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Abstract

This paper describes LegGen simulator, used to automat-
ically create and control stable gaits for legged robots into a
physically based simulation environment. In our approach,
the gait is defined using two different methods: a finite state
machine based on robot’s leg joint angles sequences; and a
recurrent neural network. The parameters for both methods
are optimized using genetic algorithms. The model valida-
tion was performed by several experiments realized with a
robot simulated using Open Dynamics Engine (ODE) phys-
ical simulation engine. The results showed that it is possible
to generate stable gaits using genetic algorithms in an effi-
cient manner, using these two different methods.

1 Introduction

The autonomous mobile robots have been attracting the
attention of a great number of researchers, due to the chal-
lenge that this new research domain proposes: make these
systems capable of intelligent reasoning and able to interact
with the environment they are inserted in, through sensor’s
perception (infrared, sonar, bumpers, gyro, etc) and motor’s
action planning and execution [5, 14]. At the present time,
the most part of mobile robots use wheels for locomotion,
what does this task easy to control and efficient in terms of
energy consumption, but they have some important disad-
vantages since they have problems to move across irregular
surfaces and to cross borders and edges, like stairs. So, in
order to make mobile robots better adapted to human en-
vironments and to irregular surfaces, they must be able to
have a similar locomotion mechanism used by the humans
and animals, that is, they should have legs [5, 1].

However, the development of legged robots capable to
move in irregular surfaces is a quite difficult task, that needs
the configuration of many gait parameters. The manual con-
figuration of these parameters demands a lot of effort and
spent time of a human specialist, and the obtained results
are usually suboptimal and specific for one robot architec-

ture [4]. Thus, it is interesting to generate the robot gait
configuration in an automatic manner, using machine learn-
ing techniques to perform this task.

In our previous works, we made a comparative study be-
tween robots with four (tetrapod) and six (hexapod) legs
[13], and also about the use and the influence of differ-
ent fitness functions [9, 10] used in robot control evolu-
tion. This paper shows a comparative study between the
following legged robot control strategies: (i) Control based
on FSM (finite state machine); (ii) Control based on ANN
(artificial neural networks). In both strategies the parame-
ters optimization was done using genetic algorithms (GA).

This paper is structured as follows: Section 2 describes
several concepts relative to mobile robots simulation; Sec-
tion 3 describes related works in control of legged robots;
Section 4 describes the proposed model, called LegGen;
Section 5 describes the accomplished experiments and the
obtained results; and Section 6 provides some final conclu-
sions and future perspectives.

2 Mobile Robot Simulation

When someone wants to make experiments in the mobile
robots research area, two alternatives are possible: (a) to
accomplish the experiments directly in a real robot; or (b) to
make experiments using a simulated robot. The use of a real
robot has the advantage of to be realistic, but the simulation
have the following advantages[23, 17]:

• When using simulated robots, does not exist the risk of
robot damages;

• Tasks as the recharge of batteries are not necessary;
• The robot positioning in order to restart a simulation

can be accomplished without human intervention;
• The simulation clock can be accelerated, reducing the

total amount of spent time for learning;
• Several different architectures and robot models can be

tested before the construction of the robot.
For these reasons, we chose to implement our initial ex-

periments using a simulated robot, because this makes pos-
sible to discover the most efficient robot architecture to be
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built in the future. Once the physical robot construction
is finished, the control model learned using the simulated
robot may be quickly adapted to the real robot, and only
a few adjustments may be necessary in order to adapt the
simulated model to the reality. Based on these main ideas,
we chose to implement a very realistic robot simulator, us-
ing a physical simulation engine, so we can build simulated
robots very similar to the real models.

2.1 Physics simulation engine

In order to obtain a more realistic mobile robots simu-
lation, several elements of the real world should be present
in the simulated model, doing the simulated bodies to be-
have in a similar way related to the reality and also to inter-
act with the environment they are inserted in. Especially, it
is necessary that the robot suffers from instability and fall
down if badly positioned and controlled, and also it should
interact and collide against the environment objects in a
realistic manner [20]. To accomplish that, it is necessary
to model the physics laws in the simulation environment
(e.g. gravity, inertia, friction, collision). Nowadays, several
physics simulation tools exist used for the implementation
of physics laws in simulations. After analyzing different
possibilities, we chosen a widely adopted physics simula-
tion library, called Open Dynamics Engine (ODE)1.

ODE is a software library for the simulation of artic-
ulated rigid bodies dynamics. With this software library,
it’s possible to make autonomous mobile and legged robots
simulations with great physical realism. In ODE, several
different rigid bodies can be created and connected through
different types of joints. To move bodies using ODE, it’s
possible to apply forces or torques directly to the body, or
it is possible to activate and control angular motors. An an-
gular motor is a simulation element that can be connected
to two articulated bodies, which have several control pa-
rameters like axis, angular velocity and maximum force.
With these elements, it’s possible to reproduce articulations
present in real robots with a high precision level [20].

3 Related works

Control of locomotion in legged robots is a challeng-
ing multidimensional control problem [5, 1]. It requires the
specification and coordination of motions in all robots’ legs
while considering factors such as stability and surface fric-
tion [16]. This is a research area which has obvious ties with
the control of animal locomotion, and it is a suitable task to
use to explore this issue [22]. It has been a research area for
a considerable period of time, from the first truly indepen-
dent legged robots like the Phony Pony built by Frank and

1Open Dynamics Engine (ODE) – http://www.ode.org

McGhee [19], where each joint was controlled by a sim-
ple finite state machine, to the very successful algorithmic
control of bipeds and quadrupeds by Raibert [21].

Lewis [18] evolved controllers for a hexapod robot,
where the controller was evaluated on a robot which learn to
walk inspired on insect-like gaits. After a staged evolution,
its behavior was shaped toward the final goal of walking.
Bongard [2] evolved the parameters of a dynamic neural
network to control various types of simulated robots. Busch
[3] used genetic programming to evolve the control param-
eters of several robot types. Jacob [15], on the other hand,
used reinforcement learning to control a simulated tetrapod
robot. Reeve [22] evolved the parameters of various neu-
ral network models using genetic algorithms. The neural
networks were used for the gait control of tetrapod robots.

In the most part of these approaches described above, the
fitness function used was the distance traveled by the robot
in a predefined amount of time. Although this fitness func-
tion is largely used, it may hinder the evolution of more sta-
ble gaits [7]. In our approach, we use in the fitness function,
beyond distance traveled, sensorial information (gyroscope
and bumpers) to guarantee stable and fast gaits [9, 12].

4 Proposed model

LegGen simulator2 [9, 13, 12] was developed to accom-
plish the gait control of simulated legged robots in an auto-
matic way. This simulator is composed of several modules,
showed in Figure 1. The module Robotnik is responsible for

Figure 1. LegGen modules

the robot and virtual environment creation using the ODE
library. The module Evolution is responsible for the evo-
lution of the control parameters using genetic algorithms.
The module Sensorial is responsible for sensorial informa-
tion reading during simulation and fitness calculation for
each individual. The module Viewer is responsible for the
visualization of results in a three-dimensional graphic en-
vironment. The module Controller, implemented using an
ANN, is responsible for the robot’s joint control.

LegGen simulator works as follows: initially the file de-
scribing the robot is loaded, and the robot is created in the
ODE environment according to file specifications. After

2LegGen – http://www.inf.ufrgs.br/~mrheinen126/leggen
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this, the simulator parameters are loaded, and the genetic al-
gorithm is initialized and executed until the number of gen-
erations is reached. The evaluation of each chromosome is
realized in the following way:

• The robot is placed in the starting position and orien-
tation in the simulation environment;

• The genome is read and the control parameters are set;
• The physical simulation is executed during a prede-

fined amount of time (30 seconds in our experiments);
• Gait information and sensor data are captured during

each individual physical simulation;
• Fitness is calculated and returned to GAlib;
During the simulation, if all paws of the robot leave the

ground at same time for more than one second, the simula-
tion of this individual is immediately stopped, because this
robot probably fell down, and therefore it is not necessary
to continue the physical simulation of this individual.

In LegGen simulator, the gait control is accomplished
through two strategies: (i) a finite state machine (FSM); (ii)
an artificial neural network (ANN). The following sections
describe these control strategies.

4.1 Finite state machine control

In LegGen simulator, the gait control is generated us-
ing a finite state machine (FSM), in which is defined for
each state and for each robot joint their final expected an-
gles configuration [2]. In this way, the controller needs to
continually read the joints angle state, in order to check if
the joint motor accomplished the task. Real robots do this
using sensors (encoders) to control the actual angle attained
by the joints [5, 1]. So, in this approach the gait control is
accomplished in the following way: initially the controller
verify if the joints have already reached the expected an-
gles. The joints that do not have reached them are moved
(activate motors), and when all the joints have reached their
respective angles, the FSM passes to the following state.

To synchronize the movements, it is important that all
joints could reach their respective angles at almost the same
time. This is possible with the application of a specific joint
angular velocity for each joint, calculated by the equation:

Vij = V ri(αij − αij−1) (1)

where Vij is the velocity applied to the motor joint i in the
j state, αij is the joint angle i in the j state, αij−1 is the
joint angle i in j− 1 state, and V ri is the reference velocity
of the i state, used to control the set velocity. The reference
velocity V r is one parameter of the gait control that is also
optimized by the genetic algorithm. The other parameters
are the joints angles for each state. To reduce the search
space, the GA only generates values between the maximum
and minimum accepted values for each specific parameter.

4.2 Neural control

Besides the use of FSMs to control legged robots, we
also can use artificial neural networks (artificial neural net-
works – ANN) [8]. This approach has some important and
specific limitations: it is quite difficult to have an a priori
information about the generation of the control parameters
[11]. Since we do not have available the exact and correct
sequence of values that should be sent to control the ac-
tuators, then it is usually not possible to apply traditional
supervised learning algorithms, like back-propagation and
other similar ones. This is the main reason we decided to
adopt genetic algorithms to evolve synaptic weights.

GAs can adjust synaptic weights with the advantage they
do not need any local information or local error measure in
order to adapt the weights, and so we do not need a train-
ing dataset (supervised learning). The weights can be coded
into the chromosomes and evolved, using a fitness function
to evaluate the robot performance controlled by this evolved
ANN. On the other hand, the use of ANNs has some main
advantages when used to control robot gait: ANNs are more
robust to noise, continue to perform well even when faced to
unseen situations, and they usually can obtain a good gen-
eralized behavior.

The ANN inputs are the present robot joint angles values
(angles at time t, normalized in the range from -1 (αmim)
to +1 (αmax). In the ANN outputs are obtained the joint
angles in the next time step t + 1, also normalized in the
range [-1:+1]. After some preliminary tests, we choose the
Elman model of recurrent ANNs, which was very satisfac-
tory when applied in this problem where we need to predict
a temporal behavior (sequencing joint angles). The Elman
networks are MLP nets with feedback connections from and
back to the hidden layer. These connections allow the El-
man nets to learn temporal sequences of patterns and then,
from the joint angles patterns in time t, they can generate
the next joint angles pattern in their outputs. We adopted the
hyperbolic tangent function as neuron’s activation function,
and also the synaptic weights were limited ranging from -1
to +1, which simplify the GA weights optimization. This
ANN model and parameters setup was empirically tested
and showed to be well suited to the problem in question.

4.3 Evolution

In our model, the control parameters are evolved using
genetic algorithms. The GA implementation used in our
system was based on the GAlib software library3, developed
by Matthew Wall of Massachusetts Institute of Technology
(MIT). GAlib was selected as it is one of the most com-
plete, efficient and well known libraries for genetic algo-
rithms simulation, and also it is a free and open source C++

3GAlib – http://www.lancet.mit.edu/ga/
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library. In LegGen System, a genetic algorithm as described
by Goldberg in his book [6] was used, and a floating point
type genome was adopted. In order to reduce the search
space, alleles were used to limit generated values only to
possible values for each parameter. Table 1 shows the pa-
rameter’ values used by GA.

Table 1. Parameters of LegGen simulator
Par-ID Parameter Value

1 One point crossover 0.80
2 Mutation rate 0.08
3 Population size 350
4 Number of generations 700

The fitness evaluation uses the following sensorial infor-
mation that must be calculated: (a) the distance D covered
by the robot; (b) instability measure G; The covered dis-
tance D is given by the equation:

D = Px1 − Px0 (2)

where D is the distance traveled by the robot in the x axis
(forward walk following a straight line), Px0 is the x start
position and Px1 is the end x position.

The instability measure is calculated using the robot po-
sition variations in the x, y and z axis. These variations are
collected during the physical simulation, simulating a gy-
roscope/accelerometer sensor, which is a sensor present in
some modern robots [5]. The instability measure G (Gyro)
is then calculated by the following equation [7]:

G =

√√√√√√
N∑

i=1

(xi − xx)2 +
N∑

i=1

(yi − xy)2 +
N∑

i=1

(zi − xz)2

N
(3)

whereN is the number of sample readings, xi, yi and zi are
the data collected by the simulated gyroscope in the time i,
and xx, xy and xz are the gyroscope reading means, calcu-
lated by the equation:

xx =
∑N

i=1 xi

N
, xy =

∑N
i=1 yi

N , xz =
∑N

i=1 zi

N
(4)

After finished the sensorial information processing, the
fitness function F is then calculated through the equation:

F = D/(1 +G) (5)

where L is the number of robot legs. Analyzing the fitness
function, we see that the individual better qualified will be
the one that has the best relationship between velocity and
stability, so the best solutions are those that moves fast, but
without losing the stability.

4.4 Modeled robot

According to the documentation, computational com-
plexity when using the ODE library isO(n2), where n is the
amount of bodies present in the simulated physical world.
Thus, in order to maintain the simulation speed in an ac-
ceptable rate, we should use few and simple objects. For
this reason, all the simulated robots were modeled with sim-
ple objects, as rectangles and cylinders, and they have only
the necessary articulations to perform the gait. Thus, body
parts as the head and the tail are usually not present in the
modeled robots. In order to keep our robot project sim-
ple, the joints used in the robots legs just move around the
z axis of the robot (the same axis of our knees), and the
simulations just used robots walking in a straight line. In
the near future, we plan to extend our simulator to accept
more complex robot models and joints. Several robot types
were developed and tested, before we defined the final main
model, presented in Figure 2.

Figure 2. Modeled robot

The simulated robots dimensions are approximately the
dimensions of a medium sized dog. The joint restrictions
used in the simulated robot are similar as they biologi-
cal equivalents, with the following values: Hip=[-60°;15°];
Knee=[0°;120°]; Ankle=[-90°;30°]. All the robot legs have
these same joint restrictions.

5 Results

This section describes our experiments and the achieved
results. These experiments were done in order to evaluate
the GA parameters optimization and robot behavior in both
control strategies (FSM and ANN), as described in the pre-
vious sections. For each control strategy, we executed 10
different tests, which are presented here. Table 2 shows
the obtained results, where we can see each control strat-
egy (FSM and ANN) and the values of the fitness, distance
and gyro instability measure respectively (F , D, G) indi-
cated for each experiment (E) in both strategies. The two
lines below in the table are the average (µ) and standard
deviation (σ) indicated over the 10 experiments.

In the experiments using the FSM, we fixed the number
of states in the automata to four. In the experiments using
the neural network we adopted a network with three neurons
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Table 2. Evaluation of the control strategies
FSM ANN

E F D G F D G
1 14.04 32.17 0.128 16.27 29.19 0.079
2 14.28 32.38 0.126 16.63 28.31 0.070
3 13.18 30.33 0.129 16.99 27.85 0.063
4 15.87 26.81 0.069 16.68 27.91 0.067
5 16.64 36.60 0.120 16.16 28.20 0.074
6 16.48 27.69 0.068 15.97 31.13 0.093
7 14.88 31.69 0.112 17.33 29.63 0.070
8 13.77 29.02 0.110 16.65 29.04 0.074
9 15.33 34.41 0.124 16.29 30.15 0.085

10 15.80 37.01 0.134 16.23 29.81 0.083
µ 15.03 31.81 0.112 16.52 29.12 0.076
σ 1.19 3.48 0.024 0.42 1.08 0.009

in the hidden layer. These parameters were defined after a
careful preliminary study based on experiments. We spent a
total of 149.22 hours processing the final experiments of Ta-
ble 2. Figure 3 shows the boxplot graph and the confidence
interval (CI) of 95%, related to the fitness values obtained
in the experiments presented in Table 2.

(a) Boxplot (b) Confidence interval

Figure 3. Boxplot and confidence interval

According to Figure 3 we can affirm that the results ob-
tained by the ANN are clearly superior to those obtained
using the FSM, since the confidence intervals are not super-
posed. Besides that, the results obtained using the SM are
more unstable with a large variability. Figure 4 compares
the fitness improvement of the population during the evo-
lution (best and average fitness) obtained for each control
strategy. The experiments showed n this figure are those
that achieved the best results in our simulations.

It is clear that the evolution of the neural control param-

Figure 4. GA optimization

eters needs more generations (epochs) in order to achieve
good results. This is due to the fact that we have a bigger
parameters state space when optimizing the ANN (we opti-
mize 3 parameters in the FSM and 44 weights in the ANN).
Figure 5 shows one example of the robot gait controlled by
an optimized FSM and Figure 6 shows one example of a
robot gait obtained using a trained ANN4.

Figure 5. FSM robot control

6 Conclusions and perspectives

The main goal of this paper was to describe LegGen
simulator, which was developed in order to study the auto-
matic configuration of parameters used to control the gait
of legged robots. In our simulator, the gait control was
achieved using genetic algorithms. The GA evolves param-
eters used to control the robot actuators and this evolution
was tested into a virtual environment using the ODE rigid
body dynamics simulation tool. The robot joints are con-
trolled using two different strategies: (i) GA evolved a fi-
nite state machine and (ii) GA evolved an artificial neural
network. Several experiments were achieved, comparing
both approaches and demonstrating (with a valid statistical

4Some demonstration videos are available in LegGen website.
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Figure 6. ANN robot control

analysis) that the neural controller is superior to the FSM
controller (superior fitness), obtaining a better performance
(more stable, better displacement).

Future works include improving the robot gait in order
to walk on irregular surfaces and go upstairs or downstairs,
and to implement in hardware the simulated robot, once we
had now acquired sufficient experience in order to design,
implement and fine tune the control of the legged robots.
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