure is just illustrative, because we used
in our experiments more neurons and connections per
layer.

Figure 5. Example of an Elman network[3]

The Artificial Neural Network simulator used in our
experiments was the Stuttgart Neural Network Simula-
tor - SNNS2, it is a free software, and a quite complete

2SNNS – http://www-ra.informatik.uni-tuebingen.de/SNNS/

4



neural network simulator that have several additional
tools that allow us to create scripts and execute learning
and simulation tasks in batch mode. The SNNS facili-
ties also simplify the analysis of the obtained results and
creation of graphic plots.

The Table 4 shows the main ANN parameters used in
our simulations. For a complete description of these pa-
rameters, see the SNNS manual. The input layer is fully

Table 4. Neural network parameters
Parameter Value
ANN model MLP - Elman
Learning algorithm RPROP
Number of input units 16
Number of hidden units 10
Number of output units 12
Activation function input Act Identity
Activation function hidden Act TanH
Activation function output Act IdentityPlusBias
Starting learning rate 0.001
Maximum learning rate 0.01
Weight decay 1.0 × 10−5

Teacher forcing 0.0
Weights initialization [−0.0001; 0.0001]
Initial activation (context) 0.2
Maximum of generations 1000

connected to the hidden layer, and the hidden layer is
fully connected to the output layer. In addition, the hid-
den layer is fully, recurrently connected (Elman archi-
tecture). At each time step of the simulation of a robot’s
behavior, the eight sensor signals are scaled to floating-
point values in [−1.0; 1.0] interval, and supplied to the
input layer. The values are propagated to the hidden and
output neurons. The hidden neurons use the hyperbolic
tangent activation function.

6 Results

The Table 5 shows the results obtained in the simula-
tions. The first column (E) is the experiment identifier,
the second column is the mean square error (MSE) in
the learning database, and the last column is the MSE
in the generalization test database (of the best epoch).
The generalization test was performed each 10 epochs.
The last three lines shows the mean (µ), the standard de-
viation (σ) and the 95% confidence interval (CI) of the
five accomplished experiments. The Figure 6 shows the
neural output error evolution curve during the leaning
related respectively to the learning and the generaliza-
tion test databases.

Table 5. Obtained results
E MSE Learning MSE Generaliz
1 0.0104 0.0168
2 0.0094 0.0194
3 0.0124 0.0174
4 0.0119 0.0199
5 0.0086 0.0174
µ 0.0106 0.0182
σ 0.0016 0.0014

CI [0.008;0.012] [0.016;0.019]

Figure 6. Progress of the neural learning

Observing the gait behavior of the robots trained us-
ing neural networks, they are much more stable and ro-
bust than the gait behavior when controlled directly by
the half-ellipse, because the neural network uses sensor
information (bumpers) and have the capacity to general-
ize to non expected situations. The Figure 7 shows the

Figure 7. Half-ellipse robot gait

gait control generated using locus based gait, and The
Figure 8 shows the gait control generated using the neu-
ral network3.

7 Conclusions and perspectives

The main goal of this paper was to describe the use of
a gradient descent learning algorithm (RPROP) to adjust
weights of a recurrent neural network used in a legged

3Some videos of the learned gait control are available in the site
http://www.inf.unisinos.br/˜osorio/leggen

5



Figure 8. Neural network robot gait

robot gait control. For this, it was described the prop-
erties of the neural network used and the methodology
for the generation of the examples database used in the
neural learning. The neural networks results are more
robust than the results obtained by the controller based
in the locus based functions, and the ANN has the ad-
vantage that it does not require the inverse kinematics
calculation.

The perspectives of this work includes to use mo-
tion capture devices to generate the learning database
files, and to use more complex robots, like bipeds. We
want too use more sensor information (gyroscope, ac-
celerometers, sonars) to improve the quality of the ob-
tained gaits. The perspectives also includes to adapt gait
control in order to make possible control robots moving
over irregular surfaces and to climb or to descend stairs.

References

[1] F. S. Acton. Numerical Methods that Work. Harper and
Row, New York, 1970.

[2] G. A. Bekey. Autonomous Robots: From Biological In-
spiration to Implementation and Control. MIT Press,
Cambridge, MA, 2005.

[3] J. C. Bongard and R. Pfeifer. A method for isolating
morphological effects on evolved behaviour. In Proc.
7th Int. Conf. Simulation of Adaptive Behaviour (SAB),
pages 305–311, Edinburgh, UK, Aug. 2002. MIT Press.

[4] R. P. Brent. Algorithms for Minimization without
Derivatives. Prentice-Hall, Englewood Cliffs, NJ, 1973.

[5] J. Busch, J. Ziegler, C. Aue, A. Ross, D. Sawitzki, and
W. Banzhaf. Automatic generation of control programs
for walking robots using genetic programming. In Proc.
European Conf. Genetic Programming (EuroGP), pages
258–267, Berlin, Germany, 2002.

[6] G. Dudek and M. Jenkin. Computational Principles of
Mobile Robotics. Cambridge Univ. Press, Cambridge,
UK, 2000.

[7] J. L. Elman. Finding structure in time. Cognitive Sci-
ence, 14:179–211, 1990.

[8] D. E. Goldberg. Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison-Wesley,
Reading, MA, 1989.

[9] D. Golubovic and H. Hu. Ga-based gait generation
of sony quadruped robots. In Proc. 3th IASTED Int.

Conf. Artificial Intelligence and Applications (AIA), Be-
nalmadena, Spain, Sept. 2003.

[10] S. Haykin. Neural Networks: A Comprehensive Founda-
tion. Prentice-Hall, Upper Saddle River, NJ, 2 edition,
1999.

[11] M. R. Heinen and F. S. Osório. Applying genetic al-
gorithms to control gait of physically based simulated
robots. In Proc. IEEE Congr. Evolutionary Computation
(CEC), Vancouver, Canada, July 2006.

[12] M. R. Heinen and F. S. Osório. Gait control generation
for physically based simulated robots using genetic al-
gorithms. In Proc. Brazilian AI Symposium (SBIA), to
appear, LNCS, Ribeirão Preto, SP, Brazil, Oct. 2006.
Springer.

[13] D. Jacob, D. Polani, and C. L. Nehaniv. Legs than can
walk: Embodiment-based modular reinforcement learn-
ing applied. In Proc. IEEE Int. Symposium on Computa-
tional Intelligence in Robotics and Automation (CIRA),
pages 365–372, Espoo, Finland, June 2005.

[14] N. Kohl and P. Stone. Policy gradient reinforcement
learning for fast quadrupedal locomotion. In Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), pages
2619–2624, New Orleans, LA, Apr. 2004.

[15] A. M. Law and D. W. Kelton. Simulation Modeling and
Analysis. McGraw-Hill, New York, 2000.

[16] M. A. Lewis, A. H. Fagg, and A. Solidum. Genetic pro-
gramming approach to the construction of a neural net-
work for control of a walking robot. In Proc. IEEE Int.
Conf. Robotics and Automation (ICRA), pages 2618–
2623, Nice, France, 1992.

[17] R. B. McGhee. Robot locomotion. Neural Control of
Locomotion, pages 237–264, 1976.

[18] M. Mitchell. An Introduction to Genetic Algorithms.
MIT Press, Cambridge, MA, 1996.

[19] T. Mitchell. Machine Learning. McGrall-Hill, New
York, 1997.

[20] M. J. D. Powell. An efficient method for finding the
minimum for a function of several variables without cal-
culating derivatives. The Computer Journal, 7:155–162,
1964.

[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in C: The Art of Scientific
Computing. Cambridge Univ. Press, Cambridge, MA,
1992.

[22] M. H. Raibert. Legged Robots That Balance. MIT Press,
Cambridge, MA, 1986.

[23] R. Reeve and J. Hallam. An analysis of neural mod-
els for walking control. IEEE Trans. Neural Networks,
16(3):733–742, May 2005.

[24] M. Riedmiller and H. Braun. A direct adaptive method
for faster backpropagation learning: The RPROP al-
gorithm. In Proc. IEEE Int. Conf. Neural Networks
(ICNN), pages 586–591, San Francisco, CA, Mar. 1993.

[25] D. Rumelhart, G. Hinton, and R. Williams. Learning
Internal Representations by Error Propagation. MIT
Press, Cambridge, MA, 1986.

[26] K. Wolff and P. Nordin. Evolutionary learning from first
principles of biped walking on a simulated humanoid
robot. In Proc. Advanced Simulation Technologies Conf.
(ASTC), Orlando, FL, Apr. 2003.

6


