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Abstract— The main goal of this paper is to describe our
research and implementation of a handwritten signature au-
thentication system based on artificial neural networks. In
this system the authentication process occurs in the following
way: firstly, the users’ signatures are read using a pen tablet
device and then stored; after that some adjustments in position
and scale are accomplished; representative signature features
are extracted; the input space dimensionality is reduced using
principal component analysis; and finally, the users’ signatures
are classified as authentic or not, through the use of a neural
network. Several experiments were accomplished using a 2440
real signatures database, and the obtained results were very
satisfactory.

I. INTRODUCTION

Nowadays, one of main problems in computer security
systems is the users’ authentication, that is, how to assure that
the one is trying to access a system is really the legitimate
user. In many information systems, the users’ authentication
is assured through the use of alphanumeric passwords, which
need to be memorized by the users and maintained safe
from other people. Even if this is the most used users’
authentication method, password authentication has some
important security vulnerabilities, mainly because passwords
can be easily stolen by someone else.

In order to overcome this password related security prob-
lem, biometric authentication techniques based on physio-
logical characteristics, like fingerprint identification, iris and
retina recognition were also adopted to guarantee users’
authenticity[1]. These techniques are much more secure and
effective than passwords, but there were some disadvantages,
mainly because they are very intrusive[2], [3]. For example,
fingerprint identification have a negative connotation, be-
cause this procedure is related to criminal investigations[4].

Beyond the human physiological biometric features, we
can also adopt behavioral biometric characteristics for users’
authentication, as for example handwritten signatures[3],
[5]. Behavioral biometric methods have several advantages
related to other techniques. The first advantage is directly
related to the security level, because in opposition to pass-
words, even if someone knows the user signature, usually
it is not possible to reproduce easily this signature. The
reproduction of a signature is more difficult as, besides
the final signature shape, we include behavioral parameters
related to user pen movements. The other advantage come
from the user’s comfort, because users have the habit of
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use handwritten signatures in business transactions, and they
feel secure regarding this authentication method. The degree
of intrusion presented in signature authentication systems is
very low, and the necessary hardware has a low cost too
(usually costing from U$30 to U$100).

Although it has the described advantages, the handwritten
signatures authentication is a problem difficult to solve.
This is due to the large variability that exists between
signatures of different people and even in the signatures
of a single person[6]. This variability leads to the use of
solutions based on machine learning techniques, like artificial
neural networks, to achieve better results compared to other
solutions[7].

In this work we developed a handwritten signature au-
thentication methodology and its implementation in a system
prototype[8], [9], [10], [11]. This paper is structured as
follows: the Section II present some concepts associated
to signature authentication; the Section III describes some
machine learning techniques, like artificial neural networks
and principal component analysis; the Section IV describes
the proposed signatures authentication system and the devel-
oped prototype; the Section V shows the experiments results
and the Section VI presents some final remarks and future
research perspectives.

II. HANDWRITTEN SIGNATURE AUTHENTICATION

A signature authentication system is a software responsible
for validating signatures, indicating if a signature is authentic
or not. When a signature is not authentic, probably it can be
categorized in one of these three different forgeries[12], [8]:

• Random forgeries: these forgeries are accomplished by
people that ignore the design of the original signatures,
or don’t have the ability to correctly reproduce it;

• Traced forgeries: these forgeries are accomplished fol-
lowing the original signature outline available in a
printed form, resulting in a forgery with a shape quite
close to the original signature shape;

• Skilled forgeries: these forgeries are accomplished by
expert people that possesses the ability to reproduce
signatures in a very satisfactory way[13].

The signatures data acquisition and authentication can be
implemented in two different ways: on-line and offline[12].
The offline authentication method uses previously drawn
signatures in paper sheets, which are digitalized later using
a scanner. After that, they are treated by the signature
authentication system. The on-line signature authentication
systems use a special hardware device to directly input the
signature drawn to the system, like a Pen Tablet (Figure 1).



Fig. 1. Example of a digitalizing tablet

The on-line signature authentication has several advan-
tages related to the offline authentication[8], [11]:

• Captures more information: besides the visual signa-
ture features, it is also possible to obtain temporal
and dynamical signature information (user behavioral
information);

• Captures better information: a scanner digitalized signa-
ture can have a high level of noise (image artifacts and
distortions), what hinders the authentication process.
Pen tablet devices can provide better signature data.

• Popularization of tablet based input devices (e.g. palm-
tops, handhelds and tablets), simplify data acquisition.

In this work, we chose to use on-line signatures’ authenti-
cation due to these main advantages, and also because we
consider this method more effective and well adapted to
electronic transactions.

III. MACHINE LEARNING

According to Mitchell[14], a program is capable to learn
when its performance is improved with the experience in
a certain task. So, to define a machine learning problem,
we should identify three fundamental characteristics: the task
to be learned, the performance measure and the experience
source. It is also necessary that the knowledge to be learned
through the experience, called objective function, must be
well defined. In the case of signatures authentication, the
knowledge that must be learned is a signature database
composed of previously well classified (as authentic or
not) signatures. This kind of application problem adopts
supervised machine learning methods. Therefore, the task
to be learned is the signature classification, the experi-
ence source is the signatures database and the performance
measure is the evaluation of the correct answers rate in
the overall signature authentication task. Nowadays, several
machine learning techniques can be used for signatures’
authentication, as for example, induction of decision trees,
fuzzy inference systems, genetic algorithms[15] and artificial
neural networks[16], [17].

A. Artificial Neural Networks

Through the use of an abstract and simplified model of
human neurons, is possible to develop a neural simulator
capable to classify, to generalize and to learn how to classify

and approximate functions. In this work we are particularly
interested in the artificial neural networks (ANN) classifica-
tion properties. One of the most used neural learning models
is the so called multi-layer perceptron (MLP) with back-
propagation learning algorithm[16]. Some improved versions
of the original back-propagation algorithm were developed
in the few past years, and the Resilient Propagation (RPROP)
algorithm[18] become an interesting choice among them. The
RPROP algorithm performs a direct adaptation of the weight
step (learning rate) based on local gradient information. To
achieve this, each weight has its individual update value ∆ij ,
which solely determines the size of the weight update. This
adaptive update-value evolves during the learning process
based on its local sight of the error function E, according to
the following learning-rule[18]:
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is the partial derivative of

the error function for the weight wij , and ∆
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weight update.
In order to learn a specific task, it is necessary a database

containing training examples with input patterns and ex-
pected answers (patterns and their corresponding classes).
This learning database is presented to the artificial neural
network, which can learn how to answer in a similar way to
the database examples, classifying the patterns. It can also be
used a second database for learning validation (evaluation of
generalization level), that is only used to evaluate the ANN
performance (it is not used to adjust the ANN parameters
and weights). This second database is different from the one
used in the learning task[19]. This type of learning is known
as supervised learning with cross-validation[17].

Through an iterative process, learning database examples
are presented to the artificial neural network, adapting the
neural network connection weights. These weights simulate
the reinforcement and inhibition of synaptic connections
present in real neurons. The neural learning occurs from this
weights adaptation. The weights’ optimizations are respon-
sible to do the neural network learn how to answer correctly
to the input data, accordingly to the examples contained in
the learning database.

B. Principal Component Analysis
Principal component analysis (PCA) [20] is an essential

technique in data compression and feature extraction and
selection. Methods for input space dimensionality reduction,
as the PCA, are used to discard those linear combinations of
input variables which have small variances and to preserve
only those that have large variances. Even if all linear
combinations are maintained, when the variances are as non
uniform as possible, variable-length coding schemes allow a
very efficient coding and decoding[21].

Assume that x is an n-dimensional input data vector that
is zero mean centered. The purpose of the PCA is to find



those p (p ≤ n) linear combinations wT
1 x,wT

2 x, · · · , wT
p x of

the elements of x that maximizes

E{(wT
i x)2}, i = 1, · · · , p (2)

under the constraints

wT
i wj = δij , j < i. (3)

The solution for the vectors w1, · · · , wp are the p dominant
eigenvectors of the data covariance matrix

C = E{xxT }. (4)

These are the p orthogonal unit vectors c1, · · · , cp given by

Cci = λici (5)

where λ1, · · · , λp are the p largest eigenvalues of matrix C in
descending order of magnitude. The first linear combination
cT
1 x is called the first principal component, the second linear

combination cT
2 x is called second principal component, and

so on[21].
In a signature authentication system, each input variable

is a feature extracted from the signature, and a signature
description can be composed by several features. Thus, we
can use the PCA to reduce the input space dimensional-
ity, discarding those linear combinations that have small
variances, and retaining only those terms that have large
variances[17].

IV. PROPOSED SYSTEM

The main goal of this paper is to propose a methodology
for on-line handwritten signature authentication based on ar-
tificial neural networks. To validate our approach, a practical
system was proposed and implemented in a prototype1. In
the proposed system, the signature authentication is accom-
plished in the following way:

• The signatures are collected and stored in a database;
• Some position and scale adjustments are accomplished

over the signatures;
• Relevant features used in the authentication process are

extracted from the signatures;
• The input space dimensionality is reduced using PCA;
• The signatures’ authentication is accomplished using

neural networks.

A. Signature Acquisition
In order to validate the proposed system, it was necessary

the creation of a signatures database. Thus, it was developed
a module of the system called Data Acquisition Module.
This module is responsible for read the signature data from
the tablet and to save these data. This module generates a
signature description file, where each signature is composed
by a sequence of pen coordinates (x, y), state (1 or 0: drawing
or pen lifted up) and time stamp for each captured point (in
milliseconds). The pen tablet we used in the experiments
with our system was a SuperPen WP4030, manufactured by
UC-Logic2. The Figure 2 shows an example of a typical
signature (the captured points were highlighted).

1NeuralSignX – http://www.inf.unisinos.br/˜osorio/neuralsignx/
2UC-Logic SuperPen – http://www.superpen.com/

Fig. 2. Example of a typical signature

The signatures’ database used in our experiments was
collected during one year, and each user contributed with
several signatures picked up in different moments, so typical
variations that happen along the time in a signature are
also present in the database. The composition of the 2440
signatures database was the following:

• 1800 authentic signatures, accomplished by 60 different
users (30 signatures per user);

• 400 handwriting images, representing 40 drawing mod-
els (10 patterns per model);

• 120 traced forgeries;
• 120 skilled forgeries;
In our initial experiments it was determined that about 10

signatures per user would be enough for an adequate neural
network learning. Since the learning validation process needs
more different signatures (cross-validation), we decided to
collect up to 30 signatures per user, so we were able to learn
and to test properly the authentication task.

The handwriting images represent various drawings, that
don’t have a direct relationship with the user’s name[22]. The
traced forgeries were accomplished following the original
signature outline available in a printed form, and the skilled
forgeries were accomplished by expert people that practiced
for some time until to be able to reproduce the authentic
signatures in a very satisfactory way.

Once the signatures database was created, position and
size adjustments were accomplished over these signatures,
aiming to become the authentication process more robust.
The position adjustments minimize the variations in the
signature position over a virtual grid. These variations are
common among different signatures from a single person,
since the signature position can be displaced according to its
starting point in the grid. The implemented algorithms allow
to adjust signatures related to the upper left corner or to the
signature center of gravity. The scale adjustments allow to
resize the signatures to a standard size, so the differences of
scale among the signatures of users are minimized;

B. Feature Extraction

After the signatures database was created and signature
adjustments were done, the extraction of features was ac-
complished. Some techniques of signature features extraction
used in our system prototype were found in the literature[23],
[24], [25], and many other feature extraction techniques
were created or specifically adapted by us, where a detailed
description of them can be found in [26], [8], [9], [10], [11].
After the study and implementation of the signature features



extraction methods, a new study was accomplished in order
to verify the relevance of each feature. The main signature
features we selected to use in this work are (the numbers
between parentheses represents the number of neural entries
for each feature):
Signature elapsed time: the signature time duration from the
start until the end of the signature drawing (1 entry);
Quantity of pen lifts: the number of times that the pen leave
the tablet during the signature drawing (1 entry);
Total signature length: the total distance covered (path
length) by the pen during the signature drawing (1 entry);
Medium and maximum pen velocity: the overall medium
speed and the maximum speed of pen movements (2 entries);
Number of pen direction changes: the quantity of times
the pen changed of direction related to the x and y axis. We
consider that a direction change occurred when an increasing
coordinate value began to decrease, and vice versa (2 entries);
Cardinal points measure: the number of pseudo-vectors
(simplified structural shape) that are pointing to each cardinal
point section (N, S, E, W, NE, NW, SE, SW) [9], [10]. The
Figure 3 shows the eight cardinal point sections defined and
some signature pseudo-vectors used to quantify this measure
(8 entries);

Fig. 3. Cardinal point sections and pseudo-vectors

Pseudo-vectors total length: the total length of all pseudo-
vectors pointing to the same cardinal point (8 entries);
Signature density grid: the signature is divided into several
cells, and for each cell the density (number of points falling
into this cell) is calculated (adapted from [7]). For the cell
i, the density Di is calculated through the equation:

Di =
npi − npmin

npmax − npmin

, (6)

where npi is the number of points falling into the cell i,
npmin is the number of points of the least dense cell, and
npmax is the number of points of the most dense cell. The
Figure 4 demonstrates the use of this feature, in which high
density cells in the grid are more dark than others. (48
entries);
Vertical and horizontal line intersections: the bitmap con-
taining the signature is intersected by virtual lines that cut

Fig. 4. Signature density grid

the signature in fixed intervals, and for each virtual line
we count how many times this line intersects the signature
drawing[26]. The Figure 5 shows the vertical and horizontal
lines used by this feature (26 entries);

Fig. 5. Vertical and horizontal line intersections

Sequential signature sampling: the whole signature trajec-
tory is represented only by a small number (predefined) of
sampled points. The Figure 6 shows the sequential signature
sampling. (16 entries);

Fig. 6. Sequential signature sampling

Symmetry: the symmetry level of the signature is measured
in relation to the x and y axis[26] (2 entries).

C. Input Space Reduction
To reduce the total number of neural network inputs, and

to avoid the problems that usually happen when this number



is very high[17], the features Cardinal points measure (Car-
dinal), Pseudo-vectors total length (Vectors), Vertical and
horizontal line intersections (Intersec), Sequential signature
sampling (Sequent) and Signature density grid (Density),
which result in several ANN inputs, were submitted to
PCA. The PCA was used to extract only the first principal
components of each feature, and thus to reduce the neural
network input space, with the minimum loss of information
as possible.

The Table I shows the cumulative variance of the first
six components for the features mentioned above. The first

TABLE I
CUMULATIVE VARIANCE OF THE FIRST SIX COMPONENTS

Feature C1 C2 C3 C4 C5 C6 NI NC
Density 19.8 27.6 32.8 37.1 41.4 45.2 48 12
Intersec 29.5 44.5 52.0 57.3 61.4 65.2 26 5
Sequent 21.5 32.5 42.6 51.7 59.1 65.8 16 6
Cardinal 56.8 68.9 77.5 85.7 91.0 95.3 8 3
Vectors 25.6 44.9 59.9 71.7 80.7 89.4 8 3

column (Feature) shows the short name of the features, the
columns C1 to C6 show the cumulative variance (percentage)
for the first six PCA components, the column NI shows the
original number of inputs for each feature and the column
NC shows the number of factors selected to be used in the
signature authentication process. We adopted the selection of
PCA components that explain at least 60% of the variance
for each feature in the database. The cumulative variance
for the first twelve components of the Signature density grid
feature is 62.37%.

Using the PCA, the input space dimensionality was re-
duced from 117 to 40 inputs. The only disadvantage of input
space reduction is that a small part of the total available
information is lost. However, the ANN generalization rate
increased with this input space dimensionality reduction,
which justifies some information loss.

D. Signatures Authentication

After the feature extraction and the dimensionality reduc-
tion processing, the neural network is used to authenticate the
signatures. The neural network receives the features values
and uses them to classify the signatures as authentic or not.
For the signatures classification, the artificial neural network
model used was a MLP with back-propagation. It was also
used for weights optimization a learning algorithm with
a better performance than the traditional back-propagation,
the algorithm RPROP[18]. This algorithm was selected be-
cause it is more efficient than back-propagation, making the
learning process much faster. The neural network simula-
tor adopted was the Stuttgart Neural Network Simulator -
SNNS3, it is a free software, and a quite complete neural
network simulator that have several additional tools that
allow us to create scripts and execute learning and simulation
tasks in batch mode. The SNNS facilities also simplify the
analysis of the obtained results and creation of graphic plots.

3SNNS – http://www-ra.informatik.uni-tuebingen.de/SNNS/

The main ANN parameters we configured to use with
the SNNS simulator are showed in Table II. Because the

TABLE II
NEURAL NETWORK PARAMETERS

Parameter Value
ANN model MLP - back-propagation

Learning algorithm Resilient propagation
Number of inputs 117 or 40

Number of outputs 1
Number of hidden neurons 0

Activation function Sigmoid
Learning rate 0.1

Maximum of generations 1000
Sigmoid prime offset 0.1

Weight decay 0 or 1.0 × 10
−38

Score threshold 0.4

RPROP automatically adjust the values for the Learning rate
during the simulation, the default value (0.1) was retained
for this parameter. Several preliminary experiments are ac-
complished, and it was verified that no neurons are necessary
in the hidden layer (the patterns are linearly separable). The
experiments were accomplished during 1000 epochs each.
The neural network we used in our experiments had only
1 output, The value 1.0 obtained in the output represents
an authentic signature of a specific user, and the value 0.0
represents a non authentic signature of this user. The Score
threshold was fixed in 0.4.

In order to make the experiments statistically valid,
the simulations were accomplished using a ten-fold cross-
validation method. For each individual fold we also repeated
10 times the simulation using exactly the same data and
parameters, with only different initializations of the weights.
The folds division were obtained ensuring the proportion
between examples of the 0 and 1 class in each fold.

V. RESULTS

This section describes the main results obtained in the ex-
periments accomplished using our system prototype. Initially
we present the experiments accomplished using the complete
input space dimensionality (117 entries), and after we present
the experiments accomplished using a reduced input space
dimensionality (40 entries), and we conclude this section
presenting a comparison between the results of the different
experiments.

A. Full Features Experiments

In the first set of experiments, we used the whole set of
features available in the system. The neural network used in
the experiments had 117 neurons in the input layer and one
neuron in the output layer. The neural network parameters
used in the simulations are showed in Table II (in these
experiments the weight decay was set to 0.0). The signature
database was composed of 2440 examples always divided
into 10 different folds (10-fold cross-validation).

The Table III shows the results obtained in the first
experiments for ten different users in the generalization test
database. For each user, it was used a 10-fold cross-validation



method, and it was calculated the mean MSE error (mean
square error), the mean and standard deviation values of the
following measures: correct authentication rate (HIT), false
positive rate (FPR) and false negative rate (FNR). The first
column (U) shows the user identification number. All the
values presented in the Table III are expressed in percentages,
excluding the MSE error. The Table IV shows the results

TABLE III
SIMULATION RESULTS USING THE COMPLETE SET OF INPUT FEATURES

(GENERALIZATION TEST DATABASE)

MSE HIT FPR FNR
U µ µ σ µ σ µ σ

01 2.06e-02 97.94 4.17 2.02 4.21 4.67 10.56
02 2.63e-03 99.72 0.24 0.06 0.09 18.00 17.86
03 7.36e-04 99.92 0.15 0.00 0.00 6.33 12.52
04 1.43e-03 99.85 0.16 0.07 0.09 6.67 11.44
05 8.11e-04 99.91 0.14 0.00 0.01 6.67 11.33
06 1.91e-03 99.80 0.26 0.07 0.17 10.33 17.88
07 3.19e-03 99.67 0.18 0.02 0.04 25.33 14.92
08 1.12e-03 99.87 0.18 0.02 0.05 8.67 14.59
09 1.94e-03 99.79 0.23 0.07 0.09 11.67 18.21
10 4.15e-04 99.95 0.06 0.02 0.02 2.33 3.53

obtained in the same experiments, but showing the results
for the learning database (instead of the test database results),
which contains 2196 patterns of the class 0 and 27 patterns
of the class 1. The amount of time necessary to simulate the
Table III experiments was 2.57 hours in a typical computer4.

TABLE IV
SIMULATION RESULTS IN THE LEARNING DATABASE

MSE HIT FPR FNR
U µ µ σ µ σ µ σ

01 2.00e-02 98.00 4.18 2.01 4.23 1.19 1.58
02 1.81e-03 99.82 0.04 0.00 0.00 14.70 2.79
03 3.48e-04 99.96 0.04 0.00 0.00 2.85 3.21
04 3.96e-04 99.96 0.05 0.01 0.02 2.52 3.00
05 2.09e-04 99.98 0.03 0.00 0.00 1.63 1.91
06 6.53e-04 99.93 0.06 0.02 0.02 3.96 3.78
07 1.53e-03 99.85 0.09 0.00 0.00 12.48 7.48
08 2.82e-04 99.97 0.06 0.00 0.00 2.41 4.99
09 3.72e-04 99.96 0.08 0.01 0.03 2.30 4.67
10 3.18e-04 99.97 0.06 0.00 0.00 2.59 4.59

False positive (FP) authentications occur when a false
signature is classified as authentic, and false negative (FN)
authentications occur when an original signature is classified
as not authentic. The Figure 7(a) shows a boxplot graph of
the learning rate (HIT) showed in Table III.

Through the results showed in Table III, we notice that the
correct authentication rate (HIT) is very high. These results
are somewhat expected, since for each fold containing 244
examples, 241 patterns are of the class 0 (non authentic) and
only 3 are examples of the class 1 (authentic signatures). If
the neural network always answers with 0 for all the patterns
in validation set, we can achieve a correct authentication rate
of 98.77%. So, we expect the HIT rate to be at least superior

4Processor AMD Athlon XP 1.54GHz, 512MB of RAM Memory

(a) HIT (b) FNR

Fig. 7. Boxplot graph for the experiments using the complete feature set

to this value, in order to really consider that the learning
was successful. In our case, a more reliable measure used to
analyze the results is the false positive rate (FPR) and false
negative rate (FNR), that are calculated through the following
equations:

FPR =
NFP

Ncl0
× 100 (7)

FNR =
NFN

Ncl1
× 100 (8)

where NFP is the number of false positives, NFN is the
number of false negatives, NCl0 is the number of patterns
of the class 0 and PCl1 is the number of patterns of the
class 1. The Figure 7(b) shows a boxplot graph of the false
negative rate (FNR) for the Table III experiments. Except
for the user 01, for all other users the FPR was very small
(less than 0.1%), but the FNR was high, among 2.33% and
25.33%. In an on-line signature authentication system, the
FPR must be as low as possible, even if it increases the
FNR a little bit. This is because we are able to request to
the user to repeat the signature, and this is less harmful than
to accept a false signature. A FNR greater then 20% is also
not acceptable, because in this case there will be too many
authentic signatures rejected.

According to Haykin[17], when a neural network have too
many free parameters (connection weights), and if the learn-
ing database doesn’t have a sufficient number of examples,
an overfitting problem will then occur. When this problem
occurs, even a cross-validation method can’t avoid it. This
happens when the learning and validation databases are very
small and consequently don’t contain sufficient data variance.

In our case, we have a reduced set of pattern for the class
1 (just 30 signatures per user), and a large number of free
parameters in the network (118 weights), thus the neural
network tends just to decorate the training dataset patterns.
In order to avoid this problem, we have the following
possibilities[17]:



• Reduce the input space dimensionality using PCA;
• Force some of the synaptic weights to take values close

to zero using a weight decay method;
• Reduce the network complexity using some network

pruning technique;
Thus, we chose to use input space dimensionality reduc-

tion with PCA and also to use a small weight decay term. We
verified through several experiments that if the weight decay
term goes larger than 1.0×10−36, the neural network always
answers with 0 for all patterns, (weight decay seems to be
stronger than the error adjustment), and thus we adopted a
weight decay term equal to 1.0 × 10−38 in the following
experiments.

B. Principal Components Experiments

The Table V shows the results obtained in the generaliza-
tion test database for the same users described previously,
but using input space dimensionality reduction and a weight
decay term equal to 1.0 × 10−38. The neural network used
in these experiments had 40 neurons in the input layer and
one neuron in the output layer. The neural network used
the same parameters as indicated in the earlier experiment,
except for weight decay term. The amount of time necessary
to simulate the Table V experiments was 43.33 minutes in the
same typical computer. Each individual run (1000 epochs)
takes about 2.6 seconds.

TABLE V
SIMULATIONS USING INPUT SPACE DIMENSIONALITY REDUCTION

MSE HIT FPR FNR
U µ µ σ µ σ µ σ

01 7.68e-04 99.92 0.12 0.07 0.13 0.33 1.05
02 1.63e-03 99.82 0.25 0.10 0.21 6.33 11.05
03 1.47e-03 99.83 0.19 0.14 0.18 3.00 6.18
04 1.37e-03 99.85 0.23 0.06 0.09 7.33 13.77
05 7.52e-04 99.92 0.12 0.04 0.08 3.33 5.88
06 1.47e-03 99.84 0.29 0.06 0.13 8.00 15.33
07 1.04e-03 99.88 0.18 0.06 0.08 5.00 9.72
08 4.09e-05 100.0 0.01 0.00 0.01 0.00 0.00
09 5.33e-04 99.94 0.12 0.03 0.09 2.33 7.38
10 4.21e-04 99.95 0.10 0.04 0.10 0.67 1.41

We observed in the Table V that the FNR was significantly
reduced, and the general mean was 3.63% (mean of all rows
of the FPR µ column). The Figure 8(a) shows a boxplot
graph of the learning rate (HIT) and the Figure 8(b) shows a
boxplot graph of the false negative rate (FNR) for the Table V
experiments.

Comparing the results of these two experiments described
in tables III and V, and observing the boxplot graphics
of Figures 7 and 8, we can clearly notice that a better
performance was achieved using PCA. Besides that, the
correct authentication rate (HIT) in this second experiment
had a smaller variability, what demonstrates that it was less
sensitive to small variations in the dataset. Analyzing the
false negative rate (FNR) of the two experiments, we noted
that the input space dimensionality reduction and a little
weight decay term are capable to improve the generalization
rate of the system.

(a) HIT (b) FNR

Fig. 8. Boxplot graph for the experiments using a reduced input space

The Table VI shows in details the results obtained in the
test generalization database for each fold simulation of the
user 03 (detailing the results of the same user presented in
Table V). In this table, each line represents the mean value for
the experiments accomplished for each fold, and the columns
represents the HIT, FPR and FNR rate as in the Table V
columns. The worst result was obtained in the fold 07, that
had 20% of false negative rate (FNR).

TABLE VI
DETAILED RESULTS FOR ALL FOLDS OF THE USER 03

MSE HIT FPR FNR
F µ µ σ µ σ µ σ

01 0.00e+00 100.0 0.00 0.00 0.00 0.00 0.00
02 5.53e-03 99.39 0.29 0.58 0.29 3.33 10.54
03 0.00e+00 100.0 0.00 0.00 0.00 0.00 0.00
04 8.56e-04 99.92 0.17 0.04 0.13 3.33 10.54
05 6.17e-04 99.88 0.20 0.12 0.20 0.00 0.00
06 2.05e-03 99.80 0.22 0.21 0.22 0.00 0.00
07 2.03e-03 99.71 0.28 0.04 0.13 20.00 17.21
08 2.41e-03 99.71 0.28 0.29 0.28 0.00 0.00
09 1.21e-03 99.88 0.20 0.08 0.17 3.33 10.54
10 1.20e-07 100.0 0.00 0.00 0.00 0.00 0.00

The Figure 9 shows the evolution of the MSE error in
the training dataset (doted lines) and the validation dataset
(solid lines) during training in one of the accomplished
experiments. In this experiment, we can notice that the best
generalization cycle was about 400 cycles, and after that the
MSE error for the training database continues to decrease,
but in the the MSE error for the validation database begins
to increase. This behavior is because the neural network
begins to specialize in specific characteristics of the training
dataset, that are not present in the validation dataset. In all
experiments, the learning was simulated during 1000 cycles,
and the synaptic weights of the best generalization cycle were
saved, and later they were used in the final generalization test.



Fig. 9. Progress of the MSE error

VI. CONCLUSIONS

The main goal of this work was the study, research and
development of a signature authentication system that should
be able to authenticate users based on handwritten signatures.
In order to reach this objective an extensive study of several
topics related to pattern recognition, signature authentica-
tion, machine learning and artificial neural networks was
accomplished. Our approach to deal with this problem was
described and we implemented an on-line signature authenti-
cation system prototype, whose implementation use principal
component analysis to reduce the input space dimensionality
and artificial neural networks for the authentication task. The
system prototype is complete and operational, and it was used
to validate our approach and to evaluate the authentication
system performance.

The results obtained in the simulations using our sys-
tem prototype showed that this kind of on-line signature
authentication system is not only viable, but it is also a
very good solution to improve authentication security in
information systems. The obtained results also proved that
the neural networks are very suitable to be used in signature
authentication tasks. The signature features we proposed and
selected were very effective allowing to obtain a proper
signature classification system. The selected input features
and the input space dimensionality reduction allowed the
neural network to obtain high learning rates and a very
good generalization level, resulting in low incorrect signature
authentication rates. This high accuracy presented by the
system is fundamental to provide a really secure signature
authentication system.

Our future research work is being directed to improve the
learning task, using Radial-Basis Function Networks (RBF)
and Support Vector Machines[17]. Besides that, our future
research work is also being directed to hybrid authentication
systems. The hybrid systems, through the combination of dif-
ferent techniques (e.g. signatures, fingerprints, eye scanning,
passwords, face recognition and voice), can improve authen-
tication systems performance to a virtually unbreakable level
of security.
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