

VII Brazilian Symposium on Computer
Games and Digital Entertainment

November, 10-12, 2008
Belo Horizonte – MG – BRAZIL

PROCEEDINGS
Computing Track – Full Papers

Published by
Sociedade Brasileira de Computação – SBC

Edited by

Fernando S. Osório
Luiz Chaimowicz
Rosilane Mota

Zenilton Patrocínio

Computing Track - Full Papers Chairs

Fernando S. Osório
Zenilton Patrocínio

SBGames 2008 General Chairs

Luiz Chaimowicz
Rosilane Mota

Universidade Federal de Minas Gerais - UFMG

Pontifícia Universidade Católica de Minas Gerais
PUC Minas

Sponsored by
SBC - Sociedade Brasileira de Computação

Table of Contents

SBGames 2008

Preface.. v
Program Committee ... vi
Reviewers ... vii

COMPUTING TRACK - Technical Papers
Category: Full Papers

Procedural Animation with Genetic Algorithms and Physics
Simulation
 Pedro Luchini de Moraes,
 Bruno Feijó,
 Marco Pacheco ... 1-5

SDK Gameplay - Ferramenta voltada para edição de Gameplay
 Julio Alberto Contreras,
 Leandro Motta Barros,
 Fernando Osório ... 6-15

Parallel Culling and Sorting based on Adaptive Static Balancing
 Lucas Machado,
 Bruno Feijó ... 16-23

Proposta de uma heurística para o jogo de dominó de 4 pontas
 Nirvana Antonio,
 Cicero Costa Filho,
 Marly Costa ... 24-30

Event Relations in Plan-Based Plot Composition
 Angelo Ciarlini,
 Simone Barbosa,
 Marco Antonio Casanova,
 Antonio Furtado ... 31-40

Improving Boids Algorithm in GPU using Estimated Self Occlusion
 Alessandro Silva,
 Wallace Lages,
 Luiz Chaimowicz ... 41-46

P2PSE - A Peer-to-Peer Support for Multiplayer Games
 Felipe Jung Vilanova,
 Carlos Eduardo Benevides Bezerra,
 Marcos Crippa,
 Fábio Cecin,
 Cláudio Geyer ... 47-53

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1

A Feature Model Proposal for Computer Games Design
 Victor Sarinho,
 Antônio Apolinário 54-63

Fast and Safe Prototyping of Game Objects with Dependency
Injection
 Erick Passos,
 Jonhnny Silva,
 Giancarlo Nascimento,
 Esteban Clua,
 Lauro Kozovits .. 64-69

Supermassive Crowd Simulation on GPU based on Emergent Behavior
 Erick Passos,
 Mark Joselli,
 Marcelo Zamith,
 Jack Rocha,
 Esteban Clua,
 Anselmo Montenegro,
 Aura Conci,
 Bruno Feijó ... 70-75

Uma Engine em XNA e Prolog para Apoio ao Ensino de Programação
Declarativa
 Alex Machado,
 Esteban Clua,
 Flávio Soares Corrêa da Silva,
 Marcelo Corrêa .. 76-82

A Real-Time Proxy for Flexible Teamwork in Dynamic Environments
 Ivan Monteiro,
 Luis Otávio Álvares 83-90

Neuronal Editor Agent for Game Cinematography
 Erick Passos,
 Anselmo Montenegro,
 Vinicius Azevedo,
 Vitória Apolinário,
 Esteban Clua,
 Cesar Pozzer .. 91-97

IRTaktiks: Jogo de Estratégia para mesa Multitoque
 Willians Schneider,
 Nilson Calazans Dias,
 Luis Mauruto
 Fábio Miranda .. 98-107

Simulation of Deformable Bodies Based on Tetrahedral Meshes and
Shape Matching
 Guina Sotomayor Alzamora,
 Yalmar Atencio,
 Claudio Esperança 108-114

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1

An Adaptative Game Loop Architecture with Automatic Distribution
of Tasks between CPU and GPU
 Mark Joselli,
 Marcelo Zamith,
 Esteban Clua,
 Anselmo Montenegro,
 Regina Leal-Toledo,
 Aura Conci,
 Paulo Pagliosa,
 Luis Valente
 Bruno Feijó .. 115-120

Using Game Engines in Digital Manufacturing through Immersive and
Collaborative Visualization Systems
 Silvia da Costa Botelho,
 Nelson Duarte Filho,
 Jonata Tyska Carvalho,
 Pedro de Botelho Marcos,
 Renan de Queiroz Maffei,
 Rodrigo Remor Oliveira,
 Rodrigo Ruas Oliveira,
 Vinicius Alves Hax.................................... 121-125

Parallel Lazy Amplification: Real-Time Procedural Modeling and
Rendering of Multi-Terabyte Scenes on a Single PC
 Carlúcio Cordeiro,
 Luiz Chaimowicz 126-132

Posicionamento de Câmeras por meio da Simulação Física
 Daniel Pires,
 Erick Passos,
 Esteban Clua,
 Anselmo Montenegro 133-140

Algoritmos de busca em tempo real aplicados a jogos digitais
 Eder Trindade,
 Ricardo Martins Ferreira,
 Eduardo Fantini,
 Hugo de Paula ... 141-150

A Facial Animation Interactive Framework with Facial Expressions,
Lip Synchronization and Eye Behavior
 Rossana Baptista Queiroz,
 Marcelo Cohen,
 Soraia Musse .. 151-158

Um Algoritmo Evolutivo para Aprendizado On-line em Jogos
Eletrônicos
 Marcio Crocomo,
 Eduardo do Valle Simões 159-168

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1

A Cellular Automata Framework for Real Time Fluid Animation
 Sicilia Judice,
 Bruno Barcellos Coutinho,
 Gilson Giraldi .. 169-176

Plataforma Saberlândia: Integrando Robótica e Multimídia no
Desenvolvimento de Jogos Educacionais
 Ivete Pinto,
 Silvia Botelho,
 Rodrigo Souza,
 Thiago Goulart,
 Rafael Gonçalves Colares,
 Raphael Campos 177-186

Jogo Simulador de Vida Artificial Implementado em Hardware
Reconfigurável
 Felipe Navas,
 Eduardo do Valle Simões 187-193

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1

PREFACE

Welcome to the VII Edition of the Brazilian Symposium on Computer
Games and Digital Entertainment, the SBGames 2008. SBGames is the
yearly symposium of the Special Interest Group on Games and
Digital Entertainment of the Brazilian Computer Society (SBC).
SBGames 2008 is the most important event on game research and
development to take place in Latin America, promoted by the
Brazilian Computer Society (SBC) with the support of the Brazilian
Electronic Game Development Companies Association (ABRAGAMES).
This year the symposium brings together students, professors,
artists, designers and professionals from several universities,
research centers, graphical design centers and game industry.

This volume contains the 25 full papers accepted for the computing
track, out of 57 submitted, with an acceptance ratio of 43%. Out
of the 25 accepted papers, 16 are in English (64%). We hope this
trend will continue, increasing the visibility of the research
work being developed in Brazil by the gaming community. The
selection process was double blind, and each paper was reviewed by
at least 3 experts, enforcing the quality of the reviewing
process. Also, the best papers of this conference were indicated
to be published (an extended version) into a special edition of
IJCGT - International Journal of Computer Games Technology and ACM
CIE - Computers in Entertainment.

The SBGames 2008 is composed by 4 main tracks: Computing, Art &
Design, Industry and Games & Culture, 2 festivals (Independent
Games and Art Exhibition), Poster Exhibitions, Tutorials, Keynote
presentations, and other satellite events. The papers from the
different tracks, and also, the Posters (short papers) and
complementary material from this Symposium have been included
within the Proceedings of the Computing Track in the SBGames 2008
Conference CD-ROM.

We would like to thank all authors, whose work and dedication made
possible to put together an exciting program. Next, we would like
to thank all members of the technical program committee and
reviewers, for their time helping us maintain the overall quality
of the program.

We would like to wish all attendees an exciting symposium!

Belo Horizonte, November 2008,

Fernando S. Osório & Zenilton Patrocínio
Chairs of the Program Committee - Computing track

v

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1

Program Committee

Adelailson Peixoto UFAL - Universidade Federal de Alagoas
Alexandre Sztajnberg UERJ – Univ. do Estado do Rio de Janeiro
André Campos University of Utrecht
Bruno Feijó PUC-Rio
Cesar Pozzer UFSM – Univ. Federal de Santa Maria
Christian Hofsetz Microsoft Corporation
Clauirton Siebra UFPE - Universidade Federal de Pernambuco
Drew Davidson CMU - Carnegie Mellon University
Edmond Prakash Manchester Metropolitan University
Eduardo do Valle Simões USP/Sao Carlos
Esteban Clua UFF Universidade Federal Fluminense
Fernando Osório USP/ICMC – Univ. de São Paulo
Fernando Trinta UFPE - Universidade Federal de Pernambuco
Flávio Soares C.da Silva USP- Universidade de São Paulo
Geber Ramalho UFPE - Universidade Federal de Pernambuco
Jacques Brancher URI - Campus de Erechim
Jim TerKeurst University of Teesside
João Comba UFRGS – Univ. Federal do Rio Grande do Sul
Jorge Barbosa Unisinos
José Saito UFSCar – Univ. Federal de São Carlos
Judith Kelner UFPE - Universidade Federal de Pernambuco
Luiz Chaimowicz UFMG - Univ. Federal de Minas Gerais
Luiz Gonzaga da Silveira Jr UNISINOS
Manuel M. Oliveira Neto UFRGS – Univ. Federal do Rio Grande do Sul
Marcelo Dreux Puc-Rio
Marcelo Walter UFPE - Universidade Federal de Pernambuco
Marcio Pinho PUC-RS - Pontifícia Univ. Católica do RGS
Maria Andréia Rodrigues UNIFOR - Universidade de Fortaleza
Martin Hanneghan Liverpool John Moores University
Michael Youngblood University of North Carolina at Charlotte
Patrícia Tedesco Centro de Informática - UFPE
Paulo Pagliosa UFMG – Univ. Federal de Mato Grosso do Sul
Paulo Rodacki Gomes FURB - Universidade Regional de Blumenau
Romero Tori Centro Universitário Senac / USP
Sérgio Scheer Universidade Federal do Paraná
Sílvio Cazella Unisinos
Soraia Musse PUC-RS – PUC do Rio Grande do Sul
Waldemar Celes Tecgraf / PUC-Rio
Zenilton Patrocínio Jr PUC-Minas - Pontifícia Univ. Católica
 de Minas Gerais

vi

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1

Reviewers

Adelailson Peixoto
Alexandre Sztajnberg
André Campos
Bruno Feijó
Cesar Pozzer
Christian Hofsetz
Clauirton Siebra
Denison Tavares
Drew Davidson
Edmond Prakash
Eduardo do Valle Simoes
Esteban Clua
Fernando Osório
Fernando Trinta
Flávio Soares Corrêa da Silva
Fritz Heckel
Geber Ramalho
Gustavo Mello Machado
Jacques Brancher
Jezer Oliveira
Jim TerKeurst
Joao Bittencourt
João Bittencourt
José Saito
Judith Kelner
Kalinka Castelo Branco
Leandro Barros
Leandro Fernandes
Leonardo Schmitz
Luis Fernando M S Silva
Luiz Chaimowicz
Luiz Gonzaga da Silveira Jr

Marcelo Dreux
Marcelo Walter
Marcio Pinho
Marcos Kich
Maria Andréia Rodrigues
Martin Hanneghan
Michael Youngblood
Patrícia Tedesco
Paulo Pagliosa
Paulo Rodacki Gomes
Rafael Rieder
Rafael Torchelsen
Ricardo Nakamura
Roberto Cezar Bianchini
Rodrigo Hahn
Romero Tori
Samir Souza
Sérgio Scheer
Sílvio Cazella
Silvio Melo
Solon Rabello
Soraia Musse
Vitor Pamplona
Waldemar Celes
Wallace Lages
Zenilton Kleber Patrocínio Jr

vii

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1

SBGAMES 2008

COMPUTING TRACK

TECHNICAL PAPERS

Procedural Animation with Genetic Algorithms and Physics
Simulation

Pedro Luchini Bruno Feijó Marco Aurélio Pacheco*

PUC-Rio, Dept. of Computer Science, Brazil
* PUC-Rio, Dept. of Electrical Engineering, Brazil

Abstract

This paper describes a method for automatically
animating a virtual character based on the topology of
its musculoskeletal system. Plausible and realistic
movements can be computed for any kind of character;
no assumptions are made about its body structure.
Arbitrarily-shaped creatures or robots, thus, learn how
to move in the same way real-life animals did: through
evolution.

Keywords: artificial intelligence, biologically-inspired
computing, procedural animation, genetic algorithms,
physics simulation

Authors’ contact:
{pluchini,bruno}@inf.puc-rio.br
*marco@ele.puc-rio.br

1. Introduction

Procedurally-generated content has become important
in the past years as a means of reducing designer
workload and producing games with smaller footprints.
Additionally, these techniques are useful when dealing
with unpredictable input from the player, such as user-
generated content.

 This paper proposes a method of animating
characters whose bodies are represented by a series of
constraints (bones, joints) and force actuators
(muscles) driven by physics simulation. The
character’s “brain,” then, will send a sequence of
commands to each muscle, causing the body to move.
This way, the animation can be modeled as a list of
instructions (a program) that is executed by its body.

Clearly, characters with different body structures
will need different programs to animate properly. It is
possible, nevertheless, to establish very simple and
broad goals for a class of animations regardless of the
character’s body structure, such as “maximize
horizontal speed” to describe a running animation.

This approach to character animation has the
following characteristics:

• The animation is simple to represent;
• Displaying and evaluating the animation is

straightforward;
• Creating the animation itself, however, is not.

These three traits suggest the employment of
genetic algorithms, an optimization technique well-
suited for finding approximate solutions based on
heuristics.

2. Related Work

There is an extensive list of publications related to
character physics. Particularly worthy of note are
[Jakobsen 2001] and [Witkin and Kass 1988] who
focus on constraints capable of simulating bones,
joints, and other structural elements of a live character.

Genetic algorithms have been used by [Machado
and Cardoso 2002] and [Cope 2005] in the field of
artificial creativity with remarkable success. They have
shown that the pseudo-random nature of G.A.s can
create aesthetically-pleasing works in a manner that
traditional algorithms cannot, with surprising results
that often startle the developers themselves.

3. Modeling the Character

Since we are trying to simulate real-life biologic
systems, it makes sense that we use the same
components that are found in real-life animals to
represent the virtual character: bones, muscles, joints,
etc. These components can be divided in two
categories: passive and active.

3.1 Passive Components

Passive components are those that cannot be controlled
by the character’s brain. Just like we are unable to
change our bones’ length, the character should not be
allowed to change his. Some examples of passive
components are:

• Bones can be represented by a simple bilateral
constraint between two particles, which is
easy and fast to implement with Verlet
integration [Jakobsen 2001]. If a more robust
physics simulation engine is available (and
needed), more complex bone structures can be
represented by rigid bodies.

• Joints keep bones connected to each other.
[Baltman and Radeztsky Jr 2004] propose a
method for constraining the angle between
bones, as well as their spatial orientation.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 1

3.2 Active Components

Active components are those that can be controlled by
the brain.

• A spring applies linear force when contracted
or stretched past its natural length (Figure 1).
To achieve locomotion, the brain can send
commands to change the spring’s natural
length (Figure 2).

Figure 1: A spring exerts a force whenever it is stretched or
compressed. As per Hooke’s law, the force is proportional to
the spring’s deformation (N -) and its force constant (k).

Figure 2: The brain sends commands to the spring, telling it
to change its natural length. This pulls the bones together (by

decreasing N) or pushes them apart (by increasing N).

Springs are a rather crude approximation of
how muscles really work. However, they are
useful as a simulation of abduction/adduction
movements (such as pulling the knees

together), which would otherwise require very
complex modeling.

• A torsion spring is the angular equivalent of
a spring. It connects to a joint (the junction of
two bones) and applies a torque when it is
contracted or stretched past its natural angle
(Figure 3). The brain can send commands to
change the torsion spring’s natural angle.

Figure 3: A torsion spring exerts a torque whenever it is
stretched or compressed. As per the angular version of

Hooke’s law, the torque is proportional to the torsion spring’s
angular deformation (θN - θ) and its force constant (k).

• A useful (if somewhat unrealistic) component
to have in a character is a claw, that is, an
extremity that is capable of gripping walls and
floors to anchor the body’s movement. When
the brain sends a grip command to the claw, it
will “stick” to whatever surface it is currently
touching (and thus become unable to be
moved from that spot). When the brain sends
the claw a release command, it will cease
being “sticky.” A claw that is in a “sticky”
state but is not touching any surface is
unaffected.

Springs and torsion springs have a theoretically
infinite number of possible states – any real number
can be set as their natural length or angle. Our test
application simplified it down to only three states: The
relaxed state will set the natural length to the value it
had at the beginning of the simulation, the contracted
state will set the natural length to half that value, and
the stretched state will set it to twice that value. It was
a somewhat arbitrary choice; depending on the
application, this set-up might take a lot of tweaking to
achieve good results.

4. Representing the Animation

Because the character moves as a result of the
commands issued by its brain, the animation is
represented by a sequence of commands that are issued
one after the other. This is very similar to imperative
programming languages (such as assembly, or machine

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 2

code), so we will refer to these commands as op-codes.
We can think of the animation as a program that is
executed one op-code at a time.

There is no reason to pre-define the size of the
program – let the genetic algorithm figure that out on
its own –, so the sequence should be allowed to have a
variable length. Depending on the animation being
generated, it may also be necessary to loop the
program – restarting from the first op-code when the
end of the program is reached – to simulate an endless
cycle (such as a walking animation).

Figure 4: A short animation with ten op-codes.

5. Playing Back the Animation

Physics simulation systems are notoriously fickle when
it comes to accuracy and consistency. It is often the
case that running the same simulation on different
machines will result in different outcomes.

Numeric methods (such as those used in real-time
physics simulation) are inherently inaccurate, but we
can at least ensure they are consistent by employing
what [Valente et al. 2005] describe as the “fixed-
frequency deterministic game loop.” This technique is
based on the fact that if we always update the game
state at a fixed number of times per second (with the
same delta-time, or dt), then the simulation will
consistently produce the same result:

accumDT ← 0
function GameTick()
 dt ← time elapsed since last frame
 accumDT ← accumDT + dt
 while accumDT > FIXED_DT do
 GameStateStep(FIXED_DT)
 accumDT ← accumDT - FIXED_DT

end while
end function

To play back the animation, one must define a time
interval between op-code executions, and then run the
animation program side-by-side with the physics
simulation:

accumOpDT ← 0
function GameStateStep(dt)
 // Run animation program:
 accumOpDT ← accumOpDT + dt
 while accumOpDT > OPCODE_DT do
 Take next op-code from the program.
 Interpret its command.

Modify the state of springs/claws.
 accumOpDT ← accumOpDT - OPCODE_DT

end while

// Run physics simulation:
PhysicsStep(dt)

end function

The exact values of FIXED_DT and OPCODE_DT
should be adjusted to suit the application. Our test
program used FIXED_DT = 1/500 and OPCODE_DT =
1/200 (in seconds), which ensured a high degree of
accuracy in the physics simulation.

6. Creating the Animation

Now that the animation can be represented, stored, and
played back, all that is left to do is understand how it is
created. This is where genetic algorithms come in.

6.1 An Introduction to Genetic Algorithms

A genetic algorithm is a search technique used to find
optimal (or approximate) solutions to a problem based
on a heuristic measure of the solution’s quality.

 Each solution is represented as an individual in a
population of candidate solutions. Each individual
holds a chromosome, a representation of its solution;
the chromosome can be evaluated by an objective
function to determine its fitness (a real number).

 At first, a population of individuals is created with
random chromosomes, and each of them is evaluated
by the objective function to discover its fitness. Then,
some individuals of the population are selected to be
modified and included in a new population of
individuals, which forms the next generation of
solutions. These steps are repeated until either a pre-set
number of generations have been evolved, or a desired
fitness score has been reached.

 The fitness of an individual determines the
probability that it will be selected for modification and
inclusion in the next generation. Thus, individuals with
high fitness are more likely have their genes included
in the final solution.

 Individuals can be modified by either crossover or
mutation.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 3

• Crossover is an operation where the
chromosomes from two individuals (parents)
are combined. This results in two new
individuals (children) with genetic material
that is related, but not identical, to the
originals’. The children then replace their
parents in the new population.

• Mutation is an operation where a single
individual has its chromosome modified in
some random manner.

Crossover is typically set to occur with a high
probability, usually 80% or more. Mutation, on the
other hand, has a deleterious effect on the evolution if
it happens too frequently; it is usually set to occur with
a low probability, rarely exceeding 10%.

There is an entire field of research dedicated to
genetic algorithms, with several existing techniques to
improve their performance. A detailed look into that
field is beyond the scope of this paper; for a more
thorough introduction we recommend [Davis 1991].

6.2 The Animation Defined in G.A. Terms

The solution we are trying to optimize is the animation
program. In our G.A., then, the chromosome is
represented by a sequence of op-codes. Each individual
in the population can be evaluated by playing back the
animation; the fitness score depends on what type of
animation is being sought. Some examples:

• Walking cycle: Run the animation program
for a few seconds, looping it every time it
reaches the last op-code. The fitness score is
the total horizontal displacement of the
character.

• Jumping animation: Run the animation
program for a few seconds, without looping it.
The fitness score is the maximum height
achieved by the character.

The crossover modifier of choice is the one-point
crossover (see Figure 5). It is useful because it
recombines the two animations without completely
destroying the parents’ sequencing of op-codes.

Mutation modifiers can be as random as the
application requires. Here are some suggestions:

• Constructive mutator: Inserts random op-
codes at random points in the chromosome.

• Destructive mutator: Removes op-codes
from random points in the chromosome.

• Replacing mutator: Takes an op-code at a
random point and replaces it with another
random op-code.

• Swapping mutator: Takes two op-codes at
random points and swaps their positions.

Figure 5: One-point crossover. Each of the parent
chromosomes is “cut” at a random point to create two sub-

sequences. By swapping the sub-sequences, two new
chromosomes are created.

6.3 Encoding Op-Codes in the Chromosome

An op-code can be represented by something as simple
as a single integer number. Let us imagine a character
whose body is composed of 2 springs and 3 claws. The
op-codes can be represented thusly:

1. Set spring #1 state: CONTRACTED
2. Set spring #1 state: RELAXED
3. Set spring #1 state: STRETCHED
4. Set spring #2 state: CONTRACTED
5. Set spring #2 state: RELAXED
6. Set spring #2 state: STRETCHED
7. Set claw #1 state: GRIPPING
8. Set claw #1 state: RELEASED
9. Set claw #2 state: GRIPPING
10. Set claw #2 state: RELEASED
11. Set claw #3 state: GRIPPING
12. Set claw #3 state: RELEASED

That is, there are twelve valid op-codes for that
character. Generalizing for a character with NS springs
and NC claws, there will be 3NS + 2NC valid op-codes.
(Naturally, this quantity will be different if the
character includes other active components, such as
torsion springs.) Any integer number greater than the
number of valid op-codes can be interpreted as a
“nothing” op-code.

 “Nothing” op-codes are extremely important during
the evolution of an animation program. A sequence of
op-codes that is excessively dense with commands will
cause the character to thrash its limbs in every
direction. At worst, this will prevent the character from
actually moving; at best, the result will be unsightly.

 We suggest that one third of the op-codes in the
programs be “nothing” op-codes; this ratio produced
the best results in our test application. Every time a
random op-code had to be created (in the initialization
of the first generation, in the constructive mutator, and

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 4

in the replacing mutator), our application called the
following function:

function MakeRandomOpCode()
 return rand() * 1.5 * (3*NS + 2*NC)
end function

where rand() is a function that returns a random
number between zero and one. The return from
MakeRandomOpCode() should then be cast to an
integer type to be stored in the chromosome.

7. Conclusion

We have shown that animations can be represented by
a sequence of commands sent from a character’s brain
to its body. There aren’t any traditional algorithms
capable of deriving this sequence of commands, so we
suggest the use of a genetic algorithm instead. As is the
hallmark of artificial intelligence, the results are
somewhat unpredictable, startling, and require
significant tweaking before they look “just right.” On
the other hand, this approach is extremely versatile,
being capable of animating any kind of character with
very little input from a human operator.

One clear disadvantage of the method proposed is that
the generated animations will only apply to the
environment where they were evolved – a walking
animation that evolved on a flat floor will be useless if
the character is confronted with a staircase. As a
direction for future work, the authors propose
incorporating senses into the model, turning it into an
implementation of the genetic programming paradigm
[Koza 1992]. Specifically, touch (whether a part of the
character is touching a surface) and proprioception (the
angles of the character’s joints) are simple to
implement and can be used as inputs for the animation
program.

Acknowledgements

The authors would like to thank Waldemar Celes for
his assistance with implementing the physics
simulation system we used in the test application.

The software for this work used the GAlib genetic
algorithm package, written by Matthew Wall at the
Massachusetts Institute of Technology.

References

JAKOBSEN, T., 2001. Advanced Character Physics.
Proceedings of the 2001 Game Developers Conference.

WITKIN, A. AND KASS, M., 1988. Spacetime constraints.
Proceedings of the 15th International Conference on
Computer Graphics and Interactive Techniques, 159-
168.

MACHADO, P. AND CARDOSO, A., 2002. All the Truth About
NevAr. Applied Intelligence, 16 (2), 101-118.

COPE, D., 2005. Computer Models of Musical Creativity.
MIT Press.

BALTMAN, R. AND RADEZTSKY JR, R., 2004. Verlet integration
and constraints in a six degree of freedom rigid body
physics simulation. Game Developers Conference 2004.

VALENTE, L., CONCI, A. AND FEIJÓ, B., 2005. Real Time
Game Loop Models for Single-Player Computer Games.
Conference Proceedings of the 4th Brazilian Workshop
on Computer Games and Digital Entertainment, 89-99.

DAVIS, L., 1991. Handbook of Genetic Algorithms. New
York: Van Norstrand Reinhold.

KOZA, J., 1992. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. MIT Press.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 5

SDK GAMEPLAY - FERRAMENTA VOLTADA PARA EDIÇÃO DE
GAMEPLAY

Leandro B. Motta1 Julio A.A. Contreras*1 Fernando S. Osório2

1UNISINOS – Univ. do Vale do Rio dos Sinos, Ciências Exatas e Tecnológicas, RS - Brasil.

2USP – ICMC – Instituto de Ciências Matemáticas e de Computação, SP – Brasil.

Figure 1: Projeto SDK Gameplay. (a) Editor de gameplay. (b) Visualização da portabilidade do formato GML.

Resumo

Este trabalho descreve o projeto e o
desenvolvimento de um conjunto de ferramentas
para facilitar a implementação de qualquer tipo de
gameplay em jogos digitais. Dentre essas
ferramentas destaca-se a criação de uma biblioteca
denominada GameplayLib, que auxilia na
importação das regras no formato XML para
estruturação dos dados (e.g. regras, agentes,
eventos) e um editor de gameplay com suporte
visual para poder simular um jogo em tempo real.
Este projeto visa criar uma nova ferramenta RAD
(Rapid Application Development) para jogos.

Palavras-chave: RAD; inteligência artificial;
gameplay.

Contatos com Autores:
{fosorio, lmbarros}@gmail.com
*juliocontreras@gmail.com

1. Introdução

Este trabalho tem como função principal ajudar a
prototipar, automatizar e simplificar a criação das
regras de um jogo, acelerando a produtividade no
desenvolvimento de jogos. O projeto foi
desenvolvido de forma que pessoas com menos
conhecimento tecnológico possam também usufruir
das ferramentas por ele oferecidas. O
desenvolvimento rápido de protótipos de jogos
permite que decisões de continuação, alteração ou
descontinuação de um projeto possam ser tomadas
antes de terminado o projeto por completo.

Sempre que se desenvolve um jogo é necessário
pensar em vários elementos e passos, como o ponto

de início, meio e fim, o número de fases, a derrota, as
vitórias, os inimigos, o cenário, os obstáculos, etc. Todos
estes elementos demandam um investimento de tempo
considerável na produção de um jogo. Algumas vezes,
somente no final do processo de desenvolvimento se
descobre que o jogo não é tão divertido quanto foi
planejado, o que exige um tempo adicional em
desenvolvimento, adaptações e testes.

Uma pessoa encarregada de criar as regras de um jogo
não tem a obrigação de ter um conhecimento tecnológico
profundo, pois um jogo é constituído de regras e de suas
interações, cuja definição independe das tecnologias
usadas na implementação. Na verdade, muitas vezes, as
regras são adaptadas ou aproveitadas diretamente de jogos
não-eletrônicos. Por exemplo, as regras de um jogo de
futebol de simulação são as mesmas do jogo no mundo
real.

Existem pessoas com conhecimento de jogos e de suas
interatividades, mas que não dominam o conhecimento
tecnológico, e vice-versa. As ferramentas propostas por
este trabalho se encarregam de realizar a junção entre
ambos para a realização de um jogo. Por exemplo, um
desenvolvedor (programador) poderia ter acesso a essas
regras e utilizá-las em um jogo, mesmo não conhecendo o
autor delas. Esse fator ajudaria a ambos, pois a
necessidade de uma pessoa pode ser o negócio de outra.

Depois de construídas as regras, o próximo passo é a
prototipação de um jogo, utilizando-se um artefato que
executa as regras e suas interações, em conjunto com as
tecnologias e seus recursos. As tecnologias utilizadas no
protótipo podem ser as mesmas do jogo final, ou podem
ser mais simples (por exemplo, um jogo baseado em
gráficos 2D poderia ter um protótipo apenas em
caracteres, no console). O objetivo de prototipar é realizar
testes, incluindo a diversão do jogo, antes de concluído o
desenvolvimento, para decidir o andamento do projeto.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 6

Como as ferramentas criadas neste trabalho não são
dependentes das tecnologias do jogo, elas
favorecem a prototipação, permitindo que
diferentes artefatos possam ser utilizados na
realização do jogo.

Visando aos benefícios para aquele que vai
construir o jogo e não as regras, as ferramentas
desenvolvidas permitem a automatização no
gerenciamento das regras do jogo, a separação das
tecnologias externas com as regras e o aumento da
reusabilidade para futuros projetos.

Duas das principais ferramentas desenvolvidas
são um editor de regras e uma biblioteca que
permite utilizar as regras criadas com este editor. O
gerenciamento das regras do jogo é proporcionado
pela biblioteca e suas respectivas classes, que irão
importar os arquivos gerados pelo editor.

As ferramentas apresentadas são capazes de
promover uma separação das tecnologias externas
com as regras de forma transparente, pois os
arquivos gerados pelo editor são interpretados pela
biblioteca como uma caixa preta, somente se
preocupando com as entradas e saídas, que no caso
são as Actions e Perceptions do jogo.

O aumento da reusabilidade de código para
futuros projetos também pode ocorrer, pois, uma
vez desenvolvido o jogo com a biblioteca, na
construção do próximo jogo muitas classes poderão
ser reusadas. Pode-se inclusive, caso necessário,
realizar a construção de um conjunto de código de
programação para a reusabilidade em outros jogos,
denominado de framework. No caso deste trabalho
isso acabou ocorrendo, pois há dois engines (um
com gráficos 2D, outro em console) para o mesmo
jogo, usando o mesmo framework. Caso se
desejasse portar o jogo para terceira dimensão, seria
preciso usar ou construir um engine para esta, mas
as regras permaneceriam as mesmas; caso o
framework fosse compatível, poderia ser usado
também.

Considerando os problemas descritos
anteriormente e considerando que as regras e a
mecânica do jogo são elementos fundamentais,
pretende-se, por meio deste trabalho, apresentar
uma proposta de solução: parte do peso e da
complexidade da programação pode ser retirada,
trocando-se por uma ferramenta que seja mais
intuitiva e que ajude a compor e editar a
jogabilidade.

2. Embasamento Teórico

2.1 Gameplay

Todas as experiências de um usuário durante a interação
com um jogo são denominadas de gameplay. Geralmente,
este termo na terminologia dos videogames é usado para
descrever a experiência total de jogar, ou seja, a
jogabilidade, que exclui fatores como gráficos, som e
storyline (linha de história). Quando se está pulando, se
esquivando dos ataques do inimigo ou acelerando um
carro de corrida, todas essas ações e experiências estão
incluídas na jogabilidade, ou gameplay [Rollings 2004].

Para incorporar o anteriormente dito, neste trabalho
criou-se uma estrutura de linguagem, de forma que
qualquer tecnologia pudesse interpretar as regras dentro
de um jogo. Esta estrutura se armazena em arquivo no
formato XML, que foi dividido em áreas para oferecer ao
criador das regras uma facilidade na organização das
idéias de forma simples, definindo seus elementos, ações,
percepções, estados de jogo e interações.

O gameplay participa desta estrutura ajudando nas
interações por meio de eventos sendo ativados por actions
(como pular, atirar, correr, etc.) e perceptions (como
acertar, pegar item quando colidir, etc.), modificando
attributes (força, pontos de vida, etc.) e objects
(personagens, carro de corrida, etc.).

2.2 Mecânica de jogo

A mecânica de jogo é uma construção de regras pré-
determinadas para produzir um entretenimento agradável
ou gameplay. Todos os jogos usam uma mecânica;
entretanto, as interações e os estilos os tornam diferentes
[Rollings 2004].

Um exemplo é o jogo de Xadrez, que tem a
alternância dos jogadores em turnos como um importante
elemento de mecânica de jogo. Isso quer dizer que um
jogador deve esperar a jogada de seu oponente para jogar.
Essa metodologia se usa em alguns jogos famosos do
gênero de estratégia, como Civilization. Esta é uma
mecânica diferente dos jogos eletrônicos de combate em
primeira pessoa, em que as regras são executadas em
tempo real, podendo os dois ou mais jogadores realizar
tarefas ao mesmo tempo.

Em geral, a mecânica do jogo é um projeto que visa
permitir que pessoas joguem, tendo uma diversão e/ou
ganhando uma experiência.

2.3 Engine

Engine ou motor de jogo é um conjunto de bibliotecas que
auxiliam no desenvolvimento de jogos, para videogames
e/ou computadores rodando dentro de sistemas
operacionais. Este conjunto de tecnologias pode incluir
gráficos 2D e/ou 3D, detecção de colisão, linguagem de
script, sons, física, inteligência artificial e redes [MOTOR
DE JOGO 2008].

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 7

Um motor de jogo pode ser denominado também de
game engine, ou engine.

2.4 XML

XML (eXtensible Markup Language) é um formato
para representação e armazenagem de conteúdo de
forma hierárquica, conhecida pela sua criação de
nodos sem limitação, validação de estrutura, fácil
entendimento humano e portabilidade [Harold
1999].

Esse formato permite que uma aplicação possa
criar um arquivo XML e que outro aplicativo
distinto possa ler esses mesmos dados sem
restrição. Por essas razões foi escolhida esta
estrutura para o desenvolvimento da linguagem das
regras.

2.5 SDK

A sigla SDK (Software Development Kit) significa
kit de desenvolvimento de software. Estes kits
normalmente contêm documentação, códigos,
bibliotecas e ferramentas para o auxílio no
desenvolvimento de softwares [SDK 2008].

Empresas de grande porte desenvolvem SDKs
para que programadores externos, que não têm uma
ligação direta com a empresa, possam usá-las para o
de desenvolvimento de softwares.

No trabalho desenvolvido, houve a necessidade
de criar uma biblioteca de gerenciamento das
regras, um editor para a edição das regras e um
engine para a demonstração dos dois jogos,
atribuindo a esse conjunto de ferramentas o nome
de SDK Gameplay.

3. Trabalhos Relacionados

Existem outros trabalhos relacionados com
ferramentas RAD ou editores para um tipo de
mecânica específico, mas usualmente essas
ferramentas não são genéricas. Este capítulo
apresenta alguns desses trabalhos e ferramentas,
destacando que, neste trabalho, ao contrário dos
outros, buscou-se a criação de uma ferramenta
genérica, tipo RAD, voltada para a edição de
gameplay.

3.1 Regras de jogo em XML

Na literatura foi encontrada uma proposta de
modelagem de dados para a criação das regras de
jogo, por meio de arquivos em formato de XML
[CAMOLESI; MARTIN 2005], em artigo
apresentado no SBGames 2005. Esse trabalho
reforça a importância do tema aqui abordado, e
também serviu de referência para os estudos e

desenvolvimentos relacionados a este trabalho de
conclusão.

Analisando esse modelo estudado, o método de
estruturação do arquivo em relação a outros arquivos
XML, foi encontrado um modelo intuitivo que contém
elementos e interações para criação das regras de um
jogo. Isso foi de grande importância para a construção da
nossa estrutura, visando uma simplicidade visual, sendo
que uma pessoa com menos conhecimento tecnológico
pudesse entender o documento, não perdendo a
complexidade das regras e suas interações.

3.2 No mercado de games

No mercado existem diversas ferramentas RAD
[Martin 1991] ou ferramentas de desenvolvimento rápido
usadas para o desenvolvimento de softwares. Dentro
desse nicho devem ser destacadas as que incluem a
mecânica de jogo no seu sistema, como os aplicativos
Game Factory [CLICK 2007] e Game Maker [YOYO
2007]. Com esses softwares RAD podem-se criar jogos
por meio de uma interface simples e intuitiva,
praticamente sem a necessidade de programação.
Entretanto, essas ferramentas são limitadas, pois algumas
desenvolvem somente jogos em duas dimensões, além de
serem desenvolvidas como pacotes fechados, o que
dificulta a combinação destes com outras tecnologias.

No mercado de jogos em terceira dimensão, pelo que
foi constatado, existe a ferramenta Dark Basic, que
necessita de um conhecimento de programação
fundamentada em Basic. Há também o Game Maker, com
sua interatividade para pessoas que têm menos
conhecimento; porém, pela sua proposta comercial acaba
criando uma dependência da tecnologia com as regras,
tornando o usuário dependente da tecnologia
desenvolvida pela empresa criadora desta ferramenta,
diferente da tecnologia proposta.

Existe, portanto, uma carência de ferramentas RAD
modulares e abertas (para 2D ou 3D) que permitam
programar e testar os processos, ou uma ferramenta que
permita automatizar amplamente o desenvolvimento de
qualquer jogo.

3.3 Game Maker

Game Maker (que significa “criador de jogos”) é um
engine proprietário. Com suporte a uma linguagem de
script, renderização 2D por tiles isométricos e
retangulares e suporte limitado a 3D. Todos os recursos
dos jogos são organizados em pastas dentro do programa,
que inclui pequenos programas para criar seus recursos,
como editores de imagens, sons, scripts e fases [YOYO
2007].

O Game Maker permite ainda salvar os recursos
criados para que possam ser usados em outros jogos ou

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 8

fora do programa e importar ações adicionais para
estender as funções do programa [YOYO 2007].

Foi analisado o funcionamento desta ferramenta
em comparação com outras descritas; verificou-se
que pessoas que não têm um conhecimento técnico
profundo podem desenvolver os jogos simples.
Porém, caso se queira criar alguma idéia mais
complexa, ela precisará ser programada em scripts.

Este engine contém entrelaçadas as regras de
jogo. Esse fator é negativo, pois o código é fechado,
não permitindo acesso a modificações e alterações.
Essa característica cria uma dependência da
tecnologia para o usuário, que não pode
acompanhar as novas tecnologias emergentes. Se o
usuário criou um jogo no Game Maker e quiser
portar para outras tecnologias terá que desenvolver
a lógica do início.

3.4 Dark Basic

Dark Basic é um software proprietário para o
desenvolvimento de jogos para computador. Tem
uma linguagem própria baseada em BASIC com
instruções próprias. Possui suporte para Pixel
Shader e Vertex Shader, suporta modelos animados
de muitos formatos e usa os recursos do DirectX 9
para renderização gráfica [HARBOUR; SMITH
2003].

Neste trabalho foi analisado o funcionamento da
ferramenta Dark Basic em comparação com outras
descritas. Nesta ferramenta, o usuário precisa ter
um conhecimento na área de programação,
descartando pessoas que não dominam a área
técnica, mas têm o desejo e o conhecimento de criar
as regras e suas interatividades.

Este engine contém os mesmo problemas de
entrelaçamento com as regras de jogo que o Game
Maker, sendo um fator negativo. O Dark Basic
contém técnicas avançadas de renderização,
podendo criar jogos com melhor aparência; por
outro lado, tem menos recursos automáticos de
regras e interatividades que o Game Maker,
deixando-o menos interativo.

4. Metodologia

Este trabalho se divide em três projetos: uma
biblioteca que controla as regras, um engine que
controla as tecnologias externas e um editor de
jogos.

A construção do SDK – Software Development
Kit (Figura 1) está dividida no editor de gameplay e
na biblioteca GameplayLib. Por meio do editor
pode-se criar e alterar a mecânica de jogo, gerando
um arquivo em XML. Uma vez exportado, este

deve ser conectado junto ao jogo com a biblioteca de
controle de gameplay, podendo assim controlar os
elementos do jogo e jogar (executando a simulação, visto
que o jogo é considerado uma aplicação de simulação em
tempo real).

Figura 1 – Organização do SDK e comunicação do editor com o
jogo; pode-se ver que o editor está exportando o arquivo XML
para o jogo, que o utiliza em conjunto com a biblioteca
GameplayLib e o engine.

4.1 GameplayLib

A biblioteca GameplayLib (Figura 2) contém uma série de
componentes que ajudam a desenvolver regras dinâmicas,
sendo usada para a criação das regras de forma genérica.
Dessa forma pode-se importar um arquivo em formato
XML, que é traduzido para este conjunto de classes
(representado na cor verde na Figura 2). Depois disso, as
tecnologias externas podem fazer uso de seus recursos por
meio da classe gameplay, podendo escutar as execuções
(ativações) das regras, as criações e destruições dos
objects, tudo isto por meio da classe listener. Com isso, o
desenvolvedor tem um controle completo do jogo,
abrindo uma série de possibilidades; cada tecnologia
diferente, inclusive, poderá ter um listener diferente para
organizar melhor seu código.

Figura 2 – Organização da biblioteca GameplayLib; a classe
gameplay é a responsável pelo gerenciamento da biblioteca,
podendo usar as classes conectadas a ele; listener é a classe que
interage com as tecnologias externas.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 9

Figura 3 – Ciclo de comunicação do engine com a classe
gameplay. Inicia com o engine ativando gameplay, que
por sua vez atualiza o generator e o behavior, que por sua
vez escuta os commands executados, gerando o engine
perceptions de volta para o trigger.

Como exemplo, pode-se tomar o jogo do
Pacman. O criador das regras deve se preocupar em
criar elementos de interatividade, como Pacman,
Fantasma, Ponto, Vitamina e Parede, que são aqui
denominados de elements. Cada element pode ou
não se ligar com uma class, caso haja necessidade
de criação de variáveis auxiliares. No caso, o
Pacman necessita das variáveis auxiliares para
realizar a contagem de pontos e verificar se ele está
em um estado em que consegue matar os fantasmas
(após pegar a vitamina). Cada element pode conter
ações que são usadas na interação com o jogo. No
exemplo, o jogador pode realizar ações como
movimentos para cima, para baixo, para a esquerda
e para a direita, denominadas de actions. As actions
normalmente são ativadas pela entrada de dados
(teclado, mouse, joystick, etc.), que oferece o
engine e enviada para a biblioteca que contém as
regras do jogo denominada GameplayLib. Esta, por
sua vez, executa as regras que se referem à ativação
da action e ao element que a ativou (no exemplo, o
Pacman é o element e a action é andar para a
frente). A biblioteca avisa ao engine que o Pacman
andou, e este move o personagem na tela. Caso
existia uma parede na frente e ele não possa andar,
o engine envia uma perception para a biblioteca
avisando que o Pacman colidiu com a parede,
podendo gerar ou não uma action de volta para o
engine.

Este é o elo de comunicação entre o engine e a
GameplayLib. Todas as perceptions são enviadas
mediante eventos do tipo trigger (evento
instantâneo). Exemplo de perception é o Pacman
colidindo com a parede, fantasma, o ponto ou a
vitamina. Dentro dos triggers, pode-se modificar o
state game, as variáveis das classes e a ativação de
behaviors. Caso o Pacman pegue uma vitamina,
ativa-se um trigger, que por sua vez ativa um
behavior (evento não-instantâneo) de 30 segundos
durante os quais ele pode matar os fantasmas. A
cada ciclo de jogo existe um gerador de agentes

denominado de generator, que percebe que quando
morrem quatro fantasmas deve nascer um número
randômico entre um e quatro, mas nunca deve-se
ultrapassar quatro fantasmas.

4.1.1 Trigger

Triggers são eventos ativados, de modo automático ou
manual, quando houver uma ação (action) em relação a
um state game, ou ao ocorrer uma interação com o mundo
virtual, ou vindo de um object secundário com uma
perception. Uma vez ativado, executa os commands, que
posteriormente desativam-se automaticamente.(Figura 4).

Figura 4 – Ciclo de comunicação do engine com o evento
trigger. Inicia com a entrada de dados ativando uma action,
sendo enviada para um trigger. O engine, por sua vez, escuta os
commands executados gerando perceptions, que voltam para o
trigger.

Dentro deste evento podem existir n commands, que
contêm as regras do jogo. Estas regras serão explicadas
melhor na sessão (4.1.3 Command). Tanto as actions
como as perceptions podem ser executadas com um ou
com n objects, podendo realizar múltiplas interações.
Cabe ainda destacar que cada trigger pode ainda acionar
outro trigger, ativando múltiplos eventos.

Os eventos podem ser filtrados por um determinado
state game, perception, action e object. Assim, o
desenvolvedor tem controle para ativar eventos somente
para um determinado estado. Por exemplo, em um jogo de
RPG combate, a perception só se ativa quando recebe um
ataque e se este ataque é de um element do tipo inimigo.
Isso vale para os eventos do tipo trigger e behavior.

4.1.2 Behavior

Behaviors são eventos ativados automaticamente quando
um object tem escolhido seu behavior. Assim, cada object
pode ativar somente um behavior por vez. Uma vez
ativado, executa os commands, não se desativando logo a
seguir. É necessário ordenar a desativação por meio do
object, behavior ou trigger.

Dentro desse evento podem existir n comamnds, que
contêm as regras do jogo. Essas regras serão explicadas
melhor na sessão 4.1.3 Command.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 10

Por meio de um behavior podem-se ativar n
triggers, dando uma maior flexibilidade das regras.
Um exemplo de behavior é o planejamento e
execução de trajetórias (e.g. A* - A Star).

4.1.3 Command

Commands são regras de estados que interagem
com um object primário ou secundário. Object
primário é aquele que executa o evento, e o
secundário é usado somente no evento trigger,
quando for executada uma action ou perception.

Todas estas regras interagem com os attributes
de um object, podendo modificar o jogo. Um
exemplo é ganhar pontos em um jogo, o
personagem deve ter um attribute deniminado
ponto. Ele só pode alterar esses attributes através
dos operadores.

Existem operadores do tipo somadores,
multiplicadores e divisores. Esses operadores são
usados junto aos attributes de um object primário
ou secundário, ou mesmo o command interagindo
com dois tipos de objects, seja alterando ou
comparando seus attributes. Exemplo: O símbolo
“@+@S” significa que “@” é attribute primário,
“+” é igual a mais e “@S” é igual à attribute
secundário, traduzindo para a forma humana dessa
forma: attribute do object primário mais attribute
do object secundário (Figura 5).

Figura 5 – Exemplo de operadores no padrão GML
(Gameplay Language).

A cada execução de um command, são enviados
eventos para os listeners, que posteriormente
repassarão essas mensagens para as tecnologias
externas, criando uma ponte de conexão.

4.1.4 Element

No componente element estão representados os
elementos que compõem a interatividade do jogo,
pois todo jogo é constituído de um ou mais
jogadores, inimigos e obstáculos – tudo isso são
elements. Existem jogos em que um único jogador

pode controlar três personagens. Isso pode ser
representado, no contexto deste trabalho, pela criação de
três elements: Personagem A, B e C. A mesma coisa vale
para inimigos: existem diferentes tipos de inimigos,
podendo ser classificados por sua raça, dificuldade, ou
pelo fato de ser um chefão. O mesmo ocorre com
obstáculos como parede, chão escorregadio, etc.

Cada element pode ser ligado com um componente do
tipo class. Essa ligação é realizada quando se necessita
atribuir variáveis a um element.

No caso do conhecido jogo do videogame da Atari

denominado Pacman, os elements são Fantasma, Parede,
Ponto, Vitamina e o próprio Pacman.

4.1.5 Action

Action representa as ações que os objects podem realizar.
No caso do Pacman, pode ser exemplificado como andar
para a esquerda, para a direita, para cima e para baixo, no
caso do jogador; para o Fantasma, as suas actions são
perseguir o Pacman ou fugir dele.

As actions podem ser ativadas pelo correspondente
engine comunicado com a GameplayLib. No exemplo, o
jogador, por meio de, por exemplo, um teclado ou mouse,
pode mover o Pacman. Já no caso do Fantasma não é o
jogador que manipula, então a entrada de dados é
substituída pela inteligência artificial para encontrar o
menor caminho até o Pacman para capturá-lo.

4.1.6 Perception

Perception representa as percepções que interagem com
um object, ou mundo externo. No caso do Pacman pode
ser exemplificado como colidir com um fantasma, com
um ponto, com uma parede ou com uma vitamina.

Aprofundando o assunto, o engine é responsável por
enviar essas percepções para a biblioteca por meio de
eventos do tipo trigger. Nesse momento, a biblioteca pode
modificar as variáveis das classes, dos behaviors e do
state game. O engine escuta esses eventos e os executa,
gerando processos e respondendo com perceptions. Assim
ele continua até o estado de fim de jogo, podendo se
tornar uma vitória ou uma derrota.

4.1.7 Gameplay

O gameplay gerencia as classes e une todos os elementos.
Por meio dele pode-se usar todos os componentes para
usufruir as regras do jogo. Existe uma função denominada
updateStep que serve para atualizar os behaviors
(comportamentos dos objects) e os generators (geradores
de objects).

Este gerenciador gameplay foi construído para ter
somente uma instância, não possibilitando ao

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 11

desenvolvedor criá-lo duas vezes. Em padrões de
projeto isto é denominado de singleton. Esta
decisão foi tomada para simplificar o entendimento
dessa biblioteca e diminuir a margem de erros,
como criar componentes desvinculados. Isso
facilitou no próprio desenvolvimento da biblioteca,
diminuindo a quantidade de testes.

4.1.8 Class

Por meio das class se criam os objects. Elas foram
criadas para não perder a referência ao gerar ou
inicializar as regras. A class é constituída de
element, behavior e attributes. Caso seja desejado,
o desenvolvedor tem acesso para modificar as
atribuições iniciais.

Essas atribuições iniciais referem-se aos attributes
da class. Por exemplo, quando se criam objects da
class carro, pode-se definir que é uma Ferrari ou
um Fusca, mas ele sempre nasce Fusca, pois na
class Carro esta selecionado ao attribute “tipo de
carro” para Fusca. Pode-se tanto modificar o
attribute inicial da class como do object. Isso dá um
poder de customização, realizando modificações em
cima dos attributes e aumentando as possibilidades
de criação das regras.

4.1.9 State Game

State Game representa um estado do jogo, sendo
que um jogo pode ter n estados (implementando de
certa forma uma FSM – Finite State Machine). Os
jogos mais simples contêm início, meio e fim.
Outros jogos mais complexos podem ter n estados
de início, meio e fim. Em alguns casos, dependendo
do state game atual, mudam as regras do jogo. Esta
ferramenta também proporciona funcionalidades
como gerência de contexto (state game atual) e
mudança de state game.

Um exemplo de aplicação dos state game é o
caso de jogos de RPG. O agente inicia em um
estado de “navegar”, em que pode andar por um
vilarejo. Dependendo de onde ele caminha, é
ativado um modo de combate aleatório, mudando o
estado do jogo para “em combate”. Caso o agente
perca a batalha, o jogo não termina, voltando ao
estado de “navegar”, em que pode andar pelo
mundo até encontrar um ferreiro e mudar de estado
para “comprar itens”. Sendo assim, a cada mudança
de estado mudam as regras do jogo. Quando se está
navegando só interessa andar; quando se está em
combate só interessa ver os atributos de força,
destreza e magia para decidir quem ataca primeiro,
a chance de acertar, a quantidade de dano causada
no oponente, etc. E quando acaba a batalha, ainda
se pode navegar até uma taverna, entrando no
estado de comprar itens e escolhendo os objetos que
deseja comprar para ganhar vida, força, magia e

destreza. Sem contar que ainda podem existir muitos
finais diferentes dependendo do caminho que o jogo
tomar em seu desenrolar, por exemplo, acabando de uma
maneira se matou o oponente ou de outra caso não tenha
conseguido matá-lo.

4.1.10 Object

Object guarda os attributes, o element e o behavior a ser
usado. Por exemplo, com object denominado Herói João
pode se ligar a vários attributes, como pontos de vida,
força, magias, entre outros itens do element do tipo Herói,
ou ainda inserir velocidade, marchas, turbo representados
junto a um element do tipo carro. Resumindo, esses
attributes podem significar qualquer coisa, de acordo com
a necessidade do desenvolvedor, para a criação de seu
jogo.

4.1.11 Attribute

Attribute é um componente constituído de um nome e um
valor do tipo inteiro, existente dentro de object e class.
Com isso o object pode conter uma série de attributes que
vão interagir com as regras, abrangendo as relações de
interatividades de um jogo.

Um exemplo são os jogos de RPG, que necessitam de
uma grande quantidade de atributtes para a customização
do personagem, criando um maior número de
possibilidades de interação com as regras de um jogo.

4.1.12 Generator

Generator é um gerador de objects em que se pode
escolher o número de gerações a serem geradas, pois a
cada ciclo podem morrer objects, sendo criados
novamente em um determinado intervalo de tempo. Pode-
se escolher, por exemplo, que a cada 5 segundos nasça um
número pré-determinado de objects ou que uma
quantidade indeterminada (aleatória) de objects seja
gerada. Sendo assim podem-se criar gerações de objects
no state game que inicializa o jogo, ou mesmo durante a
execução do jogo, caso se deseje estar sempre criando
novos objects.

No jogo do Pacman, por exemplo, quando inicializa já
existem três fantasmas, nunca mais, isso porque foi
estipulado assim pelo criador das regras. Quando morre
um ou mais fantasmas a cada ciclo podem nascer de um
até três fantasmas.

4.2 Formato GML

A formatação GML (Gameplay Language) foi baseada no
artigo denominado “Um Modelo de Interações para
Definição de Regras de Jogos” [CAMOLESI; MARTIN
2005], sendo escolhido o formato XML, envolvendo
componentes com as seguintes especificações: ator,
objeto, atividades, espaço e tempo. Estes elementos foram
controlados por um livro de regras.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 12

A teoria foi fundamental para dar início à

criação das regras do formato GML, tendo como
definições Elements, Objects, Classes, State Game,
Generators, Triggers, Behaviors, Actions e
Perceptions.

Não se optou aqui pela mesma especificação do
artigo citado, pois foi encontrada dificuldade na
criação de uma aplicação digital; existem muitas
relações entre os nodos, não proporcionando uma
arquitetura adequada para uma biblioteca.

Com o objetivo de criar regras genéricas, o
formato GML teve de ser testado com diferentes
tipos de jogos, compostos por diferentes regras,
gêneros e tecnologias. Para isso foram analisados
quatro jogos de tipos diferentes – Super Mario
World, Pacman, Chrono Trigger e Need For Speed
–, a fim de encontrar um padrão na formatação de
regras que pudesse comportar tanto um jogo
simples como um complexo.

Depois de analisados os jogos, descobriu-se que
existe um padrão entre todos eles, possibilitando a
criação de regras genéricas. Foi constatado que
essas regras podem suportar qualquer tipo de jogo,
mas se devem seguir algumas recomendações para
criar as regras no item “Como desenvolver um
gameplay”.

4.2.1 Projeto

Foi criada uma biblioteca para importação e
exportação em XML no modelo GML, para
interpretar a estrutura do arquivo e inserir na
biblioteca GameplayLib. Exemplos de arquivos
com a descrição XML adotada no GamePlayXML
podem ser encontrados no site da internet
desenvolvido para este projeto
(http://tinyurl.com/4uvbam) e nos anexos deste
trabalho.

O modelo GML é representado por nodos,
propriedades e valores. Existem nodos organizados
por elements, actions, perceptions, state game,
initializes, triggers, comands, behaviors,
generators, objects e classes. Propriedades
específicas para cada nodo permitem criar,
modificar e destruir estados conforme as regras do
jogo. Cada propriedade contém valores padrões,
usados em operadores e identificadores dos
componentes (objects, elements, etc.), e os valores
inseridos pelo desenvolvedor do jogo para criar as
regras.

Cada evento (trigger ou behavior) necessita
cumprir alguns requisitos para poder ser executada.
Como se pode ver na, em todos os eventos existem
propriedades (como idStateGame, idPerception,

idElement e idAction). Antes de ativar as regras, a
biblioteca verifica se o estado de jogo é o indicado em
idStateGame, se o object primário ativado pelo evento é o
mesmo que o presente em idElement, se a perception
ativada confere com idPerception e se a action ativada é a
mesma que a indicada em idAction. Caso se deseje ativar
a trigger para qualquer valor de uma determinada
propriedade, usa-se o número “-1”. Para que a trigger
nunca seja ativada, usa-se “-2”. Um exemplo da opção “-
2” é criar uma trigger somente para o tratamento de
actions; nesse caso o perception fica com a opção “-2”.

Um fator que diferencia os behaviors e os triggers é
que os behaviors são sempre executados a cada ciclo de
jogo e têm uma restrição a mais, que é o tempo estipulado
pelo criador das regras. Outro diferencial é que eles estão
ligados aos objects. Cada object contém uma possível
ligação para um behavior; sendo assim, cada object pode
ter um behavior diferente.

4.3 Como desenvolver um gameplay

Ao longo do trabalho, passou-se por diversas experiências
no desenvolvimento das regras, até conseguir deixá-las
totalmente genéricas. Por esse motivo devem ser
observados alguns tópicos, como simplicidade,
personalização, gameplay e tecnologia externa.

4.3.1 Simplicidade

Manter a simplicidade é saber entender as regras na sua
essência, precisando entendê-las de uma visão abstrata,
esquecendo os algoritmos que fazem o jogo funcionar. A
pessoa responsável pelo desenvolvimento do gameplay
não deve detalhar o tipo de algoritmo de colisão ou de
renderização, mas de como os elementos devem interagir
entre si resultando em uma vitória, derrota ou empate.
Um exemplo é o jogo do Pacman. O criador das regras
deve se preocupar em criar elements de interatividade,
como Pacman, Fantasma, Ponto, Vitamina e Parede;
actions que o jogador pode realizar, como movimento
para cima, para baixo, para a equerda e para a direita;
perceptions que o jogo responde referentes ao element e
suas actions, como o Pacman pode colidir com a parede,
com o fantasma ou com o ponto, e como irá afetá-lo
trocando de state game como vitória ou derrota.

4.3.2 Personalização

À medida que se desenvolvem as regras, pode-se perceber
que alguns elementos ficariam mais bem incorporados
dentro do engine, seja porque facilita na programação ou
por questões de performance. Quando for necessária essa
decisão, deve-se perguntar se fará diferença na hora de
personalizar depois de terminado o jogo, pois em caso
afirmativo haverá dificuldade de personalização, tendo
que abrir o código-fonte e compilar e entrar em ciclo de
bugs, perdendo tempo de uma mão-de-obra de alto custo.

4.3.3 Gameplay e tecnologia externa

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 13

As regras devem ser criadas separadamente das
tecnologias, pois do contrário haverá dependência
entre ambos, impedindo migração para outras
tecnologias.

É um erro comum incorporar as regras com a
posição do jogador com duas dimensões x e y.
Nesse momento está havendo ligação da tecnologia
com as regras, e isso acarreta a dependência de uma
biblioteca de duas dimensões. No momento em que
se trocar para uma que tiver três dimensões terá de
haver mudança nas regras.

Em vez de dizer “o botão A”, diga “acelera o
carro”; em vez de dizer “X + 1”. diga “para frente”.
Isso facilitará o entendimento dos programadores
para a implementação do jogo.

4.4 Resultados

O principal resultado que permite validar e avaliar
este trabalho é o desenvolvimento de dois jogos.
Cada jogo teve suas regras analisadas, pensadas e
criadas no formato GML. Posteriormente, as regras
foram ligadas à biblioteca com o engine, para o
funcionamento do jogo.

Os dois jogos desenvolvidos foram uma versão
do Pacman (rodando em console) e um jogo estilo
RPG (que possui duas versões, uma com gráficos
em duas dimensões e outra em console).

4.4.1 Jogo estilo RPG

O jogo de RPG foi desenvolvido com base nos
jogos de Super Nintendo, como Chrono Trigger.
Este jogo de referência foi importante para o
entendimento da mecânica de jogo, pois em um
RPG, dependendo do estado de jogo, as regras
mudam.

Em uma visão geral a mecânica de jogo
funciona da seguinte forma: no momento inicial, o
personagem pode andar pelo mundo, mas quando
chega perto do inimigo, entra-se em estado de
combate, no qual as regras do jogo são modificadas.
Durante o combate o personagem não pode mais
andar pelo mundo até terminar a batalha. Se o jogo
estiver no estado de navegação, é possível ainda
entrar em uma loja, que faz o jogo entrar em modo
de compra, permitindo comprar itens que vão
ajudar no combate.

Os eventos permitem a realização de atribuições
randômicas em cima de attributes, ajudando para a
criação das regras referentes à chance de atingir o
adversário durante o combate, pois nos jogos de
RPG existe o fator sorte: existe a chance de um

herói mais fraco vencer um inimigo mais forte e vice-
versa, tornando o jogo mais divertido.
Isto é feito em cima dos attributes do object primário e
secundário em conjunto com uma randomização nesses
valores.

Para a execução de cada evento, um object primário
deve ser referenciado para a execução das regras e, caso
se deseje, podem ser referenciados objects secundários.
No caso do evento “atacar_forca”, necessita-se do object
primário e secundário para a realização de um ataque,
pois nas interações destas usam-se attributes dos objects
como força, vida e chance de acertar.

Um ataque pode ser usado de um object primário para
um object secundário ou de um object primário para
muitos objects secundários, permitindo a realização de
ataques simultâneos. Isso pode ocorrer de um herói para
inimigo, ou vice-versa, tendo em vista que, para realizar
este feito, necessita-se de uma organização das ordens dos
atributos. Se os atributos desejados para a interação forem
os mesmos e na mesma ordem, independentemente dos
objects, o evento executará as regras sem problema
algum.

Figura 6 – Jogo de RPG de console em estado de navegação; um
fator importante é que os três engines estão usando o mesmo
arquivo GML.

5. Considerações finais

A principal motivação deste trabalho era criar um
conjunto de ferramentas para o auxílio na criação de
regras de jogos digitais de uma forma genérica, focada
para as pessoas que não têm um profundo conhecimento
na área tecnológica. Para isso, foi necessária a criação de
uma estrutura usando o formato XML, proporcionando a
separação do gameplay e do engine por meio de uma
biblioteca que gerencia as regras. Esta separação ajudou
na prototipação de jogos podendo usar motores mais
simples para testes de jogabilidade.

Visando à criação do editor, foram estudadas três
ferramentas no mercado de jogos: Game Maker, Dark
Basic e RPG Maker. Concluiu-se que, para obter uma
não-dependência das tecnologias, era preciso se desligar
dos recursos de um jogo, como imagens, sons e modelos
2D ou 3D, focando o pensamento somente nas regras.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 14

No desenvolvimento do engine, o
desenvolvedor ganhou benefícios utilizando a
ferramenta como: automatização das regras,
separação das tecnologias. Resultando em um
código robusto e organizado.

Depois de desenvolvido o editor e de exportadas
as regras para o engine, era necessário criar os
resultados, que no caso são os jogos para verificar a
mecânica de jogo. Foram desenvolvidos dois jogos:
Pacman, usando um engine de console, e um jogo
estilo RPG com dois engines (um em 2D e outro
mais simples para prototipação em console). É
importante destacar que o arquivo em XML com as
regras do jogo estilo RPG era o mesmo em ambos
engines. Isso demonstra que foi atingido o objetivo
de independência de tecnologia.

Todo o processo de desenvolvimento do
trabalho está disponível na internet, no blog
http://sdkgameplay.blogspot.com. No mesmo
endereço também se pode realizar o download da
ferramenta sob licença LGPL.

Este trabalho tem potencial não só de ajudar as
pessoas que tenham menos conhecimento técnico,
mas também de integrá-las com as pessoas que
dominam a tecnologia. Isso permite que essas
pessoas possam realizar parcerias pra a construção
de jogos, criando um elo entre os conhecimentos.
Isso antes não era possível porque as ferramentas
estudadas não permitiam que pessoas com mais
conhecimento tecnológico tivessem a oportunidade
de usar, modificar, alterar ou adicionar as
tecnologias existentes.

Este trabalho vai ajudar a comunidade de jogos,
pois, parametrizando as regras de uma forma
genérica, possibilita-se o compartilhamento no
mundo digital usando um formato popular
denominado de XML. Une-se, assim, profissionais
técnicos e desenvolvedores de gameplay.

O próximo projeto seria explorar o gameplay
utilizando as tecnologias construídas para a
realização de experiências científicas referentes aos
tipos de mecânicas de jogos existentes, resultando
na diversão, para futuramente o programa poder
ajudar na construção desses jogos.

Referências Bibliográficas

CAMOLESI JR., Luiz; MARTIN, Luiz Eduardo Galvão.

Um modelo de Interações para Definição de Regras
de Jogo. São Paulo: SBGames, 2005. Sociedade
Brasileira de Computação.

Click Team - The Games Factory, 2007. Disponível em:

<http://www.clickteam.com/eng/>. Acesso em: 9 ago.
2007.

HARBOUR, Jonathan S.; SMITH, Joshua R. Beginner’s Guide
To Dark Basic Game Programming. Portland: Premier Press,
2003.

HAROLD, Elliotte Rusty. XML Bible. IDG Books Worldwide,

1999.

MARTIN, James. Rapid Application Development. Indiana:

Macmillan Coll Div Publisher, 1991.

MOTOR DE JOGO (Definição) - Wikipedia. Disponível em:

<http://pt.wikipedia.org/wiki/Motor_de_jogo>. Acesso em:
20 maio 2008.

SDK (Definição) - Wikipedia. Disponível em:

<http://pt.wikipedia.org/wiki/SDK>. Acesso em: 20 maio
2008.

YoYo Games – Gamemaker. Disponível em:

<http://www.yoyogames.com/gamemaker/>.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 15

Parallel Culling and Sorting based on Adaptive Static Balancing

Lucas Machado Bruno Feijó
VisionLab/ICAD/IGames, Dept. of Informatics, PUC-Rio

{lmachado, bfeijo}@inf.puc-rio.br

Abstract

This paper presents a new and effective method for
parallel octree culling and sorting for multicore
systems using counting sort and based on a new
balancing algorithm, called adaptive delayed static
balancing. The adaptive nature of the method is
governed by a dynamic split level that can adjust the
algorithm to new camera positions keeping a well-
balanced workload amongst the processors. Also this
paper introduces the concept of n-dimensional
resource space as a discrete Euclidean space. This
work presents a simple and effective thread
management system called MinTMS.

1. Introduction

Octree culling is a classical algorithm for reducing
the amount of data sent to the GPU for rendering. The
technique consists of dividing the 3D space into eight
cubes and repeating the process for each cube until a
certain level of the octree is reached (usually, the
leaves) and objects are stored. Rendering is done by
testing the intersection of the view frustum with the
octree nodes and sending to the GPU only the visible
objects. In this case, if a certain node cannot be seen its
entire subtree is pruned from the octree. This process
can be easily parallelized, but the balance of the
workload is not trivial. Another aspect of the rendering
process is resource sorting (e.g. Textures, meshes, and
pixel shading techniques). There is always a cost
associated to resource changes. Therefore, these
changes should be reduced by sorting and grouping
objects with common resources. Most of the methods
for parallel rendering is concentrated on PC clusters
and grids, while the literature on parallel culling for
multicore systems is scarce. This paper presents a new
and effective method for parallel octree culling and
sorting for multicore systems using counting sort
(which is O(n) time) and based on a new balancing
algorithm called adaptive delayed static balancing.

Tests revealed a performance improvement of the
culling process between 3 and 4 times in relation to the
classical single threaded octree culling process.
However, the most important performance analysis
concerns the capability that the proposed method has to
adapt itself to new camera positions, which are
continuously changing over time.

This paper is organized as follows. In the next
section, previous works are analyzed. In section 3, we
present the concept of the adaptive delayed static
balancing for parallel culling. The algorithm for node
rendering is presented in section 4. Section 5 presents
the adaptive nature of the proposed method. In section
6, we have the entire algorithm. Also this paper
proposes a simple API for thread management called
MinTMS in section 7. Section 8 presents the parallel
sorting method that handles the sorting of multiple
resources of the objects. Finally, some results are
described in section 9 and section 10 presents some
final remarks.

2. Related Work

A lot of research on parallel search and sorting
algorithms has already been done and many techniques
exist in the literature [Grama et al. 2003] [Wilkinson
and Allen]. Also several works have been carried out
in the area of parallel rendering using sorting
techniques. Molnar et al. [1994] proposed a
classification of parallel rendering system based on in
which stage of the rendering pipeline the sorting is
carried out (sort-last, sort-middle, and sort-first).
Humphreys et al. [2002] present a sort-first method for
distributed rendering using a cluster of common PCs.
Abraham et al. [2004] propose a load-balancing
strategy for sort-first distributed rendering using PC-
based clusters. Baxter et al. [2002] present a parallel
rendering architecture using two graphics pipeline and
one processor, including occlusion culling, LOD and
scene graph hierarchy. However, these works
concentrate on distributed rendering using PC clusters

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 16

and/or on global aspects of parallel rendering. The
literature has few works concentrated on algorithms for
parallel culling and sorting using multicore systems.

Octree is a classic data structure used in many
computer graphics applications [Foley et al. 1995],
[Dalmau 2003]. However, parallel occlusion
algorithms using octrees are not usual. Greene et al.
[1993] are the first authors to propose an octree
hierarchy for visibility computation with some
potential to parallelize. Their work had a great
influence on graphics hardware design. Xiong et al.
[2006] present an algorithm for parallel occlusion
culling on GPUs clusters using the occlusion query
function provided by current GPUs. As far as the
authors of the present papers are aware, there is no
previous work on parallel octree occlusion and sorting
for multicore systems based on simple and efficient
static balancing and O(n) time sorting algorithm.

3. Initial Concepts

One of the main problems in parallel culling using
octrees is how to balance the workload amongst the
processors. The simple strategy of equally distributing
the top level nodes between processors (called static
balancing) may result in long idle times in some
processors at certain camera positions. An alternative
solution to the problems of static balancing is the use
of a dynamic balancing strategy, where a processor
asks another one for working when it becomes idle.
The drawback of this solution is the addition of
increasing communication overheads. In this paper, we
propose a new and effective strategy called “adaptive
delayed static balancing” that has the following
characteristics:

1. Instead of distributing the nodes equally
amongst the processors at the start of the
processing, the algorithm waits until a certain
level d (called “split level”) in the octree is
reached and only then it distributes the work as
a static balancing procedure. This characterizes
a “delayed” static balancing strategy.

2. Irrelevant nodes are pruned from the tree before
the work is distributed amongst the processors.

3. The split level d is dynamically adapted to
changes in the virtual environment. This
characterizes an “adaptive” strategy.

 The reason for the implementation of the above-
mentioned delay is that the frustum usually interacts
with the nodes in lower levels of the octree. In such
lower levels there is a better chance for a more
balanced distribution of work. In the proposed
algorithm, before the split level d is reached, a
sequence of nodes is visited in a breath-first way and a

list of nodes (node_list) is prepared for the distribution
stage of the algorithm. Irrelevant nodes (i.e. branches
of the tree with no intersection with the frustum) are
automatically pruned from node_list. The nodes from
node_list are distributed amongst the processors by
creating a list of nodes for each processor and storing it
in a vector called working_list. The implementation of
this strategy requires the following main tasks:

• To visit the nodes until the split-level is reached
• To set up the list of nodes to be distributed

(pruning the octree adequately): node_list
• To expand nodes in node_list
• To render the leaf nodes of the octree that are

intersected by the frustum

4. Rendering Nodes

The tasks presented in the previous section can be
accomplished by the function RenderNodes(idx, n,
node_list, frustum). In this paper, “to render nodes”
from an octree means to add the objects from a leaf
node to a data structure that should be processed by the
processor idx considering resource optimizations and
GPU communications. The function RenderNodes can
transverse the octree completely or stop after n nodes
(n = 0 means no limit to transverse the tree). In the case
of having a limit (n > 0), this function returns a non-
empty node_list containing the nodes to be distributed
amongst the processors (including the main processor
that is currently setting node_list up). Figure 1 presents
the pseudo-code of the function RenderNodes, where
frustum is a structure containing the coordinates and
orientation of the frustum (which are constantly
moving at each frame in time).

RenderNodes(idx, n, node_list, frustum)
 set node_count to 0
 while node_list is not empty
 node = first node of node_list
 eliminate first node of node_list
 if frustum intersects node
 if node is a leaf
 add all objects of node to idx data
 else
 put children of node at the end of node_list
 if n > 0 // i.e.: render must stop after n nodes
 increment node_count by 1

 if node_count is equal to n
 break the loop of while

 return node_list

Figure 1 The function to render nodes

The function RenderNodes can be executed by the main
processor (e.g. P1) or one of the secondary processors
(e.g. P2, P3, or P4). In the case of secondary

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 17

processors, RenderNodes is executed by another
function that is controlled by a thread management
system. This later function is
RenderNodesProcessorTask(idx, working_list[idx]), where
idx is the processor index and working_list is the list of
nodes to be processed, as shown in Figure 2. The
global vectors startTime[idx] and endTime[idx] are used
to calculate the idle time of the processors. The task
RenderNodesProcessorTask is controlled by using a new
and simple API for thread management proposed in the
present paper.

RenderNodesProcessorTask (idx,working_list[idx])
 get current time and save it as startTime[idx]
 RenderNodes(idx,0,working_list[idx],frustum
 Get current time and save it as endTime[idx]

Figure 2 Calling RenderNodes for processor idx

5. Dynamic Adaptation of the Split Level

Before presenting the complete algorithm proposed in
this paper, we should consider the dynamic adaptation
of the split level. The best split level (d=0, d=1, d=2,
…) is the one that minimizes the sum of the idle time
of all processors. Our algorithm employs an adaptive
strategy that constantly changes the split level. This
strategy is based on the fact that deeper levels tend to
reduce the total idle time. Therefore, we expect that
each new time frame should increment the split level d.
However, depending on the movement of the camera
through the virtual environment, the tendency for
decaying idle time is broken and decrements in the
value of the split level should be tried until the normal
trend is recovered (i.e. the increase of d causes the
decay of total idle time). This is a process that searches

for the optimum value of d. There is no way of
deducing a function relating d and total idle time.
Experiments have suggested us that trends (solid lines
in Figure 3) can be eventually disturbed by adjustment
periods (dashed lines in Figure 3). This behavior

inspires us to propose the function split_level to
dynamically adapt d to changes in the virtual
environment based on trends, as shown in Figure 4.

Last sum of the idle time of all processors as a global
variable: last_total_idle_time = 0
Current trend as a global variable: trend = false
Number of levels of the octree as a global variable (already
calculated): num_levels

split_Level(d, total_idle_time)
 if total_idle_time is greater than last_total_idle_time
 reverse trend // e.g. trend = not(trend)
 if trend is true
 if d is less than (num_levels – 1)
 increment d by 1
 else
 if d is greater than zero
 decrement d by 1
 last_total_idle_time = total_idle_time
 return d

Figure 4 Function split_Level to dynamically adapt
d to changes in the virtual environment

6. The Proposed Algorithm

Considering the explanation presented so far, the
adaptive delayed static balancing algorithm can be
described by the pseudo-code of the function
ADStBalancingRender(d, octree, frustum) in Appendix A,
where d is the split level (initially zero), octree is a
structure containing the octree of the scene, and frustum
is a structure containing the coordinates and orientation
of the frustum (which are constantly moving at each
frame in time). The function ADStBalancingRender is
called by the main program at each time frame. This
function calls CalculateTotalIdleTime() that is presented
in Figure 5.

7. MinTMS

The proposed algorithm considers that the threads are
initialized by the main program. This initialization
procedure together with three other procedures (used in
ADStBalancingRender, Appendix A) are proposed as a
simple API for thread management that hides the
difficulties of using low level system functions. This
API, called MinTMS (for Minimum Thread
Management System) (see Appendix A), is described
as follows:

Init(n)
This method creates n threads that remain blocked
until StartWorking() is called.

SetTask(idx,task,data)

Figure 3 Trends (decaying idle time with increasing
d) and adjustment periods

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 18

This method sets a task and the data to be processed
by the thread idx. The task is executed when
StartWorking is called.

StartWorking(idx)
This method unblocks the thread idx. The thread idx
returns to a blocked state after processing its task.

WaitUntilWorkFinished()
This method implements a barrier and blocks the
main processor until all threads have finished their
tasks.

The starting processing time of each processor as a global
vector: startTime[]
The ending processing time of each processor as a global
vector: endTime[]
Total number of processors as a global variable:
num_processors

CalculateTotalIdleTime()
 min = stratTime[0]
 max = endTime[0]
 for i = 0 to (num_processors -1) stepping by 1
 if startTime is less than min
 min = startTime[i]
 if endTime[i] is greater than max
 max = endTime[i]
 idle = 0
 for i = 0 to (num_processors -1) stepping by 1
 increment idle by (startTime[i] – min)
 increment idle by (max – endTime[i])
 return idle

Figure 5 Function to calculate the total idle time

8. The Proposed Counting Sort Method

8.1 Sorting Algorithms

 The main feature of a sorting algorithm [Cormen et
al. 2001] is the amount of time required to reorder n
given numbers into increasing order. However, there
are other features to be considered. A sorting algorithm
is called in-place if it uses no additional array storage
(buffer) and is called stable if duplicate elements
remain in the same relative position after sorting.
Mergesort is a stable O(n log n) sorting algorithm but it
is not in-place. Heapsort is an in-place O(n log n)
sorting algorithm, but it is not stable. Quicksort is
regarded as one of the fastest sorting algorithm, but it
is not stable and, stickling speaking, it not in-place.
 It is a well-known theorem that is not possible to
sort faster than O(n log n) time for algorithms based on
2-way comparisons. Sorting numbers faster than this
lower bound must be done without the use of
comparisons, what is only possible under certain very

restrictive circumstances. Under these special
conditions, an entire class of linear time sorting
algorithm arises. For instance, counting sort is a stable
O(n) sorting algorithm, but not in-place, which can
only be used in applications that sort small integers. In

this algorithm, for each integer k found in the input list
A, we increment the value of C[k] by 1 (the size of C is
determined by the largest integer in A), as shown in
Figure 6. C[k] is called counting array. In the next
section, counting sort is presented as the best algorithm
for resource sorting in parallel rendering.

8.2 Resource Sorting

 Resources are data, properties, components,
techniques, and programs used by the 3D objects in
order to be rendered properly. Textures, meshes, and
pixel shading techniques are common resources used in
the rendering processes of real-time applications. Each
type of resource defines a discrete axis (i.e. an axis
with integer coordinate values) called dimension (e.g.
textures are identified by the integer values 0, 1, 2, …
in the texture axis). Resource space is a discrete
Euclidean space defined by one or more dimensions.
Therefore, the texture dimension and the mesh
dimension form a two-dimensional resource space. An
efficient rendering strategy is the one that groups
objects sharing the same resources (i.e. it groups the
objects in the same point of the resource space). This
strategy minimizes the costs associated with every
resource change during the rendering process (there is
always a great cost associated to jumps within the
resource space). In this paper, for each point (i,j,k,…)
of the resource space, we define the n-dimensional
resource data array R[i,j,k,…] containing the
following data:

• The number c of objects sharing the same set of
resources i,j,k, …;

• A list L of these objects.
 We use the following notation to present this n-
dimensional array:

Figure 6 Example of counting sort

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 19

},{,...],,[,...,,,...,, kjikji LckjiR = (Eq.01)

Figure 7 illustrates the simplest cases for R[i,j,k,…]:
one, two, and three-dimensional resource data arrays.
In Figure 7(b) the two dimensions are texture and
mesh. In this 2-dimension example, the rendering
process can fix a mesh and render objects per texture
(e.g. it fixes mesh 0 and renders 1 object with texture 0
and then 3 objects with texture 4).
 In the case of one dimension represented by
textures (Figure 7(a)), we can easily identify R[i] as
being an extended version of the counting array C[k]
in the counting sort algorithm (Figure 6). The main job
of the function RenderNodes (Figure1) is to add
objects to the resource data array R of each processor.
Therefore, this job is a counting sort process. As
resources can be represented by small integer numbers
(complex 3D scenes hardly go beyond 300 different
textures), the most appropriate sort algorithm for
parallel rendering is counting sort. In this way, we have
the fastest and convenient option: a stable O(n) sorting
algorithm. We should notice that the in-place nature of
counting sort (presented in the previous section) is not
relevant in the present application, because we need a
storage array to distribute work amongst the processors
anyway.
8.3 The Sorting Process

The function RenderNodes (Figure1) builds the
resource data array R of each processor Pi, in such a

way that the objects are distributed amongst the
processors and grouped according to the resources they
use. In this paper, the proposed algorithm merges the

arrays R into a single n-dimensional array M, called
merged resource data array, by performing the sum of
the corresponding ci,j,k,… and transferring the references
to the lists Li,j,k,… . Figure 8 illustrates the entire
merging process for the two dimensional case and four

Figure 7 Simple cases of the n-dimensional resource data array R, where c is the number
of objects and L is the list of the objects. The discrete resource spaces are also illustrated.

Figure 8 The merged resource data array M

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 20

processors. We should notice that Pi data is not inside
each processor (in fact the sets of Pi data are in a
common structure that each processor can freely
access).
 Once the merged data array M is completed we can
scan it and whenever c is greater than zero the list of
sorted objects L can be rendered using the resources
identified by the integer coordinates (i,j,k,…).

9. Some Results

 The computer used for tests is a quadcore machine
(Intel Core 2 Extreme Q6850 3.00GHz). The GPU
rendering performance should be isolated from the
performance analysis of the proposed parallel culling
method. Therefore, no fps figures are presented.

 The first test compares the proposed method with a
classical single thread octree culling for an octree with
8 levels (2.396.745 nodes). The result in Table 1 shows
an improvement of 3.16.

Table 1 The proposed method (4 threads) vs
standard Single Thread for an 8-level octree

ADStBalancing (4 Threads) Single Thread
milliseconds milliseconds

19 60

 The second type of test analyses the adaptive nature
of the proposed method by investigating its
performance at several values of the split level (d) and
the number of nodes processed by each processor. The
tests use a camera with FOVy = 30 degrees with a 9-

Figure 9 Two different camera positions used in the tests of Table 2 and Table 3

Table 2 The proposed method with the camera at the centre of a 9-level octree and FOV=30
(intersecting all main nodes right below the root). GPU time is not included.

Split Level number of nodes Average Culling Time

d P1 P2 P3 P4 microseconds

0 2019 482 482 2018 360

1 2025 480 480 2016 362

2 2073 464 464 2000 365

3 897 1880 1880 344 202

4 4761 80 80 80 304

Table 3 The proposed method with the camera at the corner of a 9-level octree and FOV=30
(intersecting only one main nodes right below the root). GPU time is not included.

Split Level number of nodes Average Culling Time
d P1 P2 P3 P4 microseconds

0 4435 2 2 2 288

1 4435 2 2 2 288

2 1945 1888 304 304 214

3 1033 2512 448 448 260

4 4441 0 0 0 292

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 21

level octree, 4 processors, and 5 values of split levels.
 Tables 2 and 3 show that the split level scheme
adapts the algorithm for different camera positions. In
Table 3, d = 0 is a bad start for both time (a culling
time higher than the one for the camera at the center)
and workload balancing (number of nodes). In both
cases the system stabilizes around d=3 for case 1
(Table 2) and d = 2 in case 2 (Table 3). Figure 9 shows
the final rendering for each camera position.

10. Final Remarks

 This paper presents a new and effective method for
parallel octree culling and sorting for multicore
systems using counting sort (which is O(n) time) and
based on a new balancing algorithm called adaptive
delayed static balancing. Tests revealed a time
performance improvement of the culling process
between 3 and 4 times in relation to the classical single
threaded octree culling process. However, the most
important result is the effectiveness of the adaptive
mechanism based on the dynamic split level that can
adjust the algorithm to new camera positions and keep
a well-balanced workload amongst the processors. The
tests do not consider GPU time and also avoid any
connection with the number of resources (i.e. number
of textures, meshes, …).
 Also this paper introduces the concept of n-
dimensional resource space as a discrete Euclidean
space, in which the resource array is identified with the
counting array of the counting sort algorithm. No other
sorting algorithm can be faster than this O(n) time
algorithm for the culling process. The proposed
adaptive delayed static balancing method naturally
generates points in the n-dimensional resource space in
a counting sort way.
 Another important result is the proposed thread
management system MinTMS, which reveals itself as a
simple and effective API.
 Future works should cover extensive statistics and
comparisons, including plots of time vs number of
nodes, time vs number of resources, total idle time vs
split level, more complex scenes, and more points in
the camera path. The comparison with related work is
difficult because the literature is scarce on parallel
octree culling for multicore machines and we have no
access to the code of other authors to reproduce the
same test situation. Another future work should be the
investigation of other heuristics and statistics that can
improve the adaptive performance of the method.
Further work should also consider a parallel merging
process (i.e. to mount the array M in parallel, Figure
8).

Acknowledgements

We would like to thank CNPq and FINEP for the
financial support of scholarships and research projects.

References

Cormen, T. H. Leiserson and Charles, E. R. and Ronald, L.,
2001. Introduction to Algorithms Second Edition.
Massachusetts: The MIT Press.

Dalmau, D. S.-C., 2003. Core Techniques and Algorithms in
Game Programming. Indiana: New Riders.

Foley, J. D. V. D. and Andries, F. and Steven, K., 1995.
Computer Graphics: Principles and Practice in C. New
York: Addison Wesley.

Grama, A. and Gupta, A. and Karypis, G. and Kumar, V.,
2003. Introduction to Parallel Computing, New York:
Addison Wesley.

Wilkinson, B. and Allen, M., 2004. Parallel Programming
Techniques and Applications using Networked
Workstations and Parallel Computers, New Jersey:
Prentice Hall.

Molnar, S., Cox, M., Ellsworth, D., and Fuchs, H., 1994. A
sorting classification of parallel rendering. IEEE
Computer Graphics & Applications, 14(4), 1994, pp. 23-
32.

Humphreys, G., Houston, M., Ng, R., Frank, R. Ahern, S.,
Kirchner, P.D., and Klosowski, J.T., 2002. Chromium: a
stream-processing framework for interactive rendering on
clusters. Proceedings of ACM SIGGRAPH 2002, acm
Transactions on Graphics, 21(3), 2002, pp. 693-702.

Abraham, F., Celes, W., Cerqueira, R., and Campos, J.L.,
2004. A load-balancing strategy for sort-first distributed
rendering. XVII Brazilian Symposium on Computer
Graphics and Image Processing, Proceedings SIBGRAPI
2004, 17-20 Oct 2004, Curitiba, PR, Brazil, IEEE
Computer Society, 2004, pp. 292-299.

Baxter, W.V, Sud, A., Govindaraju, N.K., and Manocha D.,
2002. Gigawalk: Interactive walkthrough of complex
environments. Proceedings of 13th Eurographics
workshop on Rendering, 2002, pp. 203-214.

Greene, N., Kass, M., and Miller, G., 1993. Hierarchical Z-
buffer visibility. Proceedings of ACM SIGGRAPH 1993,
acm Transactions on Graphics, 1993, pp. 231-238.

Xiong, H., Peng, H., Qin, a., and Shi, J., 2006. Parallel
occlusion culling on GPUs cluster. Proceedings of 2006
ACM International Conference on Virtual Reality
Continuum and its Applications (VRCIA 2006), Hong
Kong, China, 14-17 June 2006, pp. 19-26.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 22

APPENDIX A – Algorithm and MinTMS

The index of the main processor as a global constant: MAIN_PROCESSOR_IDX = 0
Last sum of the idle time of all processors as a global variable: last_total_idle_time = 0
Current trend as a global variable: trend = false
Number of levels of the octree as a global variable: num_levels
Total number of processors and processor id vector as global variables: num_processors and p_idx[]

ADStBalancingRender (d, octree, frustum)
 get current time and save it as startTime[MAIN_PROCESSOR_IDX]
 calculate1 the number of nodes up to the current split level d: n = (8d+1 -1)/7
 node_count = 0
 clear node_list
 put the root node of octree in node_list
 node_list = RenderNodes(MAIN_PROCESSOR_IDX, n, node_list, frustum) // n is greater than zero
 set work_size to the size of node_list divided by num_processors
 for i = 0 to (num_processors-2) stepping by 1 // i is the secondary processor executing the rendering task
 transfer work_size nodes from node_list to working_list[i]
 eliminate the transferred nodes from node_list
 set the task RenderNodesProcessorTask(p_idx[i],working_list[i]) // done by the MinTMS method: SetTask
 make processor i to start the task RenderNodesProcessorTask // this is done by calling StartWorking(i)1

 RenderNodes(MAIN_PROCESSOR_IDX,0,node_list,frustum) // remaining nodes in the main processor
 get current time and save it as startTime[MAIN_PROCESSOR_IDX]
 If num_processors is greater than 1
 wait for the other processors finish working // this is done by waitUntilWorkFinished()1

 total_idle_time = CalculateTotalIdleTime()
 d = split_Level(d, total_idle_time)
 return d

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 23

Proposta de uma heurística para o jogo de dominó de 4 pontas

Nirvana da S. Antônio* Cicero F.F. Costa Filho Marly G. F. Costa

Universidade Federal do Amazonas, Centro de Tecnologia Eletrônica e da Informação, Brasil

Abstract

This paper presents a new methodology for the choice
of the best move in the four extremity domino game.
The proposed methodology can be divided in two
parts. First of all is defined the game state. This
definition comprises the use of seven vectors. These
vectors map some aspects of the game such as the
number of pieces played, the number of pieces in hand,
etc. Second is proposed a heuristic evaluation function
to the choice of the best move, comprised of two terms.
The first term takes into account the number of points
marked in a move. The second one incorporates the
game strategy. In the results section are shown some
simulation results to games of four persons, grouped in
two groups. The group that used the heuristic function
proposed in this paper wins the game in 66% of the
simulations. Future works are proposed that makes use
of a new heuristic function associated with genetic
algorithm as an optimization tool.

Keywords: domino game, heuristic function, game
state.

Authors’ contact:
{ccosta,mcosta}@ufam.edu.br
* nirvana.sa@gmail.com

1. Introdução

O dominó é composto de 28 peças (pedras) chatas,
retangulares As 28 pedras têm duas metades, cada uma
dessas metades contém uma numeração que varia de
zero (vazio) a seis pontos, formando várias
combinações. Na forma clássica do jogo, são sete
números (de zero a seis), combinados entre si.
Matematicamente: C(7,2) + 7 = C(8,2) = 28. O dominó
pode ser jogado em duplas adversárias onde cada
jogador recebe 7 peças ou alternativamente pode ser
jogado por apenas 2 jogadores com 7 pedras cada um e
14 pedras para comprar no caso do oponente não ter a
pedra da vez. Existem várias formas de se jogar
dominó, a mais comum é o dominó de 2 pontas. No
estado do Amazonas joga-se outro tipo pouco
difundido, o dominó de 4 pontas, objeto desse trabalho.

No dominó de 2 pontas, o objetivo do jogo é tão
somente conseguir colocar a última peça no tabuleiro
do jogo. Durante a partida, são adotadas algumas
estratégias para o jogador “bater”, isto é, ser o primeiro
a desfazer-se de todas as suas pedras. As jogadas visam
encaixar alguma peça nas peças que estão nas pontas
do jogo, uma por vez e minimizar a possibilidade do

adversário encaixar uma pedra em uma das pontas e
passe. Caso algum jogador tenha batido o jogo, sua
dupla leva todos os pontos das peças que estão nas
mãos dos adversários. A partida pode terminar em duas
circunstâncias: quando um jogador consegue bater o
jogo, ou quando o jogo fica trancado. Caso o jogo
fique trancado, contam-se todos os pontos conseguidos
por cada dupla. A dupla que possuir menos pontos é a
vencedora, e leva todos os pontos da dupla adversária.

No dominó de 4 pontas, a disputa ocorre, em geral,
entre duplas. Cada jogador deve ter 7 pedras em mãos
no início de uma rodada. Na primeira rodada da
competição, a primeira pedra a ser jogada deverá ser a
de numeração 6-6, chamada de “carroça de sena” por
ter suas duas metades iguais a seis. Os jogadores têm a
possibilidade de abrir até quatro pontas de jogo a partir
da carroça 6-6. Na figura 1 mostra-se um jogo onde já
foram abertas 3 pontas. O objetivo principal dessa
versão do jogo é alcançar uma pontuação igual ou
superior a 200 pontos, que pode ser alcançada em uma
ou mais rodadas. Em cada jogada existe a possibilidade
de se pontuar 5, 10, 15,..., 50 pontos. Pode-se marcar
pontos (um múltiplo de 5) em cinco situações distintas:

P1) A soma dos pontos das pontas da mesa é
múltiplo de 5, sendo a pontuação igual a essa soma. Na
figura 1 mostra-se um exemplo de jogada que rende 15
pontos equivalente a soma dos pontos das pontas
abertas (2+5+8). Na figura 2 mostra-se um exemplo de
jogada onde não se pontua, pois a soma dos pontos nas
pontas abertas é 14 (1+5+8).

Figure 1: Exemplo de jogada do dominó de 4 pontas onde
pontua-se 15 pontos.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 24

Figure 2: Exemplo de jogada do domino de 4 pontas onde
não se pontua, pois a soma dos pontos nas pontas abertas é

igual a 14.

P2) O jogador adversário “passa” em sua vez de
jogar, ou seja, não possui pedra que se encaixe em
nenhuma das 4 pontas. O impedimento de jogada do
adversário rende a dupla que provocou o passe 20
pontos.

P3) O jogador provoca o passe de todos os demais
jogadores (inclusive o parceiro) e a vez volta para o
jogador ele. Esse passe geral, chamado de “galo”,
equivale a uma pontuação de 50 pontos.

P4) Quando um jogador “bate” (consegue encaixar
todas as pedras que dispunha). Nesse caso, somam-se
todos os pontos das peças que estão nas mãos dos
adversários. Essa soma é denominada de “garagem”. A
pontuação da jogada corresponde ao maior múltiplo de
5 menor ou igual a essa soma. Na figura 3 mostra-se
um exemplo em que a soma dos pontos dos adversários
é igual a 12, sendo a pontuação da jogada igual a 10
pontos;

P5) A última peça descartada pelo jogador que
bateu é uma “carroça”, ou seja, uma pedra que tem os
dois lados com numerações iguais, sendo a pontuação
da jogada igual a 20 pontos.

Figure 3: Exemplo de “garagem” onde a soma de pontos da
dupla adversária é igual a 12. A pontuação da jogada é igual

a 10 pontos.

Nas rodadas seguintes a primeira, o jogador que
“bateu” na rodada anterior deverá iniciar com a carroça
de sua escolha.

No dominó de quatro pontas, devido ao fato do
objetivo e das regras serem mais elaboradas, as
estratégias de jogo são mais complexas que às
utilizadas no dominó de duas pontas.

As estratégias utilizadas durante o jogo do dominó
de 4 pontas, além do objetivo de pontuar, almejam
também facilitar as ações futuras de quem joga (ou de
seu parceiro) e dificultar a ação dos jogadores da dupla
adversária. Quando no início de uma rodada, um
jogador tem em mãos quatro ou mais peças que
apresentem a mesma numeração em um das metades
(vide exemplo na figura 4), a estratégia recomendada é
fazer com que essa numeração esteja presente no maior
número possível de pontas, com o intuito tanto de fazer
seus adversários “passarem” como de facilitar suas
jogadas futuras. Para o conjunto de pedras mostrado na
figura 4 é interessante buscar uma configuração de
jogo onde exista um maior número de pontas com a
numeração 5.

O jogo de domino de 4 pontas caracteriza-se por ser
um problema multiagente [Sycara 1998]. Trata-se de
um jogo de vários jogadores, de soma não zero, de
informações imperfeitas. Na sua modalidade mais
jogada, duas duplas, caracteriza-se como sendo de dois
jogadores, pois só existem duas pontuações. Por ser um
jogo com informações imperfeitas, um algoritmo de
busca para selecionar a melhor jogada explora um
espaço de estados de crença (crenças sobre quem tem
determinadas peças e com que probabilidade) [Russel e
Norvig 2004]. Tais algoritmos utilizam raciocínios
probabilísticos complexos.

 Nesse trabalho propõe-se a pesquisa de um
heurística que possibilite o desenvolvimento de um
agente inteligente para o jogo do dominó de 4 pontas.
Procurou-se uma alternativa mais simples para a
escolha da melhor jogada, baseada na utilização de
uma função de avaliação que combina nos seus termos
informações sobre o estado presente do jogo. Tal
função incorpora informações estratégicas que visam
facilitar as ações futuras da dupla do jogador que joga
e dificultar as ações futuras da dupla adversária.

Figure 4: Exemplo de um conjunto de 7 peças iniciais com 4
peças contendo a numeração 5.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 25

Na seção trabalhos relacionados analisa-se alguns
trabalhos relacionados com a aplicação de funções de
avaliação a jogos. Na seção metodologia propõe-se um
conceito de estado para o jogo de dominó de 4 pontas e
propõe-se uma função heurística para o mesmo em
função do estado proposto. Na seção de resultados
mostra-se o desempenho de um jogo de duas duplas
em função de algumas escolhas feitas para os
parâmetros da função heurística. Na seção de discussão
propõe-se a continuidade do trabalho através da
exploração de outros valores para os parâmetros da
função heurística e através da utilização de algoritmos
genéticos.

2. Trabalhos Relacionados

A utilização de funções de avaliação associadas ao
algoritmo alfa-beta para a escolha da melhor opção de
jogada em jogos de informações perfeitas foi
inicialmente proposta por Shannon [Shannon 1950].
Tal proposta foi implementada para os jogos de xadrez
[Campbell et al. 2002] e de damas [Schaeffer, 1997].

Para os jogos de informação imperfeita a utilização
da proposta de Shannon envolve raciocínios complexos
sobre as estratégias do jogo. Cita-se como exemplo o
programa Bridge Baron [Smith et al. 1998],
desenvolvido para o jogo de Bridge. Para o jogo de
dominó de 2 pontas, encontram-se na literatura alguns
trabalhos que buscam a melhor estratégia do jogo,
como Yen e Chlebus [Yen 1992, Chlebus, 1986]. Não
encontrou-se, porém trabalhos relacionados ao dominó
de 4 pontas.

3. Metodologia

A função de avaliação proposta para a escolha da
melhor jogada é constituída pela soma de dois termos,
conforme mostra a expressão (1). A variável n
identifica uma opção de jogada para a qual a função de
avaliação é calculada. O termo T1 corresponde aos
pontos obtidos ao se efetuar a opção de jogada n. O
termo T2 incorpora a estratégia do jogo. O mesmo
corresponde a valores inteiros positivos que procuram
retratar como a escolha pela jogada n pode facilitar
ações futuras do jogador que efetua a jogada e
dificultar ações futuras dos jogadores adversários.

() 2T+1T=nf (1)

Em que:
n – opção de jogada a ser avaliada;
T1 – soma dos pontos obtidos com a jogada n;
T2 – termo que incorpora a estratégia do jogo.

Antes que seja feito o detalhamento de como se
calculam os termos T1 e T2 da função f(n) é necessário
definir-se um estado para o jogo de dominó de 4
pontas. O estado do jogo é definido nesse trabalho

através de um conjunto de vetores, Vi , onde 0≤i≤6.
Esses vetores expressam estatísticas que são
atualizadas em cada jogada. Os quatro primeiros
vetores contêm valores inteiros enquanto que os três
últimos contêm valores binários. A definição dos
mesmos é feita a seguir.

1) V0: Vetor contendo a quantidade de peças em jogo
para cada numeração. Esse vetor é expresso por: V0=
{a0, b0, c0, d0, e0, f0, g0}. Em que: a0 corresponde ao
número de peças já jogadas com a numeração 0; b0

corresponde ao número de peças já jogadas com a
numeração 1, e assim sucessivamente;

2) V1: Vetor contendo a quantidade de peças na mão
para cada numeração. Esse vetor é expresso por: V1=
{a1, b1, c1, d1, e1, f1, g1}. Em que: a1 corresponde ao
número de peças na mão com a numeração 0; b1

corresponde ao número de peças na mão com a
numeração 1, e assim sucessivamente;

3) V2: Vetor contendo a quantidade de peças nas pontas
para cada numeração. Esse vetor é expresso por: V2=
{a2, b2, c2, d2, e2, f2, g2}. Em que: a2 corresponde ao
número de peças nas pontas com a numeração 0; b2

corresponde ao número de peças nas pontas com a
numeração 1, e assim sucessivamente;

4) V3: Vetor contendo a quantidade de peças já jogadas
pelo parceiro de dupla para cada numeração . Esse
vetor é expresso por: V3= {a3, b3, c3, d3, e3, f3, g3}. Em
que: a3 corresponde ao número de peças já jogadas pelo
parceiro com a numeração 0; b3 corresponde ao número
de peças já jogadas pelo parceiro com a numeração 1,
e assim sucessivamente;

5) V4: Vetor que indica as numerações onde o
adversário seguinte já passou. Esse vetor é expresso
por: V4= {a4, b4, c4, d4, e4, f4, g4}. Em que: a4 indica se o
adversário seguinte já passou ou não para a numeração
0. Se a4 for igual a 1 o adversário seguinte já passou
para a numeração 0. Se a4 for igual a 0 o adversário
seguinte ainda não passou para a numeração 0; b4

indica se o adversário seguinte já passou ou não para a
numeração 1. Se b4 for igual a 1 o adversário seguinte
já passou para a numeração 1. Se b4 for igual a 0 o
adversário seguinte ainda não passou para a numeração
0, e assim sucessivamente;

6) V5: Vetor que indica as numerações onde o
adversário anterior já passou. Esse vetor é expresso
por: V5= {a5, b5, c5, d5, e5, f5, g5} Em que: a5 indica se o
adversário anterior já passou ou não para a numeração
0. Se a5 for igual a 1 o adversário anterior já passou
para a numeração 0. Se a5 for igual a 0 o adversário
anterior ainda não passou para a numeração 0; b5 indica
se o adversário anterior já passou ou não para a
numeração 1. Se b5 for igual a 1 o adversário anterior
já passou para a numeração 1. Se b5 for igual a 0 o
adversário anterior ainda não passou para a numeração
0, e assim sucessivamente;

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 26

7) V6: Vetor que indica as numerações onde o parceiro
de dupla já passou. Esse vetor é expresso por: V6= {a6,
b6, c6, d6, e6, f6, g6}. Em que: a6 indica se o parceiro de
dupla já passou ou não para a numeração 0. Se a6 for
igual a 1 o parceiro de dupla já passou para a
numeração 0. Se a6 for igual a 0 o parceiro de dupla
ainda não passou para a numeração 0; b6 indica se o
parceiro de dupla já passou ou não para a numeração
1. Se b6 for igual a 1 o parceiro de dupla já passou para
a numeração 1. Se b6 for igual a 0 o parceiro de dupla
ainda não passou para a numeração 0, e assim
sucessivamente;

A seguir analisar-se-á como são calculados os
termos T1 e T2. O termo T1 incorpora no cálculo da
função de avaliação os pontos obtidos ao se realizar a
opção de jogada n. Na seção de introdução foram
listadas 5 situações distintas em que se pode pontuar
numa jogada. O termo T1 incorpora no seu cálculo os
pontos que podem ser obtidos através das situações P1,
P2, P3 e P5. Assim T1 é dado por (2):

53211 PPPPT +++= (2)

Observar que T1 não incorpora a situação P4, que
corresponde aos pontos de garagem, pois os mesmos,
na medida em que se encontram nas mãos da dupla
adversária, não podem ser contabilizados. Os termos
P2 e P3 são calculados através de um único algoritmo.
Para o cálculo dos mesmos são utilizados os vetores V4,
V5 e V6. Na figura 5 mostra-se um fluxograma desse
algoritmo. Para o entendimento desse fluxograma e do
texto que se segue as seguintes definições são
necessárias:

Np1, Np2, Np3 e Np4 – valores inteiros correspondentes
as numerações existentes nas pontas 1, 2 ,3 e 4 do jogo,
respectivamente. A numeração das pontas não obedece
a nenhuma ordem pré-definida;
L – peça a ser inserida no jogo na opção de jogada n.
L1 - valor inteiro correspondente a numeração da
metade da peça L que coincide com um ou mais dos
valores Np1, Np2, Np3 ou Np4.
L2 – valor inteiro correspondente a numeração da
metade da peça L que não coincide com um ou mais
dos valores Np1, Np2, Np3 ou Np4.

Para o fluxograma mostrado na figura 5 supõe-se
que L1=Np4.

O termo T2 incorpora no seu cálculo três parcelas
distintas relacionadas com a estratégia do jogo. A
expressão para T2 é mostrada em (3).

()3212 EEE.T δα ++−= (3)

O valor de α permite modelar a importância da
estratégia (T2) em relação aos pontos obtidos com uma
jogada (T1).

A parcela E1 considera a possibilidade de se fazer o
adversário seguinte passar na sua vez de jogar. Para o
entendimento da parcela E1 será utilizada a seguinte
situação hipotética: considere que em duas das pontas
do jogo exista uma numeração n1 e que o jogador da
vez tenha em mãos mais três peças com essa mesma
numeração. Então, 5 das 7 peças possíveis com a
numeração n1 não pertencem ao adversário seguinte,
sendo grande a possibilidade do mesmo passar se todas
as pontas estiverem com essa numeração. Tendo em
vista a possibilidade de fazer o adversário seguinte
passar, e dessa forma obter 20 pontos, é desejável que
não seja descartada nenhuma das peças em que L1=n1.
Assim sendo a opção de jogada de uma peça L em que
L1=n1 não é desejada do ponto de vista estratégico e daí
o sinal negativo para E1 na expressão (3). A
determinação de E1 é realizada conforme mostrado na
expressão (4). Quanto maior o número de peças com a
numeração L1 nas pontas e nas mãos de quem joga
maior será o valor de E1. Por outro lado, o valor de E1

deve ser tanto maior quanto maior for o número de
peças com a numeração L1 já jogadas. O valor de K1

controla a importância da parcela E1 frente às outras
parcelas utilizadas no cálculo de T2.

() () ()()10121111 LVLVLV.KE ++= (4)

A parcela E2 tem por objetivo facilitar as ações
futuras de quem joga. A determinação de E2 é realizada
conforme mostrado na expressão (5). Essa expressão é
muito semelhante àquela proposta para E1, sendo a
única diferença que ao invés de L1 utiliza-se L2 como
argumento independente. O valor de K2 controla a
importância da parcela E2 frente às outras parcelas
utilizadas no cálculo de T2.

() () ()()20222122 LVLVLV.KE ++= (5)

A parcela E3 reforça o objetivo da parcela E2,
visando facilitar as ações futuras de quem joga quando
o número de peças na mão é menor ou igual a 3. No
fluxograma da figura 6 mostra-se como é realizado o
cálculo de E3. O valor de K3 controla a importância da
parcela E3 frente as outras parcelas utilizadas para o
cálculo de T2.

4. Resultados

Para se testar a heurística proposta foram realizadas
simulações de um jogo com duas duplas de jogadores.
A primeira dupla, denominada dupla 1, realizou a
escolha da melhor jogada utilizando a função f1 dada
pela expressão (6).

f1 = T1 (6)

A segunda dupla, denominada dupla 2, realizou a
escolha da melhor jogada utilizando a função f2 dada
pela expressão (7):

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 27

f2 = T1 + T2 (7)

Os valores de α na expressão para f2 foram variados
entre 0 e 10, em incrementos de 0,1 entre 0 e 1 e em
incrementos de 0,25 entre 1 e 10. Aos valores de K1, K2

e K3 foram atribuídos o mesmo valor, 2, fazendo com
que E1, E2 e E3 assumissem igual importância no
cálculo de T2.

Para cada valor de α realizou-se um total de
100.000 partidas e anotou-se o número de vitórias da
dupla 1 e da dupla 2. Nas tabelas 1 e 2 mostram-se
esses resultados.

Cont1 = V0 (L2) + V2(L2)

início

Cont1 : 7

Cont2 = V0 (Np1) + V2(Np1) Cont2 : 7
 V5(Np1) = 1,
 V6(Np1) = 1,
 V7(Np1) = 1

Cont3 = V0 (Np2) + V2(Np2) Cont3 : 7

V5(L2) = 1,
V6(L2) = 1,
V7(L2) = 1

 V5(Np2) = 1,
 V6(Np2) = 1,
 V7(Np2) = 1

Cont4 = V0 (Np3) + V2(Np3) Cont4 : 7
 V5(Np3) = 1,
 V6(Np3) = 1,
 V7(Np3) = 1

S1= V5(L2)+V5(Np1)+V5(Np2)+V5(Np3)

S1= V5(L2)+V5(Np1)+V5(Np2)+V5(Np3)

S1= V5(L2)+V5(Np1)+V5(Np2)+V5(Np3)

S= S1 + S2 + S3

 S=21 P2 + P3 = 50

 P2 + P3 = 20 S1:7

fim

Figure 5: Fluxograma para o cálculo de P2 + P3.

in ício

3>V∑ 1 δ=0

 δ=1,
 E3 = V1(L2) . k3

fim

Figure 6: Fluxograma para o cálculo de E3.

Tabela 1: Resultados da simulação com α variando no

intervalo entre 0 e 5.

Coef.
α

Número de Vitórias
em 100.000 partidas
Dupla 1 Dupla 2

0 50248 49752
0,01 36541 63459
0,02 36541 63459
0,03 36541 63459
0,04 36541 63459
0,05 36504 63496
0,10 36504 63496
0,15 36504 63496
0,20 36504 63496
0,25 36579 63421
0,50 36278 63722
0,75 35565 64435
1,00 35052 64948
1,25 34659 65341
1,50 34233 65767
1,75 33998 66002
2,00 34076 65924
2,25 33981 66019
2,50 34300 65700
2,75 34383 65617
3,00 34507 65493
3,25 34574 65426
3,50 35018 64982
3,75 35267 64733
4,00 35510 64490
4,25 35571 64429
4,50 35574 64426
4,75 35574 64426
5,00 36378 63622

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 28

Tabela 2: Resultados da simulação com α variando entre
5,25 e 10.

Coeficiente
α

Número de Vitórias
em 100.000 partidas
Dupla 1 Dupla 2

5,25 36907 63093
5,50 36907 63093
5,75 36907 63093
6,00 36909 63091
6,25 36937 63063
6,50 36948 63052
6,75 37162 62838
7,00 37162 62838
7,25 37163 62837
7,50 37734 62266
7,75 38236 61764
8,00 38236 61764
8,25 38236 61764
8,50 38265 61735
8,75 38265 61735
9,00 38265 61735
9,25 38270 61730
9,50 38270 61730
9,75 38273 61727
10,00 38839 61161

4. Discussão

Através da observação das tabelas 1 e 2 observa-se
que: A dupla 2, a exceção de α=0, sempre obteve um
número de vitórias maior que a dupla 1; O maior
número de vitórias obtidas pela dupla 2 foi 66002,
tendo ocorrido para um valor de α = 2.25; Para α = 0,
quando as duas funções tornam-se iguais, f1=f2, o
número de vitórias das duas duplas é praticamente
igual; Quando α varia de 0 para 0,01, o número de
vitórias da dupla 2 cresce de forma abrupta, de 49752
para 63459. As outras variações observadas para o
número de vitórias da dupla 2 em função de α são mais
suaves.

As observações anteriores permitem concluir que a
dupla que escolheu a melhor jogada utilizando a
função de avaliação f2 teve um desempenho superior a
dupla que escolheu a melhor jogada utilizando a
função de avaliação f1. A responsabilidade por esse
melhor desempenho cabe ao termo de estratégia T2

presente na função f2 e ausente na função f1. O melhor
resultado alcançado foi de 66% de vitórias para a dupla
que escolheu a melhor jogada utilizando a função f2.

Para obtenção desses resultados utilizou-se um
mesmo valor para K1, K2 e K3 igual a 2, escolhido de
forma empírica.

Em trabalhos futuros pretende-se: Realizar outras
simulações com a função de avaliação f2 associando α
a diferentes valores de K1, K2 e K3; Utilizar algoritmo
genético para otimização de uma outra função de
avaliação onde o termo T2 seja dado pela expressão (8).
Essa expressão reúne as parcelas presentes nos termos
E1, E2 e E3. Através do algoritmo genético serão
obtidos os valores de α1, α2, α3, α4, α5 e α6 que
otimizarão o número de vitórias da dupla que utilizar a
função f2 para a escolha da melhor jogada.

() () ()
() () ()206225214

10.31221112

LV.LV.LV.
LVLV.LV.T

ααα
ααα

++
+++=

 (8)

5. Conclusão

Propôs-se nesse trabalho uma nova metodologia para a
escolha da melhor jogada no dominó de 4 pontas,
utilizando uma função heurística que, para o seu
cálculo, utiliza informações provenientes do “estado do
jogo”, definido como um conjunto de 7 vetores
atualizados a cada jogada. Os parâmetros utilizados na
função heurística não foram otimizados nesse trabalho.
Propõe-se isso seja feito em trabalho futuro. Os
resultados foram avaliados através de simulações com
jogos de duplas. O melhor resultado alcançado em
100.000 partidas foi de 66% de vitórias para a dupla
que utilizou a função de avaliação proposta nesse
trabalho. Espera-se que o processo de otimização
proposto para trabalhos futuros resulte em uma
estatística de vitórias mais elevada. Acredita-se que a
metodologia apresentada nesse trabalho para a escolha
da melhor jogada seja original. Preetende-se, em
trabalhos futuros, explorar a aplicação dessa
metodologia em outros tipos de jogos.

Agradecimentos

Esse trabalho teve o apoio financeiro da
SUFRAMA (convênios 068/2001 e 069/2001) e do
CNPq (bolsa de IC).

Referências

CAMPBELL, M.S., HOANE, A.J., HUS, F.H. 2002, Deep Blue,
Artificial Intelligence, 134(1-2), 57-83.

CHLEUBS, B.S., 1986, Domino-tiling games, Journal of
Computer and System Sciences, v. 32, n.3, 374-392.

RUSSEL, S., NORVIG, P., 2004, Inteligência artificial, Elsevier,
2ª edição;

SHAEFFER, J., 1997, One Jump Ahead: Challenging Human
Supremacy in Checkers, Springer-Verlag, Berlin.

SHANNON, C.E. , 1950, Programming a computer for playing
chess. Philosophical Magazine, 41(4), 256-275.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 29

SMITH, S.J.J, NAU, D.S., THROOP, T.A., 1998, Success in
spades: Using ai planning techniques to win the world
championship of computer bridge. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence,
1079-1086, Madison, Wisconsin, AAAI Press.

SYCARA, K.P., 1998. Multiagent systems, AI Magazine, v. 19,
n. 2, 79-92.

YEN, H.C., 2002. A multiparameter analysis of domino tiling
with an application to concurrent systems, Theoretical
Computer Science, v. 98, n. 2, 263-287.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 30

Event Relations in Plan-Based Plot Composition

Angelo E. M. Ciarlini
1

Simone D. J. Barbosa
2

 Marco A. Casanova
2

 Antonio L. Furtado
2

1
UNIRIO, Depto. de Informática Aplicada, Brasil

2
PUC-Rio, Depto. de Informática, Brasil

Abstract
The process of plot composition in the context of

interactive storytelling is considered under a fourfold

perspective, in view of syntagmatic, paradigmatic,

antithetic and meronymic relations between the

constituent events. These relations are shown to be

associated with the four major tropes of semiotic research.

A conceptual model and set of facilities for interactive

plot composition and adaptation dealing with the four

relations is described. To accommodate antithetic

relations, corresponding to the irony trope, our plan-based

approach leaves room for the unplanned. A simple

storyboarding prototype tool has been implemented to

conduct experiments.

Keywords: Interactive Storytelling, Plots, Planning,

Narratology, Tropes.
Authors' contact:
angelo.ciarlini@uniriotec.br

{simone,casanova,furtado}@inf.puc-rio.br

1. Introduction

The role of storytelling in games has long been the subject

of lively debates [Wardrip-Fruin & Harrigan]. Although

some believe that story and game are in direct opposition

[Costikyan], most agree that successful narrative in games

is possible, and a few argue for the importance of story

creation as part of gameplay [Wallis]. However, a differ-

ent sort of narrative is required: it must be non-linear and

play-centric, that is, it must revolve around the player’s

experience [Pearce]. The player is no longer a mere con-

sumer of the narrative, but both a consumer and a (co-)

producer of the plot. The game designer typically selects a

genre. In game playing, interactive storytelling emerges,

but care must be taken to ensure that the basic rules of the

genre, as well as corresponding tropes and narrative

structures, are understood by the co-authors of the story

[Wallis].

A few computational systems and approaches have

been proposed to support interactive storytelling. Some of

them focus on the interaction among characters [Cavazza

et al.], whereas others focus on plot structure and cohe-

rence [Grasbon & Braun], and a few others attempt to

combine both [Mateas & Stern]. What kind of system

would be suitable for assisting users in creating stories

within games or other interactive storytelling contexts?

Planning algorithms have proven to be a useful

alternative to help create narratives by exploring different

chains of events to achieve the characters’ or the storytel-

lers’ goals [Ciarlini et al.; Riedl & Young]. In game play-

ing, planning algorithms make it practical to create non-

linear narratives that are both coherent and diverse, by al-

lowing players to proceed in different courses of actions

with varying results, and yet respecting the game struc-

ture, rules and constraints.

To support the production of stories, we have drawn

on what semiotic research has singled out as the four

major tropes [Burke], namely: metaphor, metonymy,

synecdoche, and irony. By offering mechanisms derived

from these tropes, we intend both to augment the ex-

pressiveness of narrative models and to provide better

support to authors who are less familiar with or confident

in creating and telling stories.

In this paper, we associate those tropes with four types

of relations between narrative events: syntagmatic, para-

digmatic, meronymic and antithetic. They play a basic

role in an interactive plan generating system that creates

plots within a predefined genre.

Narratology studies distinguish three levels in literary

composition: fabula, story and text [Bal]. In the present

work, we stay at the fabula level, where the characters

acting in the narrative are introduced, as well as the narr-

ative plot, consisting of a partially-ordered set of events.

We focus on plots whose constituent events happen as a

consequence of a predefined repertoire of actions, which

we shall call operations, deliberately performed by the

characters. Plot composition will be treated here as a plan

generation process, and hence the terms plot and plan will

be used interchangeably. Yet, since narratives are often

more attractive when unplanned shifts can occur, the user

shall retain the power to issue certain directives when

interventions are needed or desired.

Starting from such considerations, this paper proposes

a fourfold way to characterize plot composition at the

fabula level. Section 2 describes the relations between

events in correspondence with the four major tropes.

Section 3 outlines how we model an intended genre, to

whose conventions the plots must conform. Section 4

sketches, over a simple example, the main features of our

plan-based prototype tool. Concluding remarks are pre-

sented in section 5.

2. From Tropes to Event Relations

It has been suggested that the four major rhetorical tropes

provide models for remarkably comprehensive analyses in

different areas [Burke; Chandler; White]. They all involve

relations between pairs of words, thanks to which, given

two related words w1 and w2, a person can meaningfully

use w1 to refer to w2.

They are not defined in a uniform way by linguists,

there being much disagreement, especially on the distinc-

tion between metonym and synecdoche. A useful discus-

sion is found in [Chandler], where many practical appli-

cations of Burke's four tropes theory are surveyed.

Metaphor [Lakoff & Johnson; Ortony] and synec-

doche [Chandler] have to do with hierarchical structures

such as those represented in ontologies [Breitman, Casa-

nova & Truszkowski]. If one concept C1 can be meta-

phorically used to denote another concept C2, the two

concepts are said to be similar or analogous, and are

placed under a more general concept Ĉ that subsumes

both of them. C1 and C2 would be represented in the net-

work with is-a links connecting them to Ĉ. Also, one

could add an is-like link from C1 to C2 [Breitman et al.].

Clearly, metaphor is a displacement along the verbal

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 31

paradigmatic axis [Saussure], from which we took the

suggestion of a paradigmatic relation between events.

In synecdoche, concept C1 is used to denote concept

C2, if C1 is a part of C2 (which calls for another link, C1

part-of C2); the converse substitution, from whole to part,

is also usual in common parlance. The corresponding

association between events is called meronymic relation

in the present paper.

According to [Chandler], metonyms are based on

various indexical relationships between concepts, notably

the substitution of effect for cause, and convey an idea of

contiguity. Borrowing again from [Saussure], we require

the presence of syntagmatic relations between events, to

justify their being meaningfully placed in sequence.

Irony is the most intriguing of the four tropes. In ver-

bal communication, it reflects the opposite of the thoughts

or feelings of the speaker or writer (as when you say 'I

love it' when you hate it) or the opposite of the truth about

external reality (as in 'there's a crowd here' when it is

deserted). It also takes the form of substitution by dissi-

milarity or disjunction. Variations such as understatement

and overstatement can also be regarded as ironic. At some

point, exaggeration may slide into irony [Chandler]. Dis-

closing paradoxes and hidden agendas in literary texts, in

sharp contrast between the declared intentions and the real

ones, is another source of irony, constituting a trend in

critical studies known as deconstruction [Culler].

Not only mental attitudes, feelings and statements can

be ironic – actions can also be ironic, but always in an

unplanned, non-deliberate fashion. Irony is in fact a cha-

racteristic of certain intrigue situations that are often re-

ferred to as dramatic irony [Booth].

Consequently any kind of irony induces an antithetic

relation between events that look, in principle, incompati-

ble with each other, given their dependence on contexts

characterized by radically opposite properties. Mediating

two such events, the until then well-behaved world must

suffer a disruptive shift, whereby the truth value of certain

facts or beliefs is inverted, or certain properties move

from one extreme to the other within the ascribed value

range (e.g. from helplessly weak to heroically strong).

To illustrate the event relations derived from the ma-

jor tropes, we shall employ a simple example to be refe-

renced along the paper. Consider four types of events, all

having one woman and two men as protagonists: abduc-

tion, elopement, rescue, and capture. As demonstrated in

folktale studies [Propp], many plots mainly consist of an

act of villainy, i.e. of a violent action that breaks the in-

itially stable and peaceful state of affairs, followed ulti-

mately by an action of retaliation, which may or may not

lead to a happy outcome.

Propp distinguished seven character roles (dramatis

personae) according to the events assigned to each one's

initiative: hero, villain, victim, dispatcher, donor, helper,

false hero. Curiously, in literary texts involving the four

events above, this distribution is not unique: we called the

violent initial act “villainy”, but the perpetrator of

abduction, and more often of elopement, can be the hero

of the narrative, and in such cases the woman's original

guardian (husband, father) is regarded as the villain.

2.1 Syntagmatic Relations
To declare that it is legitimate to continue a plot contain-

ing abduction by placing rescue next to it, we say that

these two events are connected by a syntagmatic relation.

More precisely, we can define the semantics of the two

events in a way that indicates that the occurrence of the

first leaves the world in a state wherein the occurrence of

the second is coherent. Similarly, a plot involving elope-

ment followed by capture looks natural, and hence these

two events are likewise related.

The syntagmatic relation between events induces a

weak form of causality or enablement, which justifies

their sequential ordering inside the plot.

2.2 Paradigmatic Relations
The events of abduction and elopement can be seen as

alternative ways to accomplish a similar kind of villainy.

Both achieve approximately – though not quite – the same

effect: one man takes away a woman from where she is

and starts to live in her company at some other place.

There are differences, of course, since the woman's

behaviour is usually said to be coerced in the case of

abduction, but quite voluntary in the case of elopement. In

fact, it is usual to assume that a sentence such as “Helen

elopes with Paris”, implies that Helen had fallen in love

with Paris.

To express that abduction and elopement play a simi-

lar function, we say that there is a paradigmatic relation

between the two events. Likewise, this type of relation is

perceived to hold between the events of rescue and cap-

ture, which are alternative forms of retaliation. And,

again, there is a difference between the woman's assumed

attitude, associated as before with her feelings. An ab-

ducted woman expects to be rescued from the villain's

captivity by the man she loves. On the contrary, she will

only return through forceful capture if she freely eloped

with the seducer.

As the present example suggests, the syntagmatic and

the paradigmatic axes identified by Saussure are really not

orthogonal in that the two relations cannot be considered

independently when composing a plot. Thus, in principle,

the two pairs enumerated in the previous section (abduc-

tion-rescue and elopement-capture) are the only normal

combinations, the former illustrated by the Sanskrit Ra-

mayana [Valmiki] and the similarly structured Arthurian

romance of Lancelot [Chrétien; Furtado & Veloso], and

the latter by the Irish Story of Deirdre [McGarry]. Yet the

next section shows that such limitations can, and even

should, be waived occasionally.

2.3 Antithetic relations
While normal plots, whose outcome is fully determined,

can be composed exclusively on the basis of the two pre-

ceding relations, the possibility to introduce unexpected

turns is often desirable in order to make the plots more

attractive – and this requires the construct that we chose

to call antithetic relation. A context where a woman suf-

fers abduction by a ravisher whom she does not love

would seem incompatible with a capture event, since there

should be no need to employ force to bring back the vic-

tim. So, in this sense, abduction and capture are in anti-

thetic relation.

The mythical Rape of the Sabines shows what can

happen as a consequence of a drastic reversal of the cir-

cumstances. King Romulus is facing a problem at the

newly founded city of Rome: the population is entirely

male at first. To remedy the lack, he leads his men to

break into the dwellings of the Sabines and abduct their

women. Sometime afterwards the Sabine warriors march

against the Romans, but the women have no wish to be

taken back, leaving to their countrymen no option except

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 32

their capture. King Romulus's men had lawfully married

them and made them bear children. A Roman chronicle

[Titus Livius] reports the radical change in the women's

feelings, and tells how the seemingly inevitable confron-

tation ended with the reconciliation of the two parties.

In contrast, modern history provides some distinctly

regrettable examples of abduction actually followed by

capture, categorized by psychiatrist Nils Bejerot as the

Stockholm syndrome. One case in point is the abduction

by a group of terrorists of the daughter of a millionaire,

who ended up joining her tormentors in the practice of

crimes, and was captured by the police in San Francisco

[Hearst & Moscow].

The occurrence of elopement followed by rescue pro-

vides a much stronger case of antithetic relation. Indeed,

elopement only makes sense if the victim loves the se-

ducer, whereas, for this very motive, she would resist to

any attempt to rescue her, leaving forceful capture as the

only viable alternative. Even so the legendary story of

Helen of Troy, in spite of various discordant interpreta-

tions, seems to offer a counter-example. Married to king

Menelaus of Sparta, Helen fled to Troy in the company of

Paris, out of her free will according to a number of ver-

sions (e.g. the Heroides [Ovid]). But, after their escapade

to Troy where they married, her love feelings started to

wane while the Trojan War followed its bloody course

and she kept recalling the far manlier Menelaus. The Iliad

[Homer] signals repeatedly this critical change of senti-

ment. At the end her recovery turned from capture into

rescue, as registered in the Aeneid [Virgil]. Paris was

dead, and she had been delivered to Paris's brother Dei-

phobus. When the Greeks came out of the wooden horse

and stormed the Trojan palaces, Helen herself made sure

that Menelaus should win – and know that she was help-

ing him in atonement for her previous misconduct. The

shadow of Deiphobus tells the episode to Aeneas; and

what better example of irony could we find than his call-

ing Helen “this peerless wife”?

One more example appears in the story of Tristan and

Isolde, in several versions [Marchello-Nizia]. The knight

had eloped with the queen; they were living in harsh con-

ditions in a forest. The dramatic change of their love

feelings, which allowed Isolde's rescue by king Mark to

be achieved through a simple invitation, with no need to

fight, had a very curious cause – the timely expiry date of

the love potion they had drunk before, when sailing from

Ireland to Cornwall [Béroul].

Generally speaking, if some binary opposition – the

“to love or not to love” dilemma, in the present case – is

allowed to be manipulated via some agency external to

the predefined events, then one can have plots that no

longer look conventional. A sort of discontinuity is pro-

duced by such radical shifts in the context. Intervening

between abduction and capture, or between elopement

and rescue, a sudden change of feelings can give rise to

these surprising sequences. Also, both in fiction and in

reality, things not always proceed according to planned

events. Natural phenomena and disasters, the mere pas-

sage of time, the intervention of agents empowered to

change the rules, supernatural or magic manifestations,

etc., cannot be discounted.

Specifically for the tragedy genre, the Poetics [Aris-

totle] distinguishes between simple and complex plots,

characterizing the latter by the occurrence of recognition

() and reversal (). Differently

from reversal, recognition does not imply that the world

itself has changed, but rather the beliefs of one or more

characters about the actual facts. Because of a change of

beliefs, a reason to be added to those enumerated in the

previous paragraph, a reversal in the course of actions can

take place, usually in a direction totally opposite to what

was going on so far. Yet another possible external cause

of both recognition and reversal in the tragic scene was

the intervention of a god, who was lowered onto the stage

using a crane – known, accordingly, as deus ex machina.

Aristotle's remarks are clearly relevant to the present

discussion of plots in general. Following his lead, we shall

admit state changes outside the regular regime of prede-

fined events by allowing the user – literally acting ex

machina (via the computer...) – to impose variations to

the context (both in terms of facts and of beliefs), and

thereby deviate the action from its predicted path.

This extreme device will be necessary to allow the

elopement-rescue sequence. We decided, however, not to

make it indispensable for abduction-capture, in order to

have a chance to present a good example of erroneous

beliefs, contradicting the actual facts. Criminal records

everywhere are full of simulated abduction pacts for

drawing a ransom from a deluded family. Conversely, a

man can unnecessarily decide that capture is the only way

to bring back a woman, if he mistakenly believes her to

love the ravisher.

Figure 1 shows the relations thus far discussed.

abduct rescue

elope capture

syntagmatic
relation

paradigmatic
relation

antithetic
relation

Figure 1: Syntagmatic, paradigmatic, and antithetic relations.

2.4 Meronymic relations
Meronymy is a word of Greek origin, used in linguistics to

refer to the decomposition of a whole into its constituent

parts. Forming an adjective from this noun, we shall call

meronymic relations those that hold between an event and

a lower-level set of events, with whose help it is possible

to provide a more detailed account of the action on hand.

Thus, we could describe the abduction of a woman

called Sita by a man called Ravana (characters taken from

the Ramayana [Valmiki]) as: “Ravana rides from Lanka

to forest. Ravana seizes Sita. Ravana carries Sita to

Lanka.” And her rescue by Rama could take the form:

“Rama rides from palace to Lanka. Rama defeats Ravana.

Rama entreats Sita. Rama carries Sita to palace.” But

notice that such decompositions are not fixed, since the

lower-level events are selected as required by the current

state. For instance, with respect to the rescue event, the

hero may already be present at the ravisher's dwelling, or

perhaps the victim is not held in captivity, respectively

obviating the need for the voyage or for fighting the

enemy (Figure 2).

abduct capture

ride defeat seize carry

(a)

elope rescue

ride defeat entreat carry

(b)

Figure 2: Meronymic relations:

(a) the forceful actions and (b) the gentle actions.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 33

Detailing is most useful to pass from a somewhat abstract

view of the plot to one, at a more concrete physical level,

that is amenable (possibly after further decomposition

stages) to the production of a computer graphics

animation [Ciarlini et al.]. Mixed plots, combining events

of different levels, do also make sense, satisfying the

option to represent some events more compactly while

showing the others in detail.

The intuitive notions behind figures 1 and 2 are partly

derivable from a context-sensitive grammar:
PLOT :: VILLAINY•RETALIATION
VILLAINY :: ABDUCT | ELOPE
RETALIATION :: RESCUE | CAPTURE
ABDUCT•RESCUE :: abduct, rescue
ELOPE•CAPTURE :: elope, capture
ABDUCT•CAPTURE :: (abduct, capture)

ELOPE•RESCUE :: (elope, rescue)

ABDUCT•RESCUE :: ABDUCT2•RESCUE2
ELOPE•CAPTURE :: ELOPE2•CAPTURE2
ABDUCT•CAPTURE :: (ABDUCT2•CAPTURE2)

ELOPE•RESCUE :: (ELOPE2•RESCUE2)

ABDUCT2 :: ride, seize, carry
RESCUE2 :: ride, defeat, entreat, carry
ELOPE2 :: ride, entreat, carry
CAPTURE2 :: ride, defeat, seize, carry

3. A Plan-based Modelling Approach

To model a chosen genre, to which the plots to be com-

posed should belong, we must specify at least (to be the

object of section 3.1):
a. what can exist at some state of the underlying mini-

world,

b. how states can be changed, and

c. the factors driving the characters to act.
In our model, we equate the notion of event with the state

change resulting from the execution of a predefined oper-

ation. Being defined in terms of their pre-conditions and

post-conditions, operations can be readily chained to-

gether by a plan-generating algorithm [Ciarlini et al.;

Barros & Musse] in order to achieve a given goal of some

character. As a consequence, it becomes natural to equate

plots (sequences of events) with plans (sequences of oper-

ations able to bring about the events). Also, to confer a

degree of autonomy [Riedl & Young] to the characters

performing the operations, it is convenient to make their

goals emerge from appropriately motivating situations.

Viewing plots as plans suggests an obvious plot com-

position strategy, having a plan-generator as its main

engine. This and the fact that our conceptual model is

expressed in Prolog make the genre specification execut-

able. In sections 3.2, 3.3 and 3.5, we will argue that, duly

complemented by auxiliary routines, the planning strategy

deals effectively with narrative plots in view of three out

of the four event relations. To accommodate antithetic

relations, however, it will be necessary to leave room for

the unplanned, as proposed in section 3.4, leading to plots

that may to a limited extent break the conventions of the

adopted genre.

3.1 Conceptual schemas
We start with a conceptual design method involving three

schemas – static, dynamic and behavioural – which has

been developed for modelling literary genres en-

compassing narratives with a high degree of regularity,

such as fairy tales, and application domains of business

information systems, such as banking, which are ob-

viously constrained by providing a basically inflexible set

of operations and, generally, by following strict and

explicitly formulated rules [Furtado et al. 2008]. For

brevity, the detailed logic programming notation is

omitted; the full specification is shown in Appendix A of

our technical report1.

The static schema specifies, in terms of the Entity-

Relationship model [Batini et al.], the entity and relation-

ship classes and their attributes. In our simple example,

character and place are entities. The attributes of

characters are name, which serves as identifier, and

gender. Places have only one identifying attribute,

pname. Characters are pair-wise related by relationships

loves, held_by and consents_with. The last two can

only hold between a female and a male character; thus

held_by(Sita,Ravana) is a fact meaning that Sita is

forcefully constrained by Ravana, whereas con-

sents_with(Sita,Ravana) would indicate that Sita

has voluntarily accepted Ravana's proposals. Two rela-

tionships associate characters with places: home and cur-

rent_place. A state of the world consists of all facts

about the existing entity instances and their properties

holding at some instant.

The dynamic schema defines a fixed repertoire of op-

erations for consistently performing state changes. The

STRIPS [Fikes & Nilsson] model is used. Each operation

is defined in terms of pre-conditions, which consist of

conjunctions of positive and/or negative literals, and any

number of post-conditions, consisting of facts to be as-

serted or retracted as the effect of executing the operation.

Instances of facts such as home and gender, are fixed,

not being affected by any operation. Of special interest

are the user-controlled facts which, although also immune

to operations, can be manipulated through arbitrary direc-

tives (cf. section 3.4). In our example, loves is user-con-

trolled.

Again for the present example, we have provided op-

erations at two levels. The four main events are performed

by level-1 operations: abduct, elope, rescue and cap-

ture. Operations at level-2 are actions of smaller granu-

larity, in terms of which the level-1 operations can be

detailed: ride, entreat, seize, defeat, and carry.

Our provisional version of the behavioural schema

consists of goal-inference (a.k.a. situation-objective)

rules, belief rules, and emotional condition rules.

For the example, three goal-inference rules are sup-

plied. The first one refers to the ravisher. In words, in a

situation where the princess is not at her home and the

hero is not in her company – and hence she is unprotected

– the ravisher will want to do whatever is adequate to

bring her to his home. The other goal-inference rules refer

to the hero, in two different situations having in common

the fact that the ravisher has the woman in his home:

either the hero believes that she does not love the other

man, or he believes that she does. In both situations, he

will want to bring her back, freely in the first case and

constrained in the second.

Informally speaking, beliefs correspond to the partial

view, not necessarily correct, that a character currently

forms about the factual context (for a formal characteri-

zation, cf. the BDI model [Cohen & Levesque; Rao &

Georgeff]). The belief rules that we formulated for our ex-

ample look rational, but notice that they are treated as

1 ftp://ftp.inf.puc-rio.br/pub/docs/techreports/08_30_barbosa.pdf

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 34

defaults, which can be overruled as will be described in

section 3.4. A man (the hero or the ravisher) believes that

the woman does not love his rival if the latter has her

confined, but if she has ever been observed in his com-

pany and in no occasion (state) was physically con-

strained, the conclusion will be that she is consenting (an

attitude seemingly too subjective to be ascertained di-

rectly in a real context).

The emotional condition rules refer to the three cha-

racters. A man (or woman) is happy if currently in the

company of his (or her) beloved, and bored otherwise. A

special condition applies to the woman: she will be abso-

lutely happy if, in addition to the first motive for content-

ment, she has never been constrained by any of the two

adversaries.

3.2 Coherent sequences
Moving along the syntagmatic axis is primarily the task of

the plan-generator, as it composes a coherent plot by

aligning events in view of the pre- and post-conditions of

the appropriate predefined operations.

For plot composition, it is convenient to proceed in a

step-wise fashion, starting from a given initial state. At

each state, the goal-inference rules are used to induce

opportunistic short term goals from which successive plot

sequences will originate.

In an interactive environment, at any step, the user,

henceforward called the Author, should be allowed to

intervene, reducing thereby the characters' autonomy, but

relying on the plan-generator to enforce consistency

within the genre. To this purpose, the Author may indicate

a goal, to be tried by the plan-generator, or even a specific

operation, which the plan-generator may or may not find

applicable.

A more complex request is to indicate a sparse list of

operations, to be filled-up until a valid plot sequence

containing all operations in the list, possibly interspersed

with others, is formed. The Author may optionally also

indicate the desired goal, which would otherwise be as-

sumed to coincide with the effects of the last operation in

the list.

After the step-wise process terminates, it should still

be possible to perform various kinds of adaptation. Those

that have to do with the syntagmatic relations include

adding or deleting operations and changing the sequence,

if the partial order requirements imposed by the interplay

of pre- and post-conditions permit. For instance, consider

plot P below:
P = start => ride(Ravana, Lanka, forest) => entreat(Ravana, Sita)

=> seize(Ravana, Sita) => carry(Ravana,Sita,Lanka)

which can be re-ordered, to meet the Author's prefe-

rences, to produce:
Ps = start => ride(Ravana, Lanka, forest) => entreat(Ravana,

Sita) => carry(Ravana,Sita,Lanka) => seize(Ravana, Sita)
Curiously, both the original plan P and the reordered plan

Ps suggest stories that may well happen in reality or fic-

tion. In P, a voluntary elopement is disguised as an ab-

duction, whereas in Ps elopement is cruelly followed by

the woman's confinement.

Also, a plot can be extended with more operations if

the Author supplies an additional goal in an attempt to

provide a continuation.

3.3 Alternative choices
Moving along the paradigmatic axis gives ampler oppor-

tunity to obtain different plots than simply changing the

sequence of events within the partial order requirements.

Alternatives may result, first of all, from starting from

a different initial state, so that different goal-inference

rules may be triggered. Notice also that more than one

such rule may be ready for activation. In any case, the

standard plan-generator’s ability to backtrack is an expe-

dient mechanism to engender alternative plots.

To resort to violence, as in abduction or capture, can

be certainly regarded as excessive and unnecessary when

the patient of the action loves the agent, even though our

specification does not invalidate their occurrence. Accor-

dingly, if the goal-inference rules are in control and the

context is not tampered with (but see section 3.4), they

will not figure in any generated plot. And yet the Author

can have them as valid alternatives, simply by using the

option to directly indicate a goal to the plan-generator.

Such goal can be relatively non-specific, such as cur-

rent_place(Sita,palace), or else more restrictive, such as (cur-

rent_place(Sita,palace), held_by(Sita,Rama)) – in which case

only the forceful capture event will result.

At the adaptation phase, the ability to replace one or

more operations is a way to produce alternatives. One

must bear in mind that a replacement may require another,

if the Author is concerned with preserving consistency;

so, replacing abduct by elope normally implies the

replacement of rescue by capture.

A particularly convenient way to deal with entire

plots, rather than with individual operations, is to take

advantage of the similarity or analogy among situations,

inherent in the notion of paradigms. Previously existing

plots, no matter if composed manually or automatically,

can be converted into plot patterns to be kept in a Library

of Typical Plots [Furtado & Ciarlini 2001]. Plot patterns

can then be reused to originate new plots, essentially by

instantiating their variables in view of a new situation.

3.4 Shifts along the way
Until this point we restricted ourselves to planned and

hence well-behaved plots. It is time now to introduce a

measure of transgression, disrupting the context in order

to obtain plots with events in antithetic relation.

The Author, as deus ex machina, can interfere with the

plan generation discipline by issuing two kinds of direc-

tives, which can be applied both during composition and

adaptation. One directive is make_believe, arbitrarily

assigning a belief B to a character C, which overrules any

previous belief on the same facts, either specified through

the belief rules of the behavioural schema or stated by a

previous application of the make_believe directive

itself. If Sita was violently abducted by Ravana, Rama

will believe (as a consequence of a belief rule) that she

does not love the villain, and therefore that she will gladly

consent to be rescued. However, the Author is allowed to

induce Rama to falsely believe the contrary, which acti-

vates a goal-inference rule leading to a forceful capture

event.

Another directive is vary, which manipulates user-

controlled facts, instead of mere beliefs. In our example,

the only facts declared to be user-controlled are the in-

stances of the loves relationship, whose Boolean value

will be inverted if the directive is applied. Sita can be

eloped if she currently loves Ravana, and then be wil-

lingly rescued by Rama if between these two events the

Author issues the directive so as to change her feelings.

But vary does not have to be explicitly called for. A

helpful feature in the course of plan-generation can detect

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 35

failures involving user-controlled facts, in which case the

Author is asked whether or not the context should be

tampered with accordingly.

In other example mini-worlds, one might have differ-

ent kinds of user-controlled properties, e.g. with numeri-

cal values inside a range, such as degree of strength,

which the vary directive could change in some radical

proportion. Such representation is also appropriate for

emotions in general, including love itself, enabling finely

graded nuances of expression, obviously unattainable with

simple two-valued Boolean alternatives.

We began to investigate another line, in an attempt to

offer clues to an Author intent on finding ways to, at a

later stage, replace the external deus ex machina direc-

tives by some internal narrative device with a flavour of

irony, almost crossing the borderline of plausibility.

Folktales, myths, and popular culture have pooled to-

gether through time rich repertoires of motifs [Aarne &

Thompson], often containing ingenious solutions to di-

lemmas arising from antithetic situations.

Authors have always felt free to borrow from all kinds

of sources, and one can easily discover occurrences of

certain motifs in the literature of different countries,

modified as required by cultural differences. For our

example, we found three convenient motifs:
a. life token: an object whose aspect changes if the

owner is in distress,

b. love potion: stimulates romantic/ erotic feelings,

c. ordeal: to vindicate a discredited or accused person.
where (a) (indexed as E761 in [Aarne & Thompson])

allows to do without the unrealistic assumption that cha-

racters are omniscient, e.g. explaining how Rama learned

that Sita suffered abduction in the forest, (b) provides an

excuse for sudden variations in amorous attachments, and

(c) serves to restore the man's belief in his beloved's faith-

fulness. Curiously, both (b) and (c) occur in the Tristan

romance, wherein the ordeal takes the especially ironic

form of an ambiguous oath [Béroul], while in the Ra-

mayana Sita has to walk through the fire [Valmiki]. In our

example, we treat these motifs as black boxes, merely

associating to their names a <situation, goal> specifica-

tion. Thus, if the Author wants to insert motifs (simply

through the mention of their names) at the positions in a

generated plot where the respective situation holds, this

can be asked for at the adaptation phase.

Such insertions are therefore to be regarded as provi-

sional annotations only, which the Author should later

have to unravel by mapping the events in the motifs into

analogous events congenial to the genre adopted in the

plot. The mappings should preserve the <situation, goal>

of the motif and might require the definition of additional

operations, such as communicative acts for instance. The

persistence of motifs is a remarkable phenomenon, with

relatively modern versions: microchip implants for (a),

aphrodisiac drugs like the LSD hallucinogen for (b), and

lie detectors and truth serums for (c), all of so dubious or

controversial value as their primitive counterparts, but

equally acceptable to the general public.

3.5 Down to details
As stated before, between level-1 and level-2 operations

there may be meronymic relations. Creating plots in

hierarchic fashion is a most common practice, starting

with a broad view of the events, which in the case of our

example corresponds to the level-1 operators. At later

stages, one would gradually decompose each event into

finer grain actions, possibly along more than just two

levels, to the point of coordinated physical movements, as

required for displaying animated scenes [Ciarlini et al.].

When composing a plot, the plan-generator is free to

mix operations of the two levels, a reasonable default

option considering that the Author may wish to treat some

events more succinctly than others. But the Author may,

on the contrary, settle for a uniform style by indicating

that only one of the two levels will be used. This choice

can be altered at any time, in composition or adaptation.

Once a plot is composed, it can be adapted either by

detailing or summarizing its constituent operations. De-

tailing each level-1 operation Op in a plot into level-2

operations is treated as one more plan generation task,

taking as situation the instantiated pre-conditions of Op,

and as goal the effects of Op, and using exclusively the

operations in the level-2 repertoire. More than one de-

composition may be possible, depending on the initial

state and on the changes effected by the preceding opera-

tions.

The inverse of detailing, summarizing, is also useful.

We are currently restricted to a rather limited version,

which only works if the detailed plan is divisible into

subsequences that can be exactly subsumed by level-1

operations. This means that the process fails if other

extraneous operations intervene. In other words, sum-

marize(P1,P2) succeeds if and only if de-

tail(P2,P1) also does.

Figures 2(a) and 2(b) are suggestive in that they illu-

strate a curious symmetry in how they map the example

level-1 operations into level-2 operations. The decompo-

sitions in the two figures are the same, except for the

substitution of entreat for seize. This is not surprising,

since a similar decomposition comes as a consequence of

the paradigmatic relation between the two villainy and the

two retaliation events. Notice too that, in both figures, the

event corresponding to villainy only differs from the

retaliation event by the possible presence of defeat –

reflecting our observation, after surveying a number of

traditional narratives, that the villain almost always re-

sorts to some trick, avoiding a confrontation that often

(though not necessarily) occurs as part of retaliation.

The decompositions suggested by the two figures are

typical but not unique, since the correspondence induced

by the meronymic relations is not rigidly determined, i.e.

it is, so to speak, context-sensitive, depending on the

current state. For instance, abduct can be expressed by

seize followed by carry if both the victim and the

ravisher are currently at the same place, but will need a

preliminary ride if the former is in the forest and the

latter still in his home.

All this suggests that it may be difficult to interpret

what is happening by looking at a sequence of level-2

operations without examining the context. In this regard,

the ability to fill-up (cf. section 3.2) a sparse list of

observed level-2 operations and then performing

summarization, identifying what level-1 operation is

taking place at some point, constitutes a not so trivial

form of plan-recognition [Kautz]. Plan generation is more

directly relevant to the composition and adaptation of

plots than the recognition of plans and objectives. But the

latter task is an asset in interactive plan-supported game-

playing environments, since each player might employ it

as an aid to discover what the opponents are trying to do.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 36

4. A Prototype Implementation

A very simple prototype, PlotBoard, was designed to

experiment with the notions discussed here. Dealing with

storyboarding [Truong et al.] – exclusively at the fabula

level – it serves to compose plots interactively with the

help of an extended version of the early Warplan algo-

rithm [Warren]. Written in SWI-Prolog2, it interfaces with

Java to show events in image format.

4.1 Some Features of the Plan-generator
The plan generator follows a backward chaining strategy.

For a fact F (or not F) that is part of a given goal, it

checks whether it is already true (or false) at the current

state. If it is not, it looks for an operation Op declared to

add (or delete) the fact as part of its effects. Having found

such operation, it then checks whether the pre-condition

Pr of Op currently holds – if not, it tries, recursively, to

satisfy Pr. Moreover, the plan generator must consider the

so-called frame problem [Lloyd], by establishing (in

second-order logic notation) that the facts holding just

before Op is executed stay valid unless explicitly declared

to be altered as part of the effects of Op.

Like goals, pre-conditions are denoted by conjunc-

tions of literals and arbitrary logical expressions. We

distinguish, and treat differently, three cases for the in-

volved positive or negative facts:
a. facts which, in case of failure, should be treated as

goals to be tried recursively by the plan generator;

b. facts to be tested immediately before the execution

of the operation, but which will not be treated as

goals in case of failure: if they fail the operation

simply cannot be applied;

c. facts that are not declared as added or deleted by

any of the predefined operations.

Note that the general format of a pre-condition clause is

precond(Op, Pr) :- B. In cases (a) and (b), a fact F

(or not F) must figure in Pr, with the distinction that the

barred notation /F (or /(not F)) will be used in case

(b). Case (c) is handled in a particularly efficient way.

Since it refers to facts that are invariant with respect to the

operations, such facts are included in the body B of the

clause, being simply tested against the current state when

the clause is selected.

An example is the precondition clause of operation

seize(M,W), where M is the agent and W the patient of the

action. Clearly the two characters should be together at

the same place, and, accordingly, the Pr argument shows

two terms containing the same variable P to express this

requirement, but the term for W is barred:

/current_place(W, P), which does not happen in M's

case. The difference has an intuitive justification: the

prospective agent has to go to the place where the patient

is, but the latter will just happen to be there for some other

reason.

The proper treatment of (a) and (b) is somewhat

tricky. Suppose the pre-condition Pr of operation Op is

tested at a state S1. If it fails, the terms belonging to case

(a) will cause a recursive call whereby one or more addi-

tional operations will be inserted so as to move from S1 to

a state S2 where Op itself can be included. It is only at S2,

not at S1, that the barred terms in case (b) ought to be

tested, and so the test must be delayed until the return

2 http://www.swi-prolog.org/

from the recursive call, when the plan sequence reaching

S2 will be fully instantiated.

Operations can admit more than one precondition

clause, so as to cope with different circumstances. This

happens with the carry(M,W,P2) operation, whereby W

will either freely consent to be transported to P2 by M, or

will have to be forcefully held by him.

With respect to the added and deleted clauses declar-

ing effects of operations, the plan generator also employs

a barred notation, to distinguish between two cases:

(a) primary effects, and (b) secondary unessential effects.

In case (a), if any fact F to be added by Op already holds,

or already does not hold if it should be deleted, then Op is

considered non-productive and fails to be included in the

plan. In contrast, in case (b), such lack of effect would be

admitted and cause no failure.

As an example, consider the clause of operation cap-

ture(M1,W) that declares as deleted the fact

held_by(W,M2), as a result of M1's action to take away W

from M2. Notice that the fact may or may not hold prior to

capture; it will hold if W was abducted by M2, but will not

hold if an elopement occurred instead – and that is why

the barred notation is used for this particular deleted

clause. On the contrary, the fact cur-

rent_place(W,P2), where P2 is the home of M2, must

necessarily be deleted by an effective execution of the

operation, and so does not figure as barred.

The execution of plans is done through assert or

retract commands on the facts to be, respectively,

added or deleted. The plan's pre- and post-conditions are

checked during the process, there being no effect in case

of failure. A log(L) literal, initiated with L=start, is

extended with each successful plan execution and can be

usefully retrieved for a variety of purposes. On the basis

of the log and of the initial state, which is saved when a

session begins, it is possible to query about facts at any

intermediate state. It is also possible to save and restore

any previous state S (initial or intermediate), which

enables simulation runs.

User interventions, necessary to achieve unplanned

situations, are permitted in a limited scale through direc-

tives that can be either intermixed with the operations in a

plan or called separately. Two of these are used in our

example, one for changing loves facts, immune to the

predefined operations, and the characters' beliefs, which

may not correspond to actual facts.

To finish this partial review of the plan features, we

remark that the planning algorithm plans(G,P) is called

in more than one way. More frequently G is given, as the

goal, and P is a variable to which a generated plan will be

assigned as output. However an inverse usage has been

provided, wherein P is given and G is a variable; in this

case, the algorithm will check whether P is valid and, if

so, assign its net effects (a conjunction of F and not F

terms) to G.

4.2 The PlotBoard Tool
We shall briefly describe how PlotBoard works, after the

controlling user, here called the Author, enters the plot

command. The diagram of figure 3 will serve to guide the

description.

 The main option is to compose the plot from scratch,

in a step-wise fashion. Ideally, the Author should leave a

measure of autonomy to the characters (branching into the

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 37

planner node of the diagram). At each step (cf. the plan

step node), one subsequence of the plot will be gener-

ated. As if emerging from the mind of a character C, a

short-term opportunistic goal G is instantiated by some

goal-inference rule (C,S,G), if the situation S of the rule

currently holds. More than one rule may be

simultaneously ready for activation, and the planning

algorithm may find more than one alternative

subsequence able to achieve the corresponding goals

(whenever the planning algorithm backtracks), as

indicates the self-loop around the plan step node.

While a subsequence is presented, the Author is prompted

to either issue an ok reply or call for an alternative,

possibly after inspecting what effects it would have. An

ok reply is followed by a return to the planner node.

plot

compose

user

use given
plot

use plot
from library

planner

submit

adapt

plan step

show

end

start u: alternative

u: OK

u: finish

u: validate

u: accept

u: finish

u: show effects

Figure 3: Flow of control of the PlotBoard prototype

The subsequence thus selected is then executed in a si-

mulated mode, and the Author is asked whether the plan

step iterations should continue, producing further subse-

quences to be appended to the plot so far obtained, or

whether the composition process is finished for the time

being (passing to the submit node), though still subject

to possible adjustments.

If the Author is more inclined towards a closer arbi-

trary control than to the character autonomy policy de-

scribed above, several options are available to determine

the goals that the planning algorithm should try to achieve

(cf. the the first 3 items of the menu for the user node

below). Again, the self-loops around the user node

represent the possibility of alternative plot subsequences

being offered to the Author's choice. These options permit

step-wise composition, which can be entirely commanded

from the user node, but can also alternate with the acti-

vation of goal-inference rules, by intercalating transfers of

control to the planner node.

An additional purpose of the user node is to prepare

and support the composition process, by allowing to pose

queries about the database state at each step, to change the

operation level, and to issue directives to alter the cha-

racters' beliefs and the value of user-controlled properties.
1: goal

2: operation

3: list of operations

4: query

5: operation level

6: directive

7: planner

8: finish

Whatever composition policy is preferred – autonomous,

arbitrary, or mixed – the finished plot is passed to the

submit node. At this point, the Author can either accept

the plot, which terminates the process, or can go through

one or more rounds of adaptation, using the options

offered at the adapt node below.

1: detail

2: summarize

3: change sequence

4: add operation

5: delete operation

6: replace operation

7: extend

8: queries or directives

9: insert motif

10: back to the submit options

11: stop

To help decide whether to accept the current plot or per-

form other adaptations, the submit menu allows to vali-

date the plot (again through the planning algorithm). This

may be in order if the Author directly introduces specific

changes (items 4-6 of the adapt menu), noting that in all

other forms of adaptation the planning algorithm inter-

venes to prevent integrity violations.

Another feature available at the submit node de-

serves attention, since what it produces, together with the

menu-based dialogues, constitutes the intended output of

PlotBoard. If selected, via the show option, it provides a

visual display that can be repeated for the successive

versions. For each operation in the current plot, the event

it denotes appears as a rough drawing, side by side with a

short template-driven natural language sentence.

We refer again to the diagram in figure 3, to consider

two ways to obtain a plot without requiring step-wise

composition from scratch. In both cases, a full plot is used

to start with, and in both cases the process converges

afterwards to the submit node.

Branching into use given plot, the Author can

either enter the intended plot or retrieve a previously

composed one. The planning algorithm is automatically

called to inspect the plot, operation by operation, to check

whether each of them can be applied in view of the pre-

and post-conditions interplay. If an operation is found that

can only be applied if a user-controlled property is tam-

pered with, the possibility of changing the value of the

property is indicated to the Author, who may or may not

permit the execution of the necessary vary directive. If

the Author denies permission, or if the offending property

is not user-controlled, the plot is rejected.

In case the node use plot from library is cho-

sen, the Library of Typical Plots (LTP) will be searched

for items (S,G,P), such that situation S currently holds,

thereby propagating the instantiation of the parameter

variables figuring in S to goal G and plot P. If more than

one such item is found, the Author will have once more

an opportunity to select the preferred P among the alter-

natives presented.

4.3 An example run
At the initial state, both Rama and Ravana are in their

homes, respectively the royal palace and the city of

Lanka, whereas Sita is alone in the forest. The two men

love Sita, who only loves Rama. Starting to compose the

plot, the Author invokes the planner in two stages, always

selecting the detailed (level 2) alternatives. At this point

the plot is, in natural language format:
Ravana rides from Lanka to forest. Ravana seizes Sita. Ravana
carries Sita to Lanka. Rama rides from palace to Lanka. Rama

defeats Ravana. Rama entreats Sita. Rama carries Sita to palace.

Wishing to try different versions, the Author looks at the

adapt menu, shown in the previous section. The first

change selected is the deletion of the two events that close

the narrative. The next step is to issue directives to change

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 38

the emotional attachments and certain of the characters'

beliefs: now Sita loves Ravana and Rama believes this

fact. This justifies adding entreat(Ravana,Sita) as

second event (after Ravana approaches the princess):
Ravana rides from Lanka to forest. Ravana entreats Sita. Ravana
seizes Sita. Ravana carries Sita to Lanka. Rama rides from pa-

lace to Lanka. Rama defeats Ravana.

The plot now suggests the fake abduction pattern, wherein

the villain seizes his pretended victim only to simulate a

violent action. The Author wonders then if the same

events could be arranged in some different sequence, and

a dialogue ensues:

[f1:entreat(Ravana, Sita), f2:seize(Ravana, Sita)]
choose one of the fi tags: f1

[f1:seize(Ravana, Sita), f2:carry(Ravana, Sita, Lanka)]

choose one of the fi tags: f2
[f1:seize(Ravana, Sita), f2:ride(Rama, palace, Lanka)]

choose one of the fi tags: f1

Ravana rides from Lanka to forest. Ravana entreats Sita. Ravana

carries Sita to Lanka. Ravana seizes Sita. Rama rides from pa-

lace to Lanka. Rama defeats Ravana.

This sounds as overt elopement after which the seducer

restricts the woman's freedom. What can happen next?

 Selecting the extend option of the adapt menu, the

Author proposes: current_place(Sita,palace) as a

goal, and the planner responds (figure 4) with: Rama cap-

tures Sita. Is this a satisfactory way to end the narrative?

The Author selects option 8 and poses queries, to learn

what the characters think and how they feel:

Figure 4: A PlotBoard screen.

query: beliefs

 Rama believes that Sita loves Ravana
 Ravana does not believe that Sita loves Rama

more queries?(yes/no): yes

query: emotional_condition
 Sita is bored. Rama is happy. Ravana is bored.

Sympathizing with the princess, the Author decides to

revert the situation. Perhaps her love for the hero could

revive (as happened with Helen of Troy), and the last

event is replaced according to this expectation: cap-

ture(Rama,Sita) turns into rescue(Rama, Sita).

How does it look now? Back at the submit menu, the

Author asks to visualize the scenes and accepts this result,

a happy end for Sita as well as for the Author, who rece-

ives a grateful acknowledgement from the PlotBoard tool

(Figure 5).

Figure 5: The accepted plot.

But much remains to be done. The deus ex machina

directives should be replaced eventually by something

internal to the narrative. Also, how to explain that Rama

knew without being told that Sita had become Ravana's

prisoner? To gather suggestions, to be possibly (re)used

after due modifications appropriate to the genre, the Au-

thor might have inspected (figure 6) the applicable motifs,

before issuing the final accept response, in which case the

life token, the love potion (twice) and the ordeal motifs

would be indicated at one or more positions in the plot

wherein the respective motivating situation holds.

Figure 6: Insertion of motifs (partial view).

5. Concluding Remarks

Although the process of plot composition could surely be

enriched far beyond what was presented here, the sug-

gested fourfold approach seems to provide a sound initial

basis. The conjecture that the interplay of the syntagmatic,

paradigmatic, antithetic and meronymic relations already

permits an ample coverage is reinforced by the connection

between these relations and the four major tropes. Other

concepts may be adduced to extend the model. If we see a

disruption not as a discontinuity in one context, but as an

attempt to put together two originally incompatible con-

texts, the notion of blending [Fauconnier & Turner; Casa-

nova et al.] comes to mind, as the technique or artisanship

of conciliating the pending conflicts, often requiring a

great deal of creativity.

The facilities associated with the four relations are

adequate for other tasks, besides storyboarding, under

suitable user interfaces. In interactive storytelling systems

designed for entertainment, as well as in games, they

might prove instrumental to support the production of

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 39

coherent stories with an ability to cause surprise. Further

research might investigate ways to adjust the generation

of alternatives to users' satisfaction models, so that there

would be no longer a need to explicitly interfere to obtain

varied and interesting outcomes.

Finally, let us recall that we have addressed the fabula

level only, where one simply indicates which events

should be included in the plots. A complex problem to be

faced at the next level – the story level, where the concern

is how to tell the events – is to find a plausible justifica-

tion for the contextual disruptions introduced ex machina

via user interaction. As said, such elaborations may be

suggested by some fanciful motif annotated in the plot.

Moreover a plurality of narrative objectives must be satis-

fied [Crawford; Turner; Montfort].

At the third and last level – the text level – the narra-

tive is represented in some medium, not necessarily

printed pages. Natural language text-generation from plots

of log-registered business transactions is covered in [Fur-

tado & Ciarlini 2000]. In the realm of literary genres, an

ongoing project applies computer graphic animation to

display narrative plots [Ciarlini et al.; Camanho et al.].

References
AARNE, A. AND THOMPSON, S. 1987. The Types of the Folktale. Suo-

malainen Tiedeakatemia.

ARISTOTLE. “Poetics”. 2000. In Classical Literary Criticism.
Penelope Murray et al. (trans.). Penguin.

BAL., M. 2002. Narratology. U. of Toronto Press.

BARROS, L. AND MUSSE, S. 2007. “Planning algorithms for interac-
tive storytelling”.In ACM Computers in Entertainment, ACM 5.1.

BATINI, C., CERI, S. AND NAVATHE, S. 1992. Conceptual Design – an

Entity-Relationship Approach. Benjamin Cummings.
BÉROUL. 1970. The Romance of Tristan. A.S. Fedrick (trans.).

Penguin.
BREITMAN, K.K., BARBOSA, S.D.J., CASANOVA, M.A. AND

FURTADO, A.L. 2007. “Using analogy to promote conceptual

modeling reuse”. In Proc. of Workshop on Leveraging Applica-
tions of Formal Methods, Verification and Validation .

BREITMAN, K.K., CASANOVA, M.A. AND TRUSZKOWSKI, W. 2007.

Semantic Web. Springer.
BOOTH, W. 1974. A rhetoric of Tropes. U. of Chicago Press.

BURKE, K. 1969. A Grammar of Motives. U. of California Press.

CAMANHO, M., CIARLINI, A.E.M., FURTADO, A.L., POZZER, C.T.
FEIJÓ, B. 2008. “Conciliating coherence and high responsiveness

in interactive storytelling”. In Proc. 3rd. ACM International Con-

ference on Digital Interactive Media in Entertainment and Arts
(DIMEA 2008).

CASANOVA, M.A., BARBOSA, S.D.J., BREITMAN, K.K. AND

FURTADO, A.L. 2008. “Generalization and blending in the gener-
ation of entity-relationship schemas by analogy”. In Proc. of the

Tenth International Conference on Enterprise Information Sys-

tems (ICEIS).
CAVAZZA, M., CHARLES, F. AND MEAD, S. 2002. “Character-based

interactive storytelling”. IEEE Intelligent Systems, special issue

on AI in Interactive Entertainment, 17(4).

CHANDLER, D. 2007. Semiotics: The Basics. Routledge.

CHRÉTIEN DE TROYES. 1983. Le Chevalier de la Charrete. M.

Rocques (ed.). Honoré Champion.
CIARLINI, A.E.M., POZZER, C.T., FURTADO, A.L. AND FEIJÓ, B.,

2005. “A logic-based tool for interactive generation and dramati-

zation of stories”. In Proc. of Advances in Computer Entertain-
ment Technology.

COHEN, P.R. AND LEVESQUE, H.J., 1990. “Intention is Choice with

Commitment”. Artificial Intelligence 42.
COSTIKYAN, G. 2002. “I have no words and I must design: Toward a

Critical Vocabulary for Games”. In Proc. of Computer Games

and Digital Cultures.
CRAWFORD, C., 1984. The Art of Computer Game Design. Osborne-

McGraw-Hill.

CULLER, J. 1983. On Deconstruction: Theory and Criticism after
Structuralism. Cornell U. Press.

FAUCONNIER, G. AND TURNER, M. 2002. The Way We Think. Basic

Books.

FIKES, R.E. AND NILSSON, N.J. 1971. “STRIPS: A new approach to

the application of theorem proving to problem solving”. Artificial

Intelligence 2.

FURTADO, A.L., CASANOVA, M.A., BARBOSA, S.D.J. AND

BREITMAN, K.K. 2008. “Analysis and Reuse of Plots using Simi-

larity and Analogy”. In Proc. of 27th International Conference

on Conceptual Modeling (ER).
FURTADO, A.L. and CIARLINI, A.E.M. 2000. “Generating Narratives

from Plots using Schema Information”. In Proc. of 5th Interna-

tional Conference on Applications of Natural Language to Infor-
mation Systems.

FURTADO, A.L. AND CIARLINI, A.E.M. 2001. “Constructing Libra-

ries of Typical Plans”. In Proc. of 13th International Conference
on Advanced Information Systems Engineering.

FURTADO, A.L. AND VELOSO, P.A.S. 1996. “Folklore and Myth in

The Knight of the Cart”. In Arthuriana, vol 6, 2.
GRASBON, D. AND BRAUN, N. “A morphological approach to interac-

tive storytelling”. 2001. In Proc. CAST01, Living in Mixed Reali-

ties. Special issue of Netzspannung.org/ journal, the Magazine
for Media Production and Inter-media Research.

HEARST, P.C. AND MOSCOW, A. 1988. Patty Hearst: her own Story.

Avon.
HOMER. The Iliad. 1950. E.V. Rieu (trans.). Penguin.

KAUTZ, H. A. 1991. “A Formal Theory of Plan Recognition and its

Implementation”. In Reasoning about Plans. J. F. Allen et al.
(eds.). Morgan-Kaufmann.

LAKOFF, G. AND JOHNSON, M. 1980. Metaphors We Live By. U. of

Chicago Press.
LLOYD, W. 1987. Foundations of Logic Programming. Springer.

MARCHELLO-NIZIA, C. (org.). 1995. Tristan et Yseut. Gallimard.

MATEAS, M., AND STERN, A. 2000. “Towards integrating plot and
character for interactive drama”. In Socially Intelligent Agents:

the Human in the Loop, AAAI Fall Symposium.

MCGARRY, M. (ed.). 1979. “The Story of Deirdre”. In Great Folk
Tales of Ireland. Frederick Muller.

MONTFORT, N. 2006. “Natural Language Generation and Narrative

Variation in Interactive Fiction”. In AAAI Workshop on

Computational Aesthetics.
ORTONY, A. (ed.). 1996. Metaphor and Thought. Cambridge: Cam-

bridge U. Press.

OVID, 1986. Heroides and Amores. G. Showerman (trans.). Harvard
U. Press.

PEARCE, C. (2002) “Emergent authorship: the next interactive

revolution”. In Computers & Graphics 26.
PROPP, V. 1968. Morphology of the Folktale. S. Laurence (trans.). U.

of Texas Press .

RAO, A.S. AND GEORGEFF, M.P. 1991. “Modeling rational agents
within a BDI-architecture”. In Proc. of Int’l Conf. on Principles

of Knowledge Representation and Reasoning.

RIEDL, M. and YOUNG, R. M. 2004. “An intent-driven planner for
multi-agent story generation”. In Proc. of 3rd Int’l. Conf. on Au-

tonomous Agents and Multi Agent Systems.

SAUSSURE, F. 2006. Cours de Linguistique Générale. C. Bally, A.
and A. Riedlinger (eds.). Payot.

TITUS LIVIUS. 1919. History of Rome, vol I. B. O. Fster (trans.).

Harvard U. Press. Book I, Chapter I: 13.
TRUONG, K. N. HAYES, G. R. AND ABOWD, G. D. 2006. “Storyboard-

ing: An Empirical Determination of Best Practices and Effective

Guidelines”. In Proc. of 6th conference on Designing Interactive

systems.

TURNER, S.R. 1992. Minstrel: A computer model of creativity and

storytelling. T. R. UCLA-AI-92-04, Computer Science Dept.
VALMIKI. 1999. Le Ramayana. Philippe Benoît et al. (trans.). Galli-

mard,.

VIRGIL. 1994. Eclogues, Georgics, Aeneid. H.R. Fairclough (trans.).
Harvard U. Press.

WALLIS, J. 2008. Making Games that Make Stories. Electronic book

review [www.electronicbookreview.com].
WARDRIP-FRUIN, N., HARRIGAN, P. (eds.). 2004. First Person: New

Media as Story, Performance, and Game. The MIT Press.

WARREN, D.H.D. 1974. WARPLAN: a System for Generating Plans.
Edinburgh: University of Edinburgh, Department of Computa-

tional Logic, memo 76.

WHITE, H. 1973. Metahistory: The Historical Imagination in Nine-
teenth-Century Europe. The Johns Hopkins U. Press.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 40

Improving Boids Algorithm in GPU using Estimated Self Occlusion
Alessandro Ribeiro da Silva1

Universidade Federal de
Minas Gerais

Wallace Santos Lages2

Universidade Federal de
Minas Gerais

Luiz Chaimowicz3

Universidade Federal de
Minas Gerais

Abstract

Behavioral models are used in games and computer graphics for
realistic simulation of massive crowds. In this paper, we present a
GPU based implementation of Reynolds [1987] algorithm for sim-
ulating flocks of birds and propose an extension to consider en-
vironment self occlusion. We performed several experiments and
the results showed that the proposed approach runs up to three
times faster than the original algorithm when simulating high den-
sity crowds, without compromising significantly the original crowd
behavior.

Keywords:: Boid simulation, GPGPU

Author’s Contact:

1alessandrosilva@ufmg.br, 1www.alessandrosilva.com
2wlages@ufmg.br
3chaimo@dcc.ufmg.br

1 Introduction

The simulation of a large number of individuals has applications in
many different games, whether to compose the background scene
in games (GTA, Rockstar Games, 1997) or as part of the gameplay
itself (Pikimin, Nintendo, 2001). As members of the crowd meet
each other, they interact by coordinating their motion accordingly
to the goal of each individual. As examples we may cite the motion
of flocks of birds, banks of fishes, herds of land animals, or even
groups of human characters.

The first behavioral models appeared as extensions of particle
systems used to model water, fire, grass and atmospheric effects
[Reeves 1983]. Other extensions soon followed. In 1987, Reynolds
presented a distributed model for controlling flocks of birds that
considered interactions between agents [Reynolds 1987]. Although
every agent, or boid, takes decisions considering only its local per-
ception of the world, the sum of the behaviors enable the flock to
present a very real-like motion.

However, to simulate local perception, one must be able to identify
neighbors among all existing agents. The naive option (comparing
each boid to the other) leads to a O(n2) behavior that becomes pro-
hibitive for a large number of boids. So, to obtain an interactive
system, we must have both fast implementations and low complex-
ity algorithms.

To speedup the process of finding neighbors, researchers have used
different spatial structures [Shao and Terzopoulos 2005], [Reynolds
2006]. Instead of searching in the whole population, this enables a
local search in a pre-sorted structure, thus lowering the asymptoti-
cal complexity. Another approach used is to avoid the computation
when neighbors do not change much [Chiara et al. 2004] or even up-
date only a small percentage of the population per frame [Reynolds
2006].

On the other hand, current graphics architectures exhibit a large de-
gree of parallelism which can be used for a highly efficient boid
computation and display. GPU implementations are presented by
Court and Musse [2005] and Chiara et al. [2004]. A fast imple-
mentation on the Playstation3 hardware was presented by Reynolds
[2006].

In this work we present an implementation of the model proposed
by Reynolds [1987], [1999] for a Geforce 8800 GPU. We also
present an extension to estimate self occlusion in the neighbor com-
putation and show how it can be used to improve the simulation

performance. Our idea is to estimate the number of boids occlud-
ing the view cone of each boid and avoid considering invisible boids
in the behavior calculation. This technique is orthogonal to the one
mentioned above and specially useful for very dense populations.

The remainder of this paper begins with a review of the original
boid model and other related work. We then present the graphics
hardware mappings and algorithms we used to estimate density and
behavior. Finally, we present results and conclusions.

2 Related Work

Agent simulation for large crowds is very computing expensive.
Some techniques used to alleviate the problem are: parallelization,
use of spatial structures, and heuristics to reduce the update rate of
the crowd.

Quinn et al. [2003] presented a parallel pedestrian movement model
running over 11 processors Linux-based multicomputer with MPI.
They were able to simulate and render the motion of tens of thou-
sands of pedestrians in real time using a manager/worker organiza-
tion. Other researchers used the powerful parallelism of graphics
processors to speedup the processing and display of large crowds.
Chiara et al. [2004] present a massive simulation and rendering of
a behavioral model using graphics hardware. They rendered a 3D
scene with a flock of 8000 animated bird models at 20 fps. They
describe the use of vector fields to manage obstacle avoidance and
a heuristic that avoids recomputing the behaviors when the list of
neighbors does not change. Courty and Musse [2005] used the GPU
to compute a physics-based animation model which considers the
influence of gaseous phenomena in the behavior of the crowd. This
system, called FastCrowd, ran a crowd of 10,000 individuals at 50
fps without visualization and at 35 fps using impostors. The behav-
ior model is very complex and include new psycho-physical forces.
In 2006, Reynolds published an implementation for the PLAYSTA-
TION3 hardware [Reynolds 2006]. He was able to concurrently
simulate and display simple crowds of 15,000 individuals at 60
frames per second.

Since the number of individuals is large and the global behav-
ior changes slowly, many researchers decoupled simulation update
from rendering [Reynolds 2006], [Treuille et al. 2006]. As long as
the position is properly updated, errors are very difficult to observe.
On Reynolds implementation, [Reynolds 2006] only 1/8 of the in-
dividuals are updated at each frame. We preferred not to take this
approach. Every simulation is fully computed for every individual
on every frame.

Another way to improve speed is to use spatial hierarchies to
quickly exclude individuals too far to influence the one being com-
puted. For GPU computation, the most common data structure
is the regular grid [Shao and Terzopoulos 2005],[Reynolds 2006].
More sophisticated data structures are more complex to navigate
and therefore, slower. Some works do not use spatial structures at
all and rely solely on brute force [Drone 2007].

As mentioned before, the main contribution of this work is a GPU
implementation of the original algorithm by Reynolds, that con-
siders visibility into the behavior of each boid. The visibility is
estimated by computing the density of boids in the field of view.

3 Background Information

Visibility Culling

The goal of visibility culling is to quickly reject parts of the scene
that are not visible for a given viewpoint. In computer graphics,
occlusion culling is used to avoid processing or drawing such parts

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 41

of the scene. In our work visibility is used to avoid computing
the influence of occluded boids. From the taxonomy proposed by
Cohen-Or et al. [2000] the more relevant classifications for this
work are:

• Point vs. Region. Point algorithms performs the computa-
tion with respect to the location of the current viewpoint only
whereas from-region performs a computation valid for a re-
gion of the space. From-region visibility has its cost amor-
tized over time but usually requires a longer processing.

• Image precision vs. Object precision. Object precision meth-
ods use the raw objects in their visibility computations. Image
precision methods, on the other hand, operate on the discrete
representation of the objects after they are rendered into im-
ages.

• Conservative vs. approximate. Conservative techniques over-
estimate the visible set. Approximate techniques may fail to
include the entire visible set as a trade off for speed.

The technique employed in this work can be described as an ap-
proximate from-point visibility algorithm. In particular, we approx-
imate visibility based on the volumetric representation of the scene.
Instead of performing geometric visibility computations, we com-
pute for each voxel the density of boids and approximate the vis-
ibility between regions by computing the volume opacity between
them. This idea was first proposed by Sillion [1995] in the context
of a radiosity system. Volumetric visibility was also independently
developed by Klosowski and Silva [2000].

Behavioral Models

In this paper we implement the original model proposed by
Reynolds [1987], [1999], where each boid steering behavior is com-
puted independently based on its field of view. The field of view can
be described by a maximum viewing distance and a angle of view
(Figure 1).

Figure 1: Agent visibility (Adapted from Reynolds [1987]).

Based on the visibility of each element, we consider three basic
steering behaviors. The first, separation, is the behavior that pre-
vents the boids from colliding. The steering force is computed as
the average of the difference vector between current boid position
and every neighbor. Alignment is the behavior that tends to align
the boid with the average group direction. The Cohesion behavior
moves the boid toward the center of his local neighborhood. The
steering force is computed as the average position of the neighbors.
An intuitive description of the behaviors is shown on Figure 2.

At each simulation step, the steering force is applied to the current
position of every boid, and a new position is computed according
to the resultant velocities.

4 GPU Mapping and Implementation

The graphics processing unit (GPU) was developed to transform,
light and texture map triangles. For this reason, in GPGPU algo-
rithms, data is usually encoded into textures or geometry before
being processed by the GPU. The GPU mapping used in this work
was based in general GPU programming techniques [Owens et al.
2007]. It uses texture maps to encode vectors of speed, position etc.
This same technique has been used in other similar works [Kolb
et al. 2004], [Chiara et al. 2004], [Courty and Musse 2005]. The
execution flow can be divided in three distinct steps, two of them
are performed by the CPU.

Figure 2: The steering behaviors: a) Separation; b) Cohesion; c)
Alignment (Adapted from Reynolds [1987]).

Before delving into the algorithm, we shall first explain the data
mapping and the data structure used.

4.1 Data Mapping

To describe the state of each boid, we need to store the following
data: one translation vector, two orientation vectors (z and y axis)
and a 3D force vector. This can be mapped into four RGBA tex-
tures. Since the graphics pipeline cannot be used to read and write
at the same time, we used two copies of each texture. After each
simulation step, input and output textures are switched (ping-pong
buffering).

Since the maximum a 1D texture length allowed in our GPU is
8162, we used a function to map 1D address to a 2D address. The
mapping function is defined by the Equation 1. Figure 3 shows the
same mapping in a graphical form. This mapping was applied to
every data addressed by an one dimensional coordinate. It will be
referred as a virtual index since it does not represent the real address
sent to the graphics API.

Tex2D =

[
x
y

]
=

[
1D index mod TexWidth
b1D index/TexWidthc

]
. (1)

Figure 3: Mapping of a 1D virtual index (a) to a 2D texture (b).

4.2 Data Structure

The cost of neighbor search can be accelerated by using spatial in-
dexing structures. We used a uniform grid since it has a constant
cost to build and it is easy to evaluate inside the GPU. Other re-
cursive structures, although more efficient, require a costly mainte-
nance cost and are more complex to construct.

We encoded the grid structure as a 3D texture. Each position con-
tains a virtual index to one boid. This index can be used to retrieve
information about position, orientation or force in another texture.
To be able to store more than one boid per cell, we used a linked
list. This was implemented using the fourth coordinate (w) as a in-
dex to the next boid in the same cell. A value of −1 means the list
has reached the end.

Figure 4 shows the mapping from the world space to the grid space,
the mapping of the grid to a virtual index and the list of elements
inside the position array.

In the virtual index implementation, all indexes are stored with a
+1 increment. In this way, it is possible to use a memset function

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 42

Figure 4: Mapping of the 3D world to grid space and linked list
indexing.

to clear the grid content to zero. Inside the shader, all access and
index conversions must subtract 1 from the elements to be accessed.
A value of −1 after this operation means an invalid or null index.

4.3 Algorithm

As mentioned before, the execution flow can be divided in three
distinct steps. The first step is the update of the grid structure (1).
This is done on the CPU. Following, boids simulation is computed
in the GPU (2) and finally they are rendered on the screen (3).

Step One: Grid update The first step objective is to associate each
boid to a grid cell. This is necessary since at each step boids move
among them. The application downloads the texture containing the
position from the GPU and uses the values to update the internal
grid indexes and the indexes of the position list. The grid construc-
tion is done in O(m3 + n), where m is the grid dimension and n
the number of boids. After the construction, the application uploads
the updated textures back to the GPU(Algorithm 1).

Algorithm 1 Grid structure construction algorithm.

1: Pos← download positions from GPU
2: Grid← clear grid content
3: for i← 0 to n do
4: Pos[i].w ← 0
5: GridIndex← Compute cell of pos[i]
6: if Grid[GridIndex]exists then
7: Pos[i].w ← next address pos + 1
8: else
9: Grid[GridIndex]← n + 1

10: end if
11: end for
12: GPU Positions← upload Pos from CPU
13: GPU Grid← upload Grid from CPU

Step Two: Simulation The simulation step is done entirely inside
the GPU, including the search for neighbors and the calculation
of the vector for each behavior. The grid is used to estimate the
visibility for each boid (Algorithm 2).

Step Three: Rendering To render the position of each boid, we
used a static 3D model of a bird without texture. The model has
268 triangles and normals. The geometry was compiled in a display
list [Opengl et al. 2005]. Since an OpenGL display list is static,
we added a parameter to index the information of each boid in the
position array. Using this method, it is possible to render all the
static models with only one API call, reducing considerably the
overhead due to matrix calls.

4.4 Grid cell visibility

The estimative of the visibility uses three levels of tests to avoid
unnecessary processing of grid cells and individuals inside them.

Algorithm 2 Simulation algorithm.

1: GridPos← Calculate the boid grid position
2: for i← all the neighbor grid cell do
3: GridIndex← Compute cell of pos[i]
4: if i is visible then
5: for j ← all the neighbor in grid cell i do
6: if j is visible then
7: Update Cohesion,

Alignment and Separation
8: end if
9: end for

10: end if
11: end for
12: Desired force← force based on vectors
13: lerp← linear interpolation factor
14: FinalForce ← PreviousForce + (DesiredForce −

PreviousForce) ∗ lerp
15: FinalTranslation← Translation + FinalForce
16: Update axis ′y′ and ′z′

17: Store F inalTranslation, F inalForce, ′y′ and ′z′

First level: Maximum grid level

In the first test we select potential grid cells based on the max vision
distance parameter. The output is a cube of cells with the local
maximum cell count in all grid’s direction (x,y,z) according to the
Equation 2 (Figure 5a).

CellCount =

⌈
visionDistance× (GridSize− 1)

WorldGridDimention

⌉
+ 1. (2)

Figure 5: Visibility tests: a) Maximum grid range; b) Sphere-cone
test; c) Element test.

Second level: Sphere-cone test

This test filters the grid cells that are not visible using sphere-cone
collision. First we define spheres for each cell using the grid center
as the sphere center and half of cell diagonal as the sphere radius.
From the element orientation we construct a inverse rotation matrix
that puts each grid cell sphere in the element local space. The cone-
sphere test executes as a 2D test using the length of the sphere from
local Z axis.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 43

Figure 6 shows the result of each calculation. In a) we have the grid-
sphere in grid space, b) shows the sphere after the inverse transfor-
mation, c) shows the 2D test space. Notice that the scale is not im-
portant to determine the cone visibility test since the ratio between
the cone and the sphere will be the same.

Figure 6: a) The grid cell sphere in grid space; b) The grid cell
sphere in the element local space; c) The 2D space used for the
cone test.

The output of this test is a grid cell filtered accordingly the element
view (Figure 5 b).

Third level: Element test

After we know all visible cells, we iterate over all lists inside of
them and test each element against the boid field of view. As output
we have a list of the boids inside the field of view. This is the list
used in the behavior calculation (Figure 5c).

4.5 Estimating self occlusion

Note that although many individuals are inside the field of view,
not all of them would be really seen in a real situation. To estimate
the visibility we iterate over the grid cells from inside to outside.
Figure 7 shows one iteration example. As the grid becomes lighter
the layer is increased.

Figure 7: Layer iteration. As the blocks become lighter the layer is
increased.

We stop the search when the number of processed neighbors reach
the minimum visibility density or the maximum vision range is ex-
ceeded. In Figure 8, the minimum visibility density of four neigh-
bors is reached before the maximum vision range and there are
many neighbors discarded from the processing.

Grid size influence and estimation errors

Since the number of boids is only an estimative of the real occlu-
sion, sometimes we may not consider boids that otherwise would
be included in the behavior computation. This situation is depicted
in Figure 9. This may change the behavior of the flock, specially if
the number of boids being simulated is small.

Figure 8: Using visibility to cull boids.

Figure 9: Problem when the neighbors do not occlude another vis-
ible neighbor.

Another important issue regarding the simulation is the grid den-
sity (elements per grid cell). When it uses on fixed number, if the
density is too low the algorithm will discard a lot of empty cells
and if the density is too high the algorithm will iterate over a lot of
elements even if the most part of them are not visible.

We try to create a grid with a more uniform distribution by chang-
ing the size of the grid along the number of boids being simulated.
The size of the grid is given by Equation 3, that considers the total
number of boids and the desired density.

gridSize =

⌈
3

√
TotalBoids

DesiredDensity

⌉
+ 1.

5 Results and Discussion

We performed a series of experiments in order to determine the
effectiveness of the occlusion algorithm. The tests were executed
in a PC with the following configuration:

• Processor: Athlon64x2 4200+

• Memory: 2Gb DDR1 - 400 Mhz

• Graphics Processor: GeForce8800GT - 512Mb DDR3 -
PCI-e 16x

The shaders were written in Cg[Mark et al. 2003] and the applica-
tion in C++.

We measured the time spent in the three steps described before. In
the first step, we also measured the time spent transferring textures
to and from the GPU and the time spent in grid construction. All
times are in milliseconds.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 44

We evaluated the influence of visibility estimation on rendering
time. The number of boids changed from 256 to 207936 and the
grid size changed according to the Equation 3. The vision angle
was fixed in 45 degrees and the vision distance in 100 units. Our
virtual environment extends from -500 to 500 units in the three axis.
The model used for each boid has 268 triangles. Data was collected
over a range of 45 different population sizes. The time for each one
was obtained as the average of 30 frames.

The grid was an important factor for reducing the complexity of
neighbor search in the algorithm, which would otherwise be O(n2)
where n is the number of the boids.

Figure 10 shows the processing times of the different operations in
each simulation step. Notice that only the grid construct time does
not exhibit a linear increase. Since the grid construction needs to
clear the entire grid in main memory, and the grid increases accord-
ing the Equation 3, the total time increases accordingly to the grid
storage complexity (O(n3)).

Figure 10: Time to download, grid construction, upload and render
in milliseconds.

The upload time would have the same behavior, since it uploads the
contents of the grid to the GPU, however it remains below all the
other times as the number of boids increases. The render time and
download time increases linearly with the number of boids. The
grid construction time very low compared to the render time.

The simulation time is shown separately in Figure 11 because it is
the only metric affected by the visibility estimation algorithm. No-
tice that the time near 70k and 192k boids increases abruptly, prob-
ably because these values affects some GPU internals, like cache.
As expected, the simulation with visibility estimation consume less
time than the algorithm without it.

The steep jumps on Figure 11 are similar to the ones observed
on the NV4X Nvidia GPU architecture when resolving dynamic
branches [Harris and Buck 2005]. However we are not sure if this
also applies to the newer Tesla architecture (G8X, G9X). More tests
would be required to settle down this point.

Figure 11: Simulation time in milliseconds with and without the
visibility estimation.

To evaluate the time improvement of our approach, we computed
the ratio (speedup) between the time taken by our implementation
of Reynolds algorithm divided by the time taken by same algorithm
with visibility estimation. Figure 12 shows the speedup obtained
for an increasing number of boids. Notice that for few boids the
speed up is smaller than 1, but for 10k boids or more, the speed up
increases in almost a constant rate.

Figure 12: Simulation with visibility speedup.

When simulating boids, the expected result is a believable group
simulation. However, after we turned on the visibility estimation,
the simulation diverged from the behavior of the Reynolds origi-
nal algorithm. This was expected since we change the dynamical
parameters of the system. However very similar results were ob-
tained by adjusting the steering constants. With the new parameters
we could achieve a reasonable simulation with an speedup of more
than 3 times of update rate. Since most crowd models usually re-
quire a lot of tweaking we do not see this as a real concern.

Figure 13 shows one example of a simulation with 20164 boids.

Figure 13: Simulation example of 20164 boids.

6 Conclusion and Future Work

We presented a mapping of a behavioral model to run in a GPU and
proposed one extension to optimize the neighbor search by using
a visibility estimation. The experimental results showed that this
technique can be very effective in reducing the total complexity
of crowd simulation. Some of the future extensions for this work
include:

• Evaluate other types of occlusion estimation.

• Optimization of the linked list structure for cache access.

• Use a 2D texture for encoding the grid structure instead of a
3D

• Evaluate other spatial subdivision structures

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 45

• Include environment obstacle avoidance.

References

CHIARA, R. D., ERRA, U., SCARANO, V., AND TATAFIORE, M.
2004. Massive simulation using gpu of a distributed behavioral
model of a flock with obstacle avoidance. In VMV, 233–240.

COHEN-OR, D., CHRYSANTHOU, Y., AND SILVA, C. 2000. A
survey of visibility for walkthrough applications. Proc. of EU-
ROGRAPHICS’00, course notes.

COURTY, N., AND MUSSE, S. R. 2005. Simulation of large crowds
in emergency situations including gaseous phenomena. In CGI
’05: Proceedings of the Computer Graphics International 2005,
IEEE Computer Society, Washington, DC, USA, 206–212.

DRONE, S. 2007. Real-time particle systems on the gpu in dy-
namic environments. In SIGGRAPH ’07: ACM SIGGRAPH
2007 courses, ACM, New York, NY, USA, 80–96.

HARRIS, M., AND BUCK, I. 2005. GPU Gems 2 - Program-
ming Techniques for High-Performance Graphics and General-
Purpose Computation. Addison Wesley, ch. GPU Flow-Control
Idioms, 547–555.

KLOSOWSKI, J. T., AND SILVA, C. T. 2000. The prioritized-
layered projection algorithm for visible set estimation. IEEE
Transactions on Visualization and Computer Graphics 6, 2, 108–
123.

KOLB, A., LATTA, L., AND REZK-SALAMA, C. 2004. Hardware-
based simulation and collision detection for large particle
systems. In HWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
ACM, New York, NY, USA, 123–131.

MARK, W. R., GLANVILLE, R. S., AKELEY, K., AND KILGARD,
M. J. 2003. Cg: a system for programming graphics hardware
in a c-like language. In SIGGRAPH ’03: ACM SIGGRAPH 2003
Papers, ACM Press, New York, NY, USA, 896–907.

OPENGL, SHREINER, D., WOO, M., NEIDER, J., AND DAVIS, T.
2005. OpenGL(R) Programming Guide : The Official Guide to
Learning OpenGL(R), Version 2 (5th Edition). Addison-Wesley
Professional, August.

OWENS, J. D., LUEBKE, D., GOVINDARAJU, N., HARRIS, M.,
KRGER, J., LEFOHN, A. E., AND PURCELL, T. J. 2007. A
survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26, 1, 80–113.

QUINN, M. J., METOYER, R., AND HUNTER-ZAWORSKI, K.
2003. Parallel implementation of the social forces model. In
in Proceedings of the Second International Conference in Pedes-
trian and Evacuation Dynamics, 63–74.

REEVES, W. T. 1983. Particle systems—a technique for modeling
a class of fuzzy objects. ACM Trans. Graph. 2, 2, 91–108.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. Proceedings of the 14th Annual Conference
on Computer Graphics and interactive Techniques, 25–34.

REYNOLDS, C. 1999. Steering behaviors for autonomous char-
acters. In Proceedings of Game Developers Conference 1999,
Miller Freeman Game Group, San Francisco, California, 763–
782.

REYNOLDS, C. 2006. Big fast crowds on ps3. In sandbox
’06: Proceedings of the 2006 ACM SIGGRAPH symposium on
Videogames, ACM, New York, NY, USA, 113–121.

SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous
pedestrians. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
ACM, New York, NY, USA, 19–28.

SILLION, F. X. 1995. A unified hierarchical algorithm for global
illumination with scattering volumes and object clusters. IEEE

Transactions on Visualization and Computer Graphics 1, 3, 240–
254.

TREUILLE, A., COOPER, S., AND POPOVIĆ, Z. 2006. Continuum
crowds. ACM Trans. Graph. 25, 3, 1160–1168.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 46

P2PSE - A Peer-to-Peer Support for Multiplayer Games
Felipe J. Vilanova, Carlos Eduardo B. Bezerra , Marcos R. Crippa, Fábio R. Cecin, Cláudio F. R. Geyer

Universidade Federal do Rio Grande do Sul
Bento Gonçalves, 9500
Porto Alegre, RS, Brazil

+55 (51) 3316 0000

Abstract

The successful commercial MMOGs, at the moment, are imple-
mented using some variant of the client-server model. This model
offers simple design, good security and fast detection and treatment
of cheating. However, it lacks scalability. The cost of maintaining
the server becomes excessive with the increased number of cus-
tomers. One approach to deal with this situation is distributing the
MMOG simulation. The changes in the virtual world of the game
would be processed by the machines of the clients, without inter-
ference from the server. This distribution can be achieved using the
peer-to-peer model. In this paper, we describe a network engine,
called P2PSE, which supports partially decentralized MMOGs, en-
suring scalability and flexibility, while guaranteeing the basic prop-
erties of a client-server model, such as security and consistency. We
first examine more closely the existing distributed models. After
that, we discuss the P2PSE project and its characteristics. Finally
we present a simulation of the architecture in comparison with the
traditional client-server model.

Keywords: Peer-to-peer, Descentralization, Scalability, Multi-
player Games, Hybrid Topologies, Instanced Game, Distributed
Systems

Author’s Contact:

{fjvilanova, carlos.bezerra, mrcrippa, fcecin, geyer}@inf.ufrgs.br

1 Introduction

Multiplayer is a very popular game genre, due to its highly inter-
active nature. Among those games, MMOGs (Massively Multi-
player Online Games) are becoming increasingly popular. MMOGs
are real-time multiplayer games played through the Internet, where
a large number of players (usually thousands) play within a
persistent-state virtual world. Successful examples include Ev-
erQuest [Sony Entertainment 1999] and World of Warcraft [Bliz-
zard Entertainment 2004].

The most common network model used in MMOGs is client-server.
In this model, the client only sends its data to the server (which can
operate on a single machine, a cluster or a grid) and receives fre-
quent updates from the server. The server process all the data from
the clients, and broadcasts all the results that occur on the virtual
world back to them. Some advantages of this model are: being
simple in design; cheating can be efficiently detected and stopped;
retaining control over access to the game; and being a predictable
model.

The main disadvantage of the client-server model is the lack of scal-
ability. The cost of maintaining the server-side becomes excessive
with the increase in the number of clients. When it comes to com-
mercial games, the usual approach is to continuously expand the
number of machines on the server-side. That is a reasonable solu-
tion, however it is not suitable for projects on a limited budget such
as those from small companies or research groups.

One way of dealing with the above problem is to fully or partially
distribute the MMOG simulation. All the changes on the game
world would be registered and dealt within the client-side, with
no interference of the server-side. Security and world state con-
sistence are issues on that model, because there isn’t a point where
the changes in the virtual world can be evaluated and considered
legal or illegal. The main challenge of our project is thus to provide

a partially decentralized support model for MMOGs, while retain-
ing the basic properties of the client-server model such as security,
consistency and scalability [Schiele et al. 2007].

In this paper a hybrid model is proposed, combining the security
and consistency of the client-server model with the scalability and
flexibility of the distributed model. In sections 2 and 3 we discuss
the client-server and peer-to-peer models. The P2PSE (acronym
in portuguese for “P2P for Entertainment Software”) architecture
is explained in section 4. Section 5 presents the simulations we
made to compare client-server and peer-to-peer models. Section 6
presents conclusions on the topic.

2 Client-server model

The client-server paradigm is undoubtedly the most used one in the
implementation of Internet real-time multiplayer games. Commer-
cial examples of these games include Doom [id Software 1993],
Quake [id Software 1996] and Counter-Strike [Valve 2000], all of
them 3D real time action games. In any client-server game, mas-
sively multiplayer or not, the players interact with the environment
and with other players through a client program. Each client has a
network connection only with the server. The server is responsible
for receiving the information from each client and passing updates
to the other clients. There are several different ways the commu-
nication protocol between the client and the server can be imple-
mented: some of them provide more security, while others provide
efficiency.

Regardless of the technique used, the server is responsible for keep-
ing the game state up-to-date. Since the game is a real time sim-
ulation, it is necessary for the state of the game to be frequently
recalculated. In general, the server is configured to update its state
in a fixed and relatively small frequency, and to periodically send
update messages to all clients. Due to that, the server must have
great processing power (CPU and, indirectly, memory) and enough
bandwidth (network).

A distributed game can use the centralized simulation to accom-
modate thousands of simultaneous clients. In practice, however, it
can be difficult to have all the processing power required to per-
form the simulation in real time in a single machine. One solution
to this problem, commonly used in commercial MMOGs such as
EverQuest and PlanetSide [Sony Entertainment 2003], is to divide
the virtual world and simulate each piece of it on an individual ma-
chine such as a particular computer in a cluster. But even using the
clusters to mitigate the problem of the server processing cost, the
problem of network consumption still remains. The MMOG server,
a single machine or a cluster, will need an Internet connection with
low latency and very high bandwidth.

3 Peer-to-peer model

There is a growing interest in research and development of peer-to-
peer architectures for MMOGs. The proposed models seek decen-
tralization as a way of increasing scalability and reducing depen-
dency on nodes in trusted areas. Other benefits include the elimi-
nation of central points of failure, as well as the increase of respon-
siveness.

The Communications Architecture for Massive Multiplayer Games,
proposed by [Fiedler et al. 2002], was the first architecture to ad-
dress the scalability problem by proposing a solution based on the
publisher-subscriber paradigm. In this paradigm, the virtual world
is divided into smaller pieces, usually called “cells”, and each par-

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 47

ticipant can choose to sign (or participate) in only a few cells. Thus,
each subscriber of a cell only needs to exchange update messages
with subscribers of the same cell. These architectures also deal with
other fundamental problems, such as the lack of responsiveness to
commands generated by each participant problem.

There are other proposals that do not address the cheating prob-
lem, such as Hydra [Chan et al. 2007], that focuses on guaranteeing
the consistency in the messages committed when nodes fail; and
Mediator [Fan et al. 2007], which addresses the scalability and per-
formance problems by proposing a solution based on a super-peer
network and a reward scheme: peers that contribute more can use
more resources.

It can be noted that recent proposals for MMOG support based on
peer-to-peer overlays are becoming more aware of issues in actually
deploying a peer-to-peer MMOG on the Internet, as they show more
concern about peer-to-peer problems, like hostile service providers
and bandwidth limitations, for instance. There are many pure peer-
to-peer and hybrid model proposals. However, some of these pro-
posals don’t offer any kind of deterrent mechanism against cheating
players, which is an essential feature for implementing an online
massively distributed and persistent-state game. In the next sec-
tion we will show how our model offers scalability and also cheat-
resistance so that its commercial application is viable.

4 P2PSE project

The P2PSE project is a distributed simulation model, and also a
library (in reality, a stack of C/C++ libraries) that implements the
instanced game model, which will be described in section 4.1. The
instanced game model is the price to pay for a simple approach
in unifying security, consistency and scalability in a decentralized
MMOG. The objective is to drastically reduce the processing and
communication cost in the server-side.

4.1 The Instanced Game Model

Several MMOGs, like PlanetSide and World of Warcraft, offer to
the player the illusion of one or several large and contiguous virtual
spaces where all the gaming takes place. Those spaces are divided
in segments, and each server machine or group of server machines
is responsible for one segment. A warping system is necessary to tie
all segments together, allowing the player to move from one space
to the other transparently.

Figure 1: The instanced ‘social vs. action’ MMOG

The game Guild Wars introduced a new game model, which will
be referenced to as the instanced game model [Cecin et al. 2006].
There are two virtual spaces on Guild Wars: the social space and the
action space. The first kind is a medium-sized virtual space where
a significant number of players can socialize, trade virtual goods
and organize game sessions. Because of the nature of this space,
low consistency requirements are necessary. Game sessions happen

on the action space, which is a small-sized virtual space where a
small number of players gather to play a game session. Higher
consistency requirements are necessary on that space because of its
fast and dynamic nature.

The relationship between the two spaces is as follows. When a
game session ends, the players involved in it return to the social
space. All the traits of the characters (e.g. virtual world money,
experience points and statistics) are updated with new information
from the session. The social space is designed as a contiguous
world, as mentioned in the beginning of this section. The action
spaces are created dynamically to support temporary game sessions
with a small number of players. This space is destroyed after the
session ends.

Guild Wars follows the client-server model. Our proposal, which
is illustrated in Figure 1, is to use the instanced game model with
a hybrid network architecture model. Since the interactions on the
social space (chatting, trading) don’t require high consistency, and
there is a necessity for validation of who can play (game accounts,
passwords), the server-side will be responsible for coordinating this
part of the game. So even a server-side with modest processing
capacity and network bandwidth could manage the social space
if game quality is scaled down accordingly, for instance by send-
ing less frequent updates to clients. The game sessions would be
processed only on the client-side machines, avoiding unnecessary
processing and communication cost on the server-side. The clients
would form groups, which would operate within a peer-to-peer dy-
namics.

4.2 P2PSE architecture

Game

AI

ModuleSynchronizing Events

Support for Multiple Servers

Layer 2

Connections

Groups

Layer 0
NAT/Firewall

bandwidth control

Layer 1

Security Module ZIG
low−level networking

Figure 2: P2PSE Architecture

The functionality promised by our network engine is delivered by
a set of libraries. Those libraries are organized in layers, as shown
in Figure 2. The next sections describe the implementation of the
three layers, followed by an overview of security and artificial in-
telligence (AI) techniques which are employed.

4.2.1 Layer 0

The first layer in the P2PSE architecture is responsible for forming
the mesh of point-to-point connections. The clients’ connections
to the servers and to other clients are established and managed in
this layer. The basic network functions for connection establish-
ment, such as socket creation, connection and packet sending and
receiving, are given by a low-level API provided by the ZIG library
[Cecin 2007] which basically implements a protocol that resem-
bles SCTP [Stewart et al. 2000] over UDP. The term “connection”,
when used in the context of the P2PSE library, refers to this ZIG-
layer level protocol connection, which, again, is implemented over
UDP, adding some features, such as reliability, timeout detection
and utilization of only one single socket in every host to handle all
communications.

The Layer 0 server is responsible for managing connections with all
clients. Naturally, it maintains a list of all clients that are connected

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 48

to it along with a logical communication endpoint object for each
client. When started, the server spawns a socialization space called
the social space object. The clients that are not in an action space
are bound to the social space - or to the “limbo”, when in transit
from one space to the other. All communication between clients
that are in the social space passes through the server.

The server can create new empty groups in order to instantiate new
action spaces, or destroy existing groups and their corresponding
spaces. In the action spaces all the clients communicate directly,
which requires them to already have the ability to send UDP packets
to one another. The entry of a client into a group is managed by the
server in the following manner:

1. The server sends a synchronization message to the new mem-
ber and to all the other members informing them to which
clients they must be connected in order to enter (or stay) in
the group. The server sends a list with all the members of the
group;

2. All members try then to establish connections to every other
member in the recently received member list, or just keep the
connection, if it has already been established (the ZIG library
supports simultaneous bidirectional connections through the
same socket);

3. When a client is entering a group, but still has not finished the
process, it belongs to the “limbo”;

4. As soon as the new member establishes connections to the
other clients, the server excludes it from the limbo and inserts
it in the member list of the group;

5. When a client is removed from the group, all of its connec-
tions to the other clients are interrupted and it returns to the
social space;

6. If a client, for any reason, loses its connection to the server, it
is removed from the group;

7. When a client enters or leaves a group, the server sends an
up-to-date member list to the others.

The groups provide to the clients message exchanging function-
alities, such as broadcast and unicast. The connections between
the group members are represented by peers. The clients, when in
groups, will keep a list of peers, what is equivalent to the client list
of the server. With this list, the clients in that group manage their
connections between one another.

Layer 0 is also responsible for the timeout control of the connec-
tions. Keep-alive dummy messages are sent regularly in order to
maintain all connections active. If, after an interval of time speci-
fied by the application, no messages from a host have arrived, the
connection to that host is closed.

The communication between the layer 0 and the ZIG library is done
with a listener. This listener is implemented in layer 0 and receives
ZIG callbacks to indicate the occurrence of events such as connec-
tions, disconnections and receiving of messages. The communica-
tion between the upper layers of the P2PSE library and layer 0 is
made through service calls. Layer 0 returns callbacks to the upper
layers in response to these service calls.

4.2.2 Layer 1

Layer 1 of the P2PSE architecture is responsible for handling
connection-related problems between the peers within a group.
This layer will ensure that all peers are able to send and receive
messages from each other.

We see two main problems that can cause a connection failure be-
tween two peers: NAT/Firewall blocking and bandwidth insuffi-
ciency. When the Layer 0 indicates that a message must be sent
from one peer to another, Layer 1 must verify if there is a direct
connection between the peers. If this connection doesn’t exist, an
alternative path must be discovered, using intermediate peers. After
this route is created, the messages will be sent through it.

Among all peers within a group there are different bandwidth ca-
pabilities. It is very likely to occur a situation where a peer doesn’t
have enough upload bandwidth to deal with the number of mes-
sages that it has to send. Layer 1 will identify such situation and,
instead of sending the messages directly to the destinations, send
them to a peer with good upload bandwidth capability, holding him
responsible to send the message.

4.2.3 Layer 2

The upper layer of the P2PSE implementation is responsible for
guaranteeing the simulation consistency on action spaces, provid-
ing support for multiple servers and exposing all of the implemen-
tation’s functions to the game programmer. Due to the simulation
of action spaces being executed asynchronously in each peer, there
is no intrinsic guarantee of consistency. To partially address that,
Layer 2 introduces the role of the super-peer, which is a special peer
responsible for receiving, ordering and redistributing some of the
game events such as updating player scores and picking up the flag
in a capture-the-flag action game, for instance. To avoid overload-
ing the super-peer, position updates or player movement requests
(depending on the game’s protocol design) are to be sent directly
from each peer to every other peer using the unicast full-mesh pro-
vided by the lower layers. Not only position updates, but any other
frequent, delay-sensitive and weakly-coupled message type should
also be sent peer-to-peer.

Depending on the game, the resulting conflicts from a lack of cen-
tralized timestamping of movement and similar events, whenever
they ensue, can be either handled by each peer individually or left
for the super-peer to detect it and issue a special correction message
later, as the BZFlag protocol does [Pellegrino and Dovrolis 2003].
Local corrections are an option if each peer is authoritative over its
own avatar’s position and if it broadcasts position updates for its
own avatar. For instance, if a peer’s local avatar overlaps with a
remote peer’s, the local avatar can push its own avatar out of that
position. The remote avatar will do the same. The only issue is en-
suring that the correction step won’t make both peers try to resolve
the situation by unstucking their avatars to the same spot again.
This local conflict resolution is what we are currently employing in
our capture-the-flag action prototype, Hoverkill [Singular Studios
2006].

Besides ordering and distributing some of the events, the super-
peer is responsible for the communication of the peer-to-peer ac-
tion group with the server. The super-peer is the one that reports
gameplay results back to the server, whenever necessary.

Layer 2 also introduces support for multiple game servers (Figure
3) in the API. The idea is that players can choose their server from
a list of servers. Each server will typically host a single social space
and when that is full (server capacity is reached) players can con-
nect to other social spaces in other servers. To tie all of the players
scattered on different servers together, there is a master server to
which all servers are connected. Whenever a player connects to
a server and authenticates, his player account is downloaded from
the master server to that game server. When the client drops from
the game server, his account is uploaded back to the master server.
There is a simple Yellow Pages Server proxy that can be used by
clients to query the master server for the currently available game
servers.

The social space support provided by Layer 2 is a simple client-
server API. Any interest management [Morse et al. 1996] in the
social space is currently left for the application to implement. We
are planning to add something akin to OpenTNL ghosting [Garage
Games 2004] into the API which would allow the game program-
mers to optimize the social space more easily. Another idea is to
implement a peer-to-peer mesh for social spaces, but that one would
have to be scalable (no full-mesh possible). Since we are aiming at
a simple solution, the use of probabilistic broadcast for position up-
dates on the social space is being considered, leaving timestamping
and distribution of more infrequent events for the server.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 49

Servers

DB

Master Server

Yellowpages

Clients

Figure 3: Multiple Servers Support

4.2.4 Artificial Intelligence Module

In the previous section, we revealed that we encourage peers in an
action space to send authoritative position updates, among other
events that might have low-latency requirements and a low proba-
bility of having their order of execution affecting the resulting game
states too much (weakly-consistent events). This opens up the pos-
sibility of cheating.

In this project we tried a somewhat unique approach [Gaspareto
et al. 2008]. Since most events would be still centralized at the
super-peer and most action games have one-per-client avatar po-
sition updates as their latency, consistency and bandwidth bottle-
necks, we just left peers with total control over their positions and
with the responsibility for sending them directly to other peers in a
broadcast fashion. This optimizes for consistency and latency, and
doesn’t create a bandwidth bottleneck at the super-peer. On top of
that, we tried AI-based detection of unusual patterns over streams
of position updates coming from each peer. The approach used for
cheat detection was focused on the data packets being transferred
during the game sessions - both in the transmitters and receptors -
and how they are used during the functioning of the system. Only
packets relevant to the cheat being investigated are considered.

The cheat detection module is implemented in an independent way
and works as an attachment to P2PSE, which, with a parameter
passage protocol, informs the set of data received from a player
and returns a correspondent “fraud index”, that tries to quantify the
cheating that the player is assumed to have performed in the ana-
lyzed period.

The adopted approach was to consider only movement data as in-
put to the cheat detection module. Although this might seem to be
too few information, it is based on movement that malicious play-
ers perform great part of their cheating. For example, one could
try to move at a speed higher than the maximum speed allowed in
the game (most common kind of cheating in MMOGs) or teleport
instantaneously to strategic spots, which is also known as speed-
cheating.

This way, the point is to analyze a set of movements of the player,
in order to detect anomalous sequences. Each player will be eval-
uated individually, based on his position history, using Artificial
Neural Networks (ANN). ANNs, because of their great generaliza-
tion and pattern recognition capacity, present satisfactory results in
tasks similar to the speed-cheating problem. The idea is to iden-
tify, in the set of analyzed data, at least one movement that could be
considered a fraud, which characterizes the player where this set of
data came from as a cheater. The ANN then identifies and classifies
the movement patterns as acceptable and non-acceptable.

During the modeling and design of the cheat detection module, the
architectures of the ANNs, the set of training data and the set of
tests have been defined in order to allows them to solve this kind of
problem. Considering that the task consists of the classification of

behavior patterns, it has been decided to use the full-connected mul-
tilayer perceptron ANN with supervised learning based on back-
propagation. The reason to choose it was that it is the most com-
monly used ANN model in many classification applications, due to
it simplicity of understanding and implementation.

The projected ANN was simulated using MatLab, to evaluate its
efficiency. MatLab allows the creation of complex ANN structures
only by informing the neural network parameters, such as the num-
ber of neurons in each layer, training algorithm, rates, values that
configure this training etc. MatLab was also used to train the ANN
to be integrated to the game. This way, the implemented module
only performs propagation, but not training of the ANN.

After the efficiency has been proven, the module was implemented
and tested in Hoverkill, obtaining a 21.14% cheat detection, and
0.98% false positives. The results were satisfactory because, even
though the cheat detection percentage was only 21.14%, the rate
of false positives was less than 1%. It is preferable not to detect a
cheat than considering a fair player as a cheater. Other parameters,
besides movement data, may be added in the future, in order to
detect other kinds of cheating.

4.2.5 Security Module

The main purpose of the security module is to provide secure com-
munication between servers and clients, and between peers in an ac-
tion space group. Our security module is almost completely trans-
parent to the application, both in terms of API and in network and
CPU overhead. The module does many tasks behind the scenes,
such as cryptographic key distribution and secure channel hand-
shakes, tending to each application’s individual needs for message
confidentiality, integrity and authenticity.

The implementation works mainly by intercepting any engine UDP
packets before they are written to the UDP socket for sending. In
each packet, a small header is inserted with control information and,
upon first contact between two parties (being them clients, servers
or both), that message is delayed while another quick message ex-
change is performed for setting up the secure channel on-the-fly.
The root Certificate Authority (CA) of the cryptographic system is
the operator of the master server.

ZIG−Sec
SECP2PSE

Nettle Cyo EncodeHawkNL

Figure 4: Security module architecture

The module has been implemented by extending the ZIG library
functionalities, providing secure communication, transparently to
the application, being responsible for distributing cryptogaphic
keys. It runs over HawkNL [Hawk Software 2006] and over
SECP2PSE. HawkNL is a library that, among other functionali-
ties, provides a simpler and portable API for sockets. SECP2PSE is
our library that provides C++ abstractions for cryptographic algo-
rithms available in Nettle [Möller 2006] and CyoEncode [CyoTec
2004]. SECP2PSE also implements certification and serialization
functionalities meant for security related transmissions. Figure 4
illustrates the security module architecture.

In our secure communication protocol, all ZIG-generated packets
sent, both by clients and by servers, are intercepted right before
being transmitted through the network. In each one of them, a
small header is introduced with control information used to guar-
antee confidentiality, integrity and authenticity of data when such
attributes are required. The size of this header is variable, for it de-
pends on what characteristics are desired by the application, and on
the intended level of security (key length). For a real-time applica-
tion, such as distributed games, usually there is no need for a very
long key, because the hacker would have too little time to break
the algorithm by brute force. For example, using AES and HMAC-
MD5, it would be necessary only 21 bytes. In general, the overhead

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 50

size of each packet is somewhere between 1 and 37 bytes. These
packets containing user data and control header are then called data
packets.

There is also another type of packet, called control packet, which
is utilized to negotiate keys between peers who intend to commu-
nicate with each other. They are usually longer, for they need to
attach a copy of the users certificates. However, these packets are
sent only once in the beginning of the communication with a peer
which has been unknown until that moment. Once they have ne-
gotiated a key, they only need to negotiate a new one when one of
the peers loses it or if the key is already being used for a time long
enough for the key to become breakable by brute force.

not used
... 1 0567

H
M
A
C
−S

H
A
−2

56
A
ES

re
qu

ir
es

 c
er

tif
ic
at

e

ke
y

at
ta

ch
ed

ce
rt
ifi

ca
te

 a
tt
ac

he
d

Figure 5: Control header

The control header consists of the packet descriptor (1 byte). As
shown in Figure 5, the bit 0 indicates whether the data are protected
by HMAC-SHA-256. The bit 1 indicates whether the data are en-
crypted with AES. Bit 5 indicates that the message source needs the
destination host certificate. Bit 6 indicates that a key has been gen-
erated and attached to the packet in control data and bit 7 indicates
that the certificate of the origin has been attached to the packet in
control data. Bits 2, 3 and 4 are not used.

When the application requires the secure transmission of a packet to
the security library, it must inform: data being transmitted, socket
used for sending, address and port of the destination, type of desired
security (confidentiality, authenticity and integrity) and the identi-
fication of the user which will receive the message at the provided
address.

To guarantee confidentiality of the messages, it can be used both
symmetric and asymmetric cryptographic algorithms. Both are
considered secure, depending on the length of the key used. The
secure communication protocol adopts the strategy of initially us-
ing an asymmetric cryptography algorithm to negotiate a key to
be used then by each pair of computers to communicate securely
with symmetric cryptography. This approach allows to reduce the
processing time of encrypting and decrypting data, for symmetric
cryptography requires less CPU time. Along with the confidential-
ity provided by this mechanism, authenticity may also be achieved
by using hash functions with keys, also known as Message Authen-
tication Code (MAC), to verify the authenticity and integrity of the
messages.

Every time that a peer needs to communicate with another which
was unknown until that time, they first need to negotiate a key.
Therefore, before sending the data packet required by the appli-
cation, the library sends a requisition for the certificate of the desti-
nation through a control packet, which already carries the source’s
own certificate. When the packet arrives in the destination peer,
the security library reads the attached certificate and verifies its au-
thenticity with the specified certification authority responsible for
the game. If the verification fails, the packet is discarded. If it
succeeds, the process continues: the peer who received the packet
allocates a reply packet, where it attaches its own certificate, as re-
quired, and a randomly generated key, which is encrypted using
the public key present in the certificate of the peer that initiated the
whole process. This way, it can be assured that only the receiver
of this reply packet will be able to decrypt it and then obtain the
key. To guarantee that the sender of this packet is not an attacker
who intercepted the communication, the already encrypted key is
re-encrypted, this time with the private key of the sender. This way,
both authenticity and integrity are provided.

After receiving the reply packet containing the double-encrypted
key, the first peer decrypts it using the public key of the other peer,

verifying the authenticity of the message, and then decrypts it again,
using its own private key. When this whole process is successfully
completed, the peers will be able to securely communicate with a
fast symmetric cryptographic algorithm using the generated key.

5 Simulations

Since one of the main objectives of the P2PSE engine is to reduce
the bandwidth utilization by the server, a numerical comparison be-
tween the load on a traditional server and the load on a P2PSE
server was required. In order to do that, it was necessary to sim-
ulate two game servers, each one with players connected to it. One
of them was a traditional game server, to which the clients kept
connected and trading packets the whole time. The other one was
a P2PSE server, where the players needed to trade packets with the
server only while they were in the social space. In the action space,
the players formed a peer-to-peer group, communicating to one an-
other directly.

The ns-2 simulator [McCanne et al. 1995] was used to create the
simulated environment and perform the simulation itself. The
servers and clients - both traditional and P2PSE - were programmed
extending the Application base class of the ns-2 API. The P2PSE
clients connect to the P2PSE server, sending packets to it at a fixed
rate while in the social space. The server, in turn, sends to each
client in the social space an update containing information about
all other clients in the same space. When a player leaves the so-
cial space and joins a peer-to-peer group of an action space, it stops
exchanging packets with the server, due to its direct communica-
tion with the other players. The non-P2PSE server and clients be-
have simply as follows: each client sends a packet to the server
at a given fixed rate, while the server broadcasts an update to all
clients, also at a fixed rate. Although this approach does not take
into consideration possible optimizations on the server, such as in-
terest management [Morse et al. 1996], this is not relevant, since the
same optimizations could be used in the social space of the P2PSE
server, resulting in a similar percentage of bandwidth usage reduc-
tion, when comparing the two server models.

We based our simulation on some works, such as [Breu 2007], [Park
et al. 2005] and [Feng et al. 2005], which analyse the network traf-
fic generated by action games, since this is the genre targeted by the
P2PSE engine. As in most first-person shooters, the transport layer
protocol used was UDP. Each packet received by the server from the
clients is 100 bytes long. The update sent to each client, contain-
ing information about all the players, is proportional to the number
of players present in the game, for the traditional server. For the
P2PSE server, the update length is based only on the number of
players in the social space. In both cases, the length of this update
is 100 bytes multiplied by the number of players who will be up-
dated. The interval between two consecutive packets received from
each client is 150 ms, while the interval between two consecutive
updates from the server to each client is 100 ms. Each player keeps
alternating between the social space and the action space. The time
he stays in each one of them is chosen randomly, ranging from 0 to
20 minutes, for each space change. The whole game session lasts
for 1 hour.

The results were collected as follows: to measure the average up-
load bandwidth usage by the server, the sizes of all packets sent
during the whole session were added up and then divided by the
session time; to determine the maximum usage, it was measured
how many bytes had been sent each second and the highest value
was selected. In Figure 6, it is shown the maximum and average
upload bandwidth utilization results found for a traditional server
and a P2PSE server. In Figure 7, the download bandwidth usage is
also depicted. Table 1 and Table 2 show the numerical values of the
average bandwidth utilization found in the simulation.

As we can see, the average download bandwidth utilization is de-
creased by, approximately, one half, and the average upload band-
width utilization is reduced to one quarter. This happens because
the periods during which a client stays on the social and action
spaces have approximately the same duration. In consequence of
that, there are roughly half the clients exchanging packets with the
server for each instant, in the average. As each client sends fixed

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 51

 0

 5000

 10000

 15000

 20000

 25000

 30000

 160 120 80 40

U
pl

oa
d

ba
nd

w
id

th
 u

se
d

by
 th

e
se

rv
er

 (
ki

lo
by

te
s/

s)

Number of clients

Traditional server - maximum
Traditional server - average

P2PSE server - maximum
P2PSE server - average

Figure 6: Upload bandwidth utilization by the server

 0

 20

 40

 60

 80

 100

 120

 160 120 80 40

D
ow

nl
oa

d
ba

nd
w

id
th

 u
se

d
by

 th
e

se
rv

er
 (

ki
lo

by
te

s/
s)

Number of clients

Traditional server - maximum
Traditional server - average

P2PSE server - maximum
P2PSE server - average

Figure 7: Download bandwidth utilization by the server

size packets periodically to the server, the bandwidth occupation
grows linearly, and so, as the number of players halves, so does
the server’s download bandwidth utilization. However, as the up-
date sent by the server to each client is proportional to the number
of clients being updated, the upload bandwidth utilization by the
server grows quadratically. Therefore, when the number of players
is divided by two, the upload bandwidth utilization of the server is
divided by the square of two, that is, four.

It is important to notice, however, that the time a player usually
spends playing action games, such as first-person shooters, is much
longer than the time they keep talking in the game chat room.
Therefore, the average time spent by each player in the social space
should be much shorter than the time spent on the action spaces
in the simulation. Also, the social space will most likely have
much less need for frequent updates, allowing further decrease of
the bandwidth utilization by the P2PSE servers. Anyway, those pa-
rameters were chosen considering a pessimistic scenario, where the
social space is as interactive as the action space, and the players
spend more time socializing than it usually occurs in this kind of
games.

6 Conclusion

We proposed a different approach to MMOGs, that uses P2P groups
and transfers the simulation processing to them. In order to pro-
vide security and scalability, the game model was restricted to the
instanced game model. The existence of a server-side guarantees
that, if deemed necessary, the server can act as a final arbiter. The
performed simulations demonstrate that, even in a pessimistic sce-
nario, the reduction of the average bandwidth usage by the game
server can be significant. The download bandwidth utilization was
reduced by one half, while the upload bandwidth utilization was

Table 1: Average upload bandwidth utilization (kB/s)
Clients Traditional Server P2PSE Server

40 1562.50 400.76
80 6250.00 1581.38

120 14062.49 3533.67
160 24999.98 6290.14

Table 2: Average download bandwidth utilization (kB/s)
Clients Traditional Server P2PSE Server

40 26.04 13.02
80 52.08 26.04

120 78.12 39.00
160 104.17 52.09

the most benefited one, decreasing by 75%, allowing to reduce the
maintenance cost of such kind of server.

We are currently integrating the P2PSE architecture with our game
prototype, Hoverkill. This game is a client-server capture-the-flag
tank game, and its network system is being replaced by our archi-
tecture. The final goal is to be able to perform tests under a real
environment, in order to base our conclusions in real results rather
than simulations.

Acknowledgements

This work was supported by the Funding for Studies and Projects
(FINEP), through the P2PSE project (P2PSE-5849-1), and by the
National Research Council (CNPq). We also would like to thank
Andrius Batalauskas (Hochschule Bremen) for the final review of
the text.

References

BLIZZARD ENTERTAINMENT, 2004. World of warcraft.
http://www.worldofwarcraft.com/.

BREU, L., 2007. Online-Games: Traffic Analysis of Popular Game
Servers (Counter Strike: Source).

CECIN, F. R., GEYER, C. F. R., RABELLO, S., AND BARBOSA, J.
L. V. 2006. A peer-to-peer simulation technique for instanced
massively multiplayer games. Proceedings of the Tenth IEEE
International Symposium on Distributed Simulation and Real-
Time Applications (DS-RT’06)-Volume 00, 43–50.

CECIN, F. R., 2007. Zig game engine. http://zige.sourceforge.net/.

CHAN, L., YONG, J., BAI, J., LEONG, B., AND TAN, R. 2007.
Hydra: a massively-multiplayer peer-to-peer architecture for the
game developer. Proceedings of the 6th ACM SIGCOMM work-
shop on Network and system support for games, 37–42.

CYOTEC, 2004. CyoEncode.
http://www.cyotec.com/resources/cyoencode/.

FAN, L., TAYLOR, H., AND TRINDER, P. 2007. Mediator: a de-
sign framework for P2P MMOGs. Proceedings of the 6th ACM
SIGCOMM workshop on Network and system support for games,
43–48.

FENG, W., CHANG, F., FENG, W., AND WALPOLE, J. 2005. A
traffic characterization of popular on-line games. Networking,
IEEE/ACM Transactions on 13, 3, 488–500.

FIEDLER, S., WALLNER, M., AND WEBER, M. 2002. A com-
munication architecture for massive multiplayer games. Pro-
ceedings of the 1st workshop on Network and system support
for games, 14–22.

GARAGE GAMES, 2004. Open tnl - torque network library.
http://www.opentnl.org/.

GASPARETO, O., BARONE, D., AND SCHNEIDER, A. 2008. Neu-
ral Networks Applied to Speed Cheating Detection in Online

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 52

Computer Games. To be published in the 4 th International Con-
ference on Natural Computation (ICNC’08), Shandong Univer-
sity, Jinan, China.

HAWK SOFTWARE, 2006. Hawknl.
http://www.hawksoft.com/hawknl/.

ID SOFTWARE, 1993. Doom.
http://www.idsoftware.com/games/doom/.

ID SOFTWARE, 1996. Quake.
http://www.idsoftware.com/games/quake/.

MCCANNE, S., FLOYD, S., ET AL. 1995. Network sim-
ulator ns-2. The Vint project, available for download at
http://www.isi.edu/nsnam/ns.

MORSE, K., ET AL. 1996. Interest management in large-scale dis-
tributed simulations. Technical Report ICS-TR-96-27, University
of California, Irvine.

MÖLLER, N., 2006. Nettle. http://www.lysator.liu.se/˜nisse/nettle/.

PARK, H., KIM, T., AND KIM, S. 2005. Network Traffic Analysis
and Modeling for Games. LECTURE NOTES IN COMPUTER
SCIENCE 3828, 1056.

PELLEGRINO, J., AND DOVROLIS, C. 2003. Bandwidth require-
ment and state consistency in three multiplayer game architec-
tures. Proceedings of the 2nd workshop on Network and system
support for games, 52–59.

SCHIELE, G., SUSELBECK, R., WACKER, A., HAHNER, J.,
BECKER, C., AND WEIS, T. 2007. Requirements of Peer-to-
Peer-based Massively Multiplayer Online Gaming. Proceedings
of the Seventh IEEE International Symposium on Cluster Com-
puting and the Grid, 773–782.

SINGULAR STUDIOS, 2006. Hoverkill.
http://www.singularstudios.com/sitehoverkill/.

SONY ENTERTAINMENT, 1999. Everquest.
http://www.everquest.com/.

SONY ENTERTAINMENT, 2003. Planetside.
http://planetside.station.sony.com/.

STEWART, R., XIE, Q., MORNEAULT, K., SHARP, C.,
SCHWARZBAUER, H., TAYLOR, T., RYTINA, I., KALLA, M.,
ZHANG, L., AND PAXSON, V. 2000. Stream Control Transmis-
sion Protocol.

VALVE, 2000. Counter-strike. http://www.counter-strike.net/.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 53

A Feature Model Proposal for Computer Games Design

Victor T. Sarinho Antônio L. Apolinário*

State University of Feira de Santana, Brazil

Abstract

An increasingly important attribute of modern software
development is that of variability. Software variability
is the ability to control the software change in a
particular context. To manage the game development
variability, due to the game domain diversity, the most
successful approach was first achieved by game
engines. Nowadays, software variability can be
initially identified based on the concept of feature, a
logical unit of behavior that corresponds to a set of
functional and quality requirements in a system. This
paper presents a new way to describe a game, based on
a feature modeling. The NESI model is based on four
main features: Narrative, Entertainment, Simulation
and Interaction. The main contribution of this paper is
to propose a model to design the variability aspects of
computer games, simplifying the effort of game design
projects.
Keywords: software variability, feature modeling,
game design.

Authors’ contact:
vsarinho@gmail.com
*apolinario@ecomp.uefs.br

1. Introduction

According Svahnberg et al. [2005], “software
variability is the ability of a software system or artefact
to be efficiently extended, changed, customized or
configured for use in a particular context”.

Software variability achive many issues, “ranging
from the development process itself to the various
artifacts created during the development process, such
as requirements specifications, design documents,
source code, and executable binaries” [Svahnberg et al.
2005].

According Gurp et al. [2001], “a variability can be
initially identified based on the concept of feature”.
They define a feature as “a logical unit of behavior that
corresponds to a set of functional and quality
requirements”. Indeed, “variability management is
concerned with the management of the differences
between products throughout the Product Line
lifecycle” [Junior 2005].

In computer games, the variability is a direct
consequence of the game domain diversity, working
with simulations (sports, adventure, fighting),
hardware technologies (mobile games, web games),
human interactions (immersion, multiplayer) and
complex stories (games based on movies, RPG series)
[Kent 2001].

To manage the game development variability, the
most success approach was first achieved by Quake
game engine [Lewis 2002], a platform based product
line strategy [Bosch 2002] for game creation.

Others interesting attempts to manage the game
variability, based on SPL (Software Product Line)
concepts, were developed [Zhang and Jarzabek 2005;
Alves 2007], but only for specific games design, and
without commitment to the existing works about
computer games domain [Björk and Holopainen 2005;
Davidsson et al. 2004; Zagal et al. 2005; Furtado 2006;
Bates and Bates 2004; Rollings and Morris 2004;
Hunicke et al. 2004; Järvinen 2007; Lemay 2007].

In this way, the objective of this paper is present a
feature modeling proposal to design the variability
aspects of computer games, based on the analysis of
the main computer games domain engineering works.

This paper is organized as follows: Section 2
presents some important game domain engineering
works. Section 3 describes the feature modeling
technique used and the proposed computer game
feature model. Finally, Section 4 presents the
conclusions.

2. Related Work

How to make a computer game using existent
components? Can a set of components be integrated or
composed to produce a new computer game? What
kinds of game components should exist to build a
computer game? What features a software should
contain to be considered a computer game?
Unfortunately, there is not a direct response for these
questions, but just “hints” described by game domain
engineering works.

For Hunicke et al. [2004], the Mechanics,
Dynamics, and Aesthetics (MDA) framework
described a game as a collection of Mechanics to
compose Dynamics, and a collection of Dynamics to
compose Aesthetics characteristics of a game. It was a
interesting conception of game views, but without
resolve the gap between game design and game
development.

Björk and Holopainen [2005] described a model to
support the game design using a set of game design
patterns. It has been a good approach to describe the
components of games and its patterns of interaction,
but due to the very high level patterns description, and
the repetition of semantic concepts between them, the
gap between game design and game development
persists.

Zagal et al. [2005] proposed the Game Ontology
Project (GOP), a framework that define a hierarchy of
ontology concepts: interface, rules, goals, entities, and

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 54

entity manipulation. In fact, a good representation of
game rules was described, but more ontology concepts
are necessary to represent game design and game
development aspects.

Furtado [2006] proposed the use of a game
ontology to set game implementations. Low level game
design aspects were described, but focused on a
specific game domain, becoming insufficient to
represent the game diversity.

Järvinen [2007] presented a design methodology
with psychological theories of cognition and emotions
for game design, but with a great distance of game
implementation aspects.

Zhang and Jarzabek [2005] proposed an RPG
product line architecture (RPG-PLA), grouping
similarities and differences among four RPGs
(probably the first use of features on game design). As
result, a specific RPG feature model, and insufficient
solution to represent the game diversity, was described.

The works described above are focused on generic
game domain descriptions and specific game project
implementations. Therefore, the definition of an
intermediate modeling technique, covering domain and
design game aspects, reducing the gap between them,
to describe and analyze generic game components and
concepts, is necessary.

3. Computer Game Feature Model

Next subsections will present the used feature
modeling technique (section 3.1), and the proposed
feature models (sections 3.2, 3.3, 3.4, 3.5 and 3.6) to
design computer game variability aspects.

3.1 Feature Modeling

The feature model concept was first introduced by
Kang et al [1990], in the Feature Oriented Domain
Analysis (FODA) method, to help the identification of
important or domain special properties during analysis
phase.

According Antkiewicz and Czarnecki [2004], a
feature is “a system property that is relevant to some
stakeholder”, and is “used to capture commonalities or
discriminate among desired products”.

A feature model consists of one or more feature
diagrams. These diagrams organize features into

hierarchies, as a decorated tree, containing features
identified in a system.

Others notations have been proposed to expand the
feature model representativeness and to provide
support to different types of structural relationships.
For example, Czarnecki and Eisenecker [2000] uses
XOR and OR relationships to represent alternative and
mutually exclusive features, and Czarnecki et al.
[2005] proposes a feature cardinality-based notation.

This paper will use both feature notations to
represent the feature model proposal for computer
games design.

3.2 A Feature Model for Computer Games

The basis of NESI model is to define a game as a
combination of four main standard features: Narrative,
Entertainment, Simulation and Interaction, which was
called NESI model (Figure 1).

The NESI model was based on the game conceptual
definitions proposed by Esposito [2005], where a
definition of videogame, combining existing researchs
about game, play, interactivity, and narrative concepts,
was described.

The structure of the NESI model was derived from
the analysis of different domain engineering [Björk and
Holopainen 2005; Davidsson et al. 2004; Zagal et al.
2005; Furtado 2006; Bates and Bates 2004; Rollings
and Morris 2004; Hunicke et al. 2004; Järvinen 2007;
Lemay 2007] and implementation works [Zhang and
Jarzabek 2005; Alves 2007; Trinta 2007] of computer
games.

A Narrative is a Flow, a dynamic script trying to
achive Goals following some defined game Rules.
Entertainment is represented by the player Immersion
during the game, accompanied by a Theme proposal, to
characterize the player and the game in the proposed
reality. Simulation is a combination of Elements
(resources for play) and their Relationships, that occurs
in a defined Environment (spaces to play). The human
Interaction is represented by the Control (game input)
and the Presentation (game output) features,
consolidated by the GamePlay feature that manages the
game state and execution as a whole.

To illustrate the proposed model, just imagine a
Chess game. Chess is a Narrative, trying to execute
some steps in a Flow (prepare the game, start the game,
wait for player movement), according defined Rules

Figure 1: NESI model for computer games representation.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 55

(types of movement) to complete these Goals (take the
queen, kill the king). Chess is a kind of Entertainment
because it offers a combination of Immersion feelings
(Emotion, Challenge), following a Theme (war of
kingdoms) according a Story or not (kill the bad white
king for example) and using some Avatars (queen,
bishop, king). Chess is a Simulation, by the
representation of Environment (game board), Elements
(white and black pieces), and their Relationships
(Alliances in a multiplayer challenge, piece
Consumption). Finally, Chess is a Interaction, because
it offers Presentation opportunities by Visual (3D and
2D Cameras to show the Chess board) and Aural
(special SoundEffects for each player movement)
features. To Control the Chess game, an
IndirectControl (PointAndClick using the mouse to
move any piece) is more used, and for the GamePlay, a
Persistent Context (storing the game state) with
TurnBased Policy Execution (one player movement
each time) and PreGame Customization (config the
game before play it) are the most common used
features.

3.3 Narrative Features

As illustrated in Figure 1, the Narrative feature is
composed by three subfeatures: Flow, Goal and Rule.

The Flow feature, which represents a sequence of
operations [Taylor 2006; Brown 2006], is basically a
collection of Events and Nodes (Figure 2).

Each Node contains: a collection of ActionList,
which contains Actions to be performed; and a

collection of Transitions, to define the new execution
Node in the Flow when one Transition is performed.

During the game execution Events are used to
distinguish what ActionLists or Transitions will be
performed. As result, for each Event in the execution
Node, new Actions or Transitions can be performed,
triggering new Events again.

Different types of Nodes could be used: Fork, Join,

Start, and others. When these nodes are combined they
compose a Flow in the game.

According Zagal et al. [2005], “goals are the in-
game objectives or conditions that the player must
meet if he expects to succeed at the game”.

To complete a game, goals must be attained. The
Goal feature (Figure 3) is composed by many
SubGoals, which contains the following features:
Change (the Goal is Static, Dynamic or can be
Customized by the player), Constraint (regular
expression composed by and, or, not and sequence

Figure 3: Goal feature diagram.

Figure 2: Flow feature diagram.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 56

rules), Type (different kinds of goals in a game),
Metric (modes of evaluation of a goal progress) and
Condition (the goal is Prevent a goal completude,
maintain a Continuous state for a period to conclude
the goal [Björk and Holopainen 2005]).

Similar to Goal, a Rule can be considered as a
game condition, a game constraint which must be
validated in the game execution to perform game entity
manipulations.

Figure 4 shows the different types of rules in a
game, which are subdivided in: Cardinality, GameEnd,
Manipulation, Segmentation and Synergy. SubRule,
Change, Constraint, Metric and Condition, similar to
Goal feature (with the same behaviour), are subfeatures
of the Rule feature too.

According Zagal et al. [2005], the Cardinality of
gameplay refers to the “degrees of freedom the player
has with respects to movement (or the control of
movement) in a certain game”. Zero, One, Two, Three
and Four cardinalities are proposed in the feature
model, that can be found, respectively, in the following
game examples: Guitar Hero, Space Invaders, Pac-
Man, Quake and Neko.

GameEnd describes some ways to determine if a
game ended or not. GoalEnd (goal completed),
ResourceEnd (consuption of all resources), WorldEnd
(end of the world was achieved), and NoGameEnd
(Sims, Second Life, for example) are shown in the
game feature model, acting as initial proposals to finish
the game play, and allowing new different possibilities
to determine the game end.

Manipulation validates attempts to change the
context of entities in the game. Create, Share, Capture,

Target, Shoot, Teleport, and others can be considered
as a Manipulation feature.

According Zagal et al. [2005], the Segmentation of
gameplay describes “how a game is broken down into
smaller/shorter elements or chunks of gameplay”. One
Segmentation rule may present simultaneously:
Challenge (missions, boss stage), Spatial (sectors in a
build) and Temporal (time limit to explore a sector)
features.

Synergy defines the relationships between rules,
describing strategic options available to players [Zagal
et al. 2005]. ScaleEconomy, ScopeEconomy and
PaperRockScissor describes rules constraints for
quantity, quality and transitive effects between entities,
respectively.

3.4 Entertainment Features

Composed by Immersion and Theme features, the
Entertainment feature define entities to response the
following questions: What makes a game fun? What
features are necessary to build a funny game?

For Immersion, Björk and Holopainen [2005]
describe that “games require the player attention, and
as such can make players focus on gameplay to the
extent that they feel immersed in the games”. This
Immersion can take many forms, depending on “what
type of activity the players are performing, putting
them deeply focused on the interaction within the
game”.

The Immersion feature (Figure 5) in the NESI
model proposes four types of immersion features:
Cognitive, Emotional, Spatial and Challenge.

Figure 4: Rule feature diagram.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 57

Cognitive presents Learning opportunities to
promote memorizing in a constructive play for puzzle
solving, and Adaptability to reach the right level of
complexity in a game [Björk and Holopainen 2005].

Emotional describes “Suspense as modulation of
hopes and fears through elements of uncertainty”, and
Stimulus because “games privilege so-called prospect-
based emotions that are always focusing on events and
their outcomes” [Järvinen 2007].

Spatial presents a real and contextualized game
entity Representation followed by the player Mobility
inside them [Björk and Holopainen 2005].

In Challenge, a game must explore the player
Competence, offering a game Variability by new and
continuously player adventures [Lemay 2007].

According Järvinen [2007], a Theme is the subject
matter of the game, is a collection of functions to
represent a metaphor for the system and the proposed
rule set.

In the NESI model, a Theme feature (Figure 6) is
basically composed by Avatars and a Story (which is
optional). A Story is a collection of Acts with a time
Momentum (story Beginning, Middle or End) for each
one [Bates and Bates 2004]. Each Act is formed by one
or more Types, which can be a ScriptEvent (a dynamic
Act based on the player choices during the Story
course), a CutScene, a BackStory, a Dialog or a

Surprise (as result of Secrets or SideEffects during the
game).

An Avatar is an actor in the game, and is
subdivided in Agent (“game entities with intentional
behavior” [Zagal et al. 2005]) and Player (“those who
play, in various formations and with various
motivations, by performing game mechanics in order
to attain goals” [Järvinen 2007]). Each Avatar has
many Skills (Luck, Dextery and others) independent if
it is a Player or an Agent. According Björk and
Holopainen [2005], Skills are the “numerical
representation of how likely an avatar is to succeed
with an action, and what possible consequences the
action has”.

An Agent can also represent a Mule (“character that
is set, typically by using scripts, to perform long,
monotonous and specialized sets of actions” [Björk and
Holopainen 2005]) or an Enemy (“character that hinder
the players trying to complete the goals” [Björk and
Holopainen 2005]), and an Enemy could be a Boss (“a
more powerful enemy the players have to overcome to
reach certain goals in the game” [Björk and
Holopainen 2005]).

3.5 Simulation Features

According Narayanasamy et al. [2006], “the advanced
computational capabilities in modern personal
computers have made it possible for consumers to
experience simulations with a high degree of
verisimilitude through simulation games (a.k.a. Sims)”.

A good example is the serious games category, a
result of applying simulation technology to
nonentertainment purposes (mostly training),
contributing to the technology exchange between
simulation games and simulators [Narayanasamy et al.
2006].

Other game categories uses simulation concepts
too, when they abstract real life entities and concepts to
gain more veracity in these game contexts.

Figure 5: Immersion feature diagram.

Figure 6: Theme feature diagram.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 58

So, is impossible to think in a game without
simulation features. For this purpose, the NESI model
presents a Simulation feature, composed by Element,
Environment and Relationship main features.

The Element feature (Figure 7) represents the
structural game aspects, and contains the following
features: Point, Clue, Resource, Obstacle, Unit and
Timing.

Points are “specific places or moments in a game”
[Zagal et al. 2005]. The NESI model proposes some
Points to save the game (SavePoint), to stay in secure
mode (SafePoint), to complete a game goal

(GoalPoint), and to generate new game entities
(SpawPoint).

Clues are “game elements that give the players
information about how the goals of the game can be
reached“ [Björk and Holopainen 2005]. For this,
Traces (soldiers traces on a terrain, for example),
RedHerrings and Helpers (villagers and their stories,
for example) features are proposed. Bates and Bates
[2004] disagrees with the inclusion of RedHerrings in a
game, because they could harm in some moment the
player Entertainment, and the player already has
enough problems to worry about during the game.
However, it is a characteristic that can be implemented

Figure 8: Environment feature diagram.

Figure 7: Element feature diagram.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 59

in the games, so it should be described in the proposed
model.

Resources are “game elements that are used by
players to enable actions in a game” [Björk and
Holopainen 2005]. Some proposed resources are:
Investiment (in order to reap the rewards later),
Charger (speed boosters for example), Tools (weapons,
armor, gadgets for example), PickUp (elements that
can be collected by players), Generator (mechanisms
that bring game elements to the game) and PowerUp
(power pill in Pac-Man for example).

Obstacles are “game elements that hinder the
players from taking the shortest route between two
places” [Björk and Holopainen 2005]. Alarms, Walls
and Traps are some possible and proposed Obstacle
features.

Units are “groups of game elements under the
player's control that let the player perform actions to
influence the Game World” [Björk and Holopainen
2005]. Shoot (performs multiple actions during the
release and collision of the projectile object) and
Container (game element that can store other game
elements) features are defined.

Timing are game elements to manage time events
which can or cannot be exactly predicted in the game.
Clock (synchronous events) and Random
(asynchronous events) features are proposed.

The Environment feature (Figure 8), representing
the game space for play [Järvinen 2007], is composed
by many Locations. Each Location can take a different
SpaceType (World, Level, Sector, Tile and others), and
could represent different Biotic and Abiotic factors
available on specific game Locations.

For AbioticFactors, Climate (with Humidity,
Pressure, Temperature, Precipitation and others) and
Geology (with Soil and your parameters: pH, Air,
Water, Texture, etc.; and Rocks) aspects are the most
outstanding features.

For BioticFactors, Faun (types of species) and
Flora (types of vegetation) features in a location, with
its rich diversity, can be represented.

Relationship feature (Figure 9) defines the
interaction type between Element-Element, Element-
Environment and Environment-Element. For that,

Biological (essential for life support) and Social
(essential for communities support) interactions are
expected.

Biological features describes: Consumption
(Parasitism, Predation, Herbivory and others),
Competition (struggle to achieve a certain goal) and
Cooperation (in a biological level, like Commensalism
and Mutualism) features.

Social features describes: Communication
(traditional chat between players), Collaboration
(“players cooperate to reach goals or subgoals of the
game” [Björk and Holopainen 2005]), Solidarity
(players share Penalties and Rewards between them)
and Negotiation (“a situation where the players confer
with each other in order to reach an agreement or
settlement” [Björk and Holopainen 2005]).

It is important to reinforce the game designer
responsibility to choice the Relationship type between
Elements and Environment, due to conceptual
Relationship similarities that could confuse the
designer (Cooperation and Collaboration for example).

3.6 Interaction Features

According Zagal et al. [2005], to create an interactive
experience in games, it must provide interesting input
and output resources.

Trinta [2007] describes interaction as “how the
player performs its actions in the virtual world, which
is also dependent on the context of implementation and
the perception of the player at any given time”.

The NESI model proposes three features to achive
the desired game Interaction: Presentation (managing
sensory outputs for the player), Control (managing
players actions) and GamePlay (managing all created
GameSessions necessary to start the GamePlay).

Zagal et al. [2005] described that games present
themselves to the player through the senses, through
multiple sensory channels or focused on only one.

In this way, Presentation feature is composed by
three sensory features: Visual (most important
Presentation game characteristic), Aural (representing
every sound that can be reproduced during the game)
and Tactil (with few game domain studies).

Figure 9: Relationship feature diagram.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 60

For the NESI model, the Visual game aspect is
formed by a combination of Cameras and HUDs
(Head-Up Displays) features.

According Zagal et al. [2005], a Camera is “a
metaphor to describe a graphical representation of the
game world in which the world, the entities within it
and their spatial relationships are depicted visually”.

To represent this metaphor, Camera feature is
composed by the following features: View (perspective
from which the player perceive and interact with the
space), Frame (how the camera represents the space),
Biding (maintain continuity in the view), and Motion
(how the camera moves within or in relation to the
represented space) [Zagal et al. 2005].

The HUD objective is provide to the game player
some information about the game in general, such as
the lives indicator, health indicator, time indicator and
others [Furtado 2006]. In summary, your goal is to
indicate progress (ProgressIndicator), status
(StatusIndicator), communication (Chat), and
proximity for a goal (GoalIndicator) or to lose it
(NearMissIndicator).

According Zagal et al. [2005], an Aural output
varies over its constituent wavelengths, like a
BackgroundMusic or SoundEffect to reflect the
dynamical game state. To represent an Aural feature, a
sound Type (SoundEffect or BackgroundMusic) and
Format (Compressed or Uncompressed) are expected.

For game control objectives, “a game can use
multiple approaches to its control mapping as well as

multiple approaches for the same control” [Zagal et al.
2005]. Indeed, some games provides to the player a
level of Direct control over his Avatars actions, and
other games take an Indirect control approach, using
either menus or point and click interfaces [Zagal et al.
2005].

In this way, Figure 11 shows the proposed Control
feature, composed by Direct and Indirect player
commands, and the Focus of manipulation (Single or
Multiple game entities). As shown, at least one type of
command to manage the game play is expected in a
game.

According Björk and Holopainen [2005], a game
instance, represented as GamePlay feature (Figure 12),
is the “whole lifetime of the game”, and a
GameSession is the “whole activity of a player playing
one game”.

Therefore, GamePlay contains a collection of
GameSessions, which are composed by collections of
Context, Execution and Customization features.

Game Context is defined as “where, when, and why
the gaming encounter takes place” [Järvinen 2007]. For
Trinta [2007], “all relevant information to represent the
situation of an entity that composes or interacts with
the application” is called Context.

In the NESI model, the game Context is a
collection of entity Instances, with a Persistent status
capability. Some games could include the
ClosurePoints feature, “points where most of the
information about game elements and actions
performed become irrelevant and are discarded” [Björk
and Holopainen 2005], a game point without return.

As an Instance can be of any game entity type, this
feature is composed by NarrativeInstance,
EntertainmentInstance, SimulationInstance and
InteractionInstance features.

An Execution is equivalent to a game thread,
necessary to execute actions, generated from players
and multiplayers (agents or not), in a parallel way.

Each Execution has a game Policy that determines
the player command execution at a given time [Trinta
2007]. TurnBased (“only one player or agent may

Figure 10: Presentation feature diagram.

Figure 11: Control feature diagram.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 61

perform activities in the game at a given moment”
[Zagal et al. 2005]), RealTime (“do not require player
actions to change the game state” [Björk and
Holopainen 2005]), and Simultaneous (after receive all
next player commands, the game state will change
[Trinta 2007]) policies are the most common used.

According Zagal et al. [2005], customize an entity
means basically “the ability of the player to create or
modify it according to his/her taste”. This
customization can be performed in a number of ways
and involve several aspects of the affected entity, such
as graphics, sounds, name, performance, and others.

In the NESI model, the Customization feature is
composed by two features: ConfigType and
ConfigTime.

ConfigType represents the customization of all
game entity features. Therefore, the NarrativeConfig,
EntertainmentConfig, SimulationConfig and
InteractionConfig features represent all possible game
entity configurations.

According Zagal et al. [2005], ConfigTime can be
classified as: PreGame (not performed where the game
action takes place), InGame (performed by the player
where the game action actually takes place) and
ExtraGame (achieved through the use of software or
tools external to the game itself).

4. Conclusion

This paper presents the NESI feature model which
describes game modeling aspects based on Narrative,
Entertainment, Simulation and Interaction features.

As the first collection of feature models for generic
games design, the great importance of this work is
reduce the gap between generic game domain
descriptions and specific game project
implementations. This goal is achieved organizing
different game domais studies in a more formal, and
domain level, design approach.

Using the NESI model, the diversity and variability
involved in the game modeling, and treated by the
game designer, can be better controlled.

This is the result of the simplification of the game
domain to four main feature aspects, allowing a more
objective decision about what feature aspects a final
game project will contain.

A more systematic and simplified game reuse
approach is obtained too, because the NESI model can
be used to guide the decomposition of existing games
(creating new core assets for future game projects), and
to develop new games from the ground up (configuring
available core assets that implement game features).

The NESI model has been thought to be
independent of graphics, audio, physics, artificial
inteligence, or other type of game engine. It focus on
the game domain, on the g-factor (game factor) inside
the game project [BinSubaih and Maddock 2008].

For future works, a game product line and a game
domain engine, based on the NESI model, and the
integration of these techniques to some existent game
engines, using a game software bus proposal, will be
developed. Case studies showing how the model could
be used in the decomposition of existing games and in
the development of new game projects will be
described too.

References

ALVES, V. R., 2007. Implementing Software Product Line
Adoption Strategies. PhD thesis, Federal University of
Pernambuco.

ANTKIEWICZ, M. AND CZARNECKI, K., 2004. FeaturePlugin:
feature modeling plug-in for Eclipse. In: Proceedings of
the 2004 OOPSLA workshop on eclipse technology
eXchange, October 24th to 28th, 2004, Vancouver,
Canada, pp 67-72. New York, USA, ACM Press.

Figure 12: GamePlay feature diagram.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 62

BATES, R. AND BATES, B., 2004. Game Design, Second
Edition. Thomson Course Technology, ISBN:
1592004938, 9781592004935.

BINSUBAIH, A. AND MADDOCK, S., 2008. Game Portability
Using a Service-Oriented Approach. International
Journal of Computer Games Technology, Volume 2008,
Article ID 378485, 7 pages. Hindawi Publishing
Corporation, doi:10.1155/2008/378485.

BJÖRK, S. AND HOLOPAINEN, J., 2005. Patterns in Game Design.
Charles River Media, ISBN: 1-58450-354-8.

BOSCH, J., 2002. Maturity and Evolution in Software Product
Lines: Approaches, Artefacts and Organization. In:
Proceedings of the Second Conference Software Product
Line Conference (SPLC2), pp. 257-271.

BROWN, R., LIM, A., WONG, Y., HENG, S. AND WALLACE, D.,
2006. Gameplay Workflow: a Distributed Game Control
Approach. In: CyberGames '06: Proceedings of the 2006
international conference on Game research and
development, pp. 207-214. Australia, Perth, Murdoch
University, ISBN:86905-901-7.

CZARNECKI, K. AND EISENECKER, U. W., 2000. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley.

CZARNECKI, K., HELSEN, S. AND EISENECKER, U. W., 2005.
Formalizing cardinality-based feature models and their
specialization. Software Process Improvement and
Practice, 10(1):7–29, jan/mar.

DAVIDSSON, O., PEITZ, J. AND BJÖRK, S., 2004. Game Design
Patterns for Mobile Games. Project report to Nokia
Research Center, Finland. Available from:
http://procyon.lunarpages.com/~gamed3/docs/Game_Des
ign_Patterns_for_Mobile_Games.pdf [Accessed 05
August 2008].

ESPOSITO, N., 2005. A Short and Simple Definition of What a
Videogame Is. In: Proceedings of the Digital Interactive
Games Research Association Conference (DiGRA 2005),
Vancouver B.C., June, 2005, pp. ?-?.

FURTADO, A. W. B., 2006. Defining and Using Ontologies as
Input for Game Software Factories. In: Proceedings of
the 3rd Brazilian Symposium on Computer Games and
Digital Entertainment.

GURP, J. V., SVAHNBERG, M.. AND BOSCH, J., 2001. On the
Notion of Variability in Software Product Lines. In:
Proceedings of the Working IEEE/IFIP Conference on
Software Architecture (WICSA), August 2001, pp. 45-55.

HUNICKE, R., LEBLANC, M., AND ZUBECK, R., 2004. MDA: A
formal approach to game design and game research. In:
Proceedings of the AAAI-04 Workshop on Challenges in
Game AI, July 2004., pp. 1-5.

JÄRVINEN, A., 2007. Introducing Applied Ludology: Hands-on
Methods for Game Studies. In: Proceedings of the
DiGRA 2007 Situated Play. International Conference of
the Digital Games Research Association, September 24th
to 28th, 2007, Tokyo, Japan, pp 134-144.

JUNIOR, E. A. O., GIMENES, I. M. S., HUZITA, E. H. M. AND
MALDONADO, J. C., 2005. A Variability Management
Process for Software Product Lines. In: CASCON '05:
Proceedings of the conference of the Centre for
Advanced Studies on Collaborative research, Toranto,
Ontario, Canada, pp 225-241. IBM Press.

KANG, K., COHEN, S., HESS, J., NOVAK, W. AND PETERSON, S.,
1990. Feature-Oriented Domain Analysis (FODA):
Feasibility Study. CMU/SEI-90-TR-21, SEI, USA.

KENT, S. L., 2001. The Ultimate History of Video Games.
Tree Rivers Press, ISBN:0761536434.

LEMAY, P., 2007. Developing a pattern language for flow
experiences in video games. In: Proceedings of the
DiGRA 2007 Situated Play. International Conference of
the Digital Games Research Association, September 24th
to 28th, 2007, Tokyo, Japan.

LEWIS, M. AND JACOBSON, J., 2002. Games engines in scientific
research. Communications of the ACM, vol. 45, no. 1,
pp. 27–31.

NARAYANASAMY, V., WONG, K. W., FUNG, C. C. AND RAI, S.,
2006. Distinguishing Games and Simulation Games from
Simulators. ACM Computers in Entertainment, Vol. 4,
No. 2, April-June 2006, pp. 1-18. New York: ACM Press,
ISSN:1544-3574.

ROLLLINGS, A. AND MORRIS, D., 2004. Game Architecture and
Design : A New Edition. New Riders Publishing, ISBN:
0735713634.

SVAHNBERG, M., GURP, J. V. AND BOSCH, J., 2005. A Taxonomy
of Variability Realization Techniques. Software—
Practice & Experience, Volume 35, Issue 8 (July 2005),
705-754. New York: John Wiley & Sons, ISSN:0038-
0644.

TAYLOR, M. J. GRESTY, D. AND BASKETT, M., 2006. Computer
game-flow design. ACM Computers in Entertainment,
Vol. 4, No. 1, January 2006, pp. 5. New York: ACM
Press, ISSN:1544-3574.

TRINTA, F. A. M., 2007. Definindo e Provendo Serviços de
Suporte à Jogos Multiusuário e Multiplataforma: Rumo
à Pervasividade. PhD thesis, Federal University of
Pernambuco.

ZAGAL, J., MATEAS, M., FERNANDEZ-VARA, C., HOCHHALTER, B.
AND LICHTI, N., 2005. Towards an Ontological Language
for Game Analysis. In: Proceedings of the Digital
Interactive Games Research Association Conference
(DiGRA 2005), Vancouver B.C., June, 2005, pp. 3-14.

ZHANG, W. AND JARZABEK, S., 2005. Reuse without
Compromising Performance: Experience from RPG
Software Product Line for Mobile Devices. In:
Proceedings of the 9th Int. Software Product Line Conf.,
SPLC'05, Sept. 2005, Rennes, France, pp. 57-69.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 63

Fast and Safe Prototyping of Game Objects with Dependency Injection

Erick B. Passos
Media Lab - UFF

Jonhnny Weslley S. Sousa
LCD - UFCG

Giancarlo Nascimento
Media Lab - UFF

Esteban Walter Gonzales Clua
Media Lab - UFF

Lauro Kozovits
UERJ

Abstract

Most game engines are based on game objects inheritance and/or
componentization of behaviors. While this approach enables a clear
visualization of the system architecture, good code reuse and fast
prototyping, it brings some issues, mostly related to the high de-
pendency between game objects/components instances. This de-
pendency often leads to static casts and null pointer references that
are difficult to debug. In this paper we propose the use of the De-
pendency Injection design pattern to safely initialize game objects
and alleviate the role of the programmer in the handling of these
issues both during prototyping and production fases. Since these
dependencies are attributes in game objects and the injection oc-
curs only at the initialization pass, there is no performance penalty
at the game loop.

Keywords:: game engine architecture, dependency injection, ob-
ject composition

Author’s Contact:

{epassos,esteban}@ic.uff.br
jonhnny@lsd.ufcg.edu.br
giancarlotaveira@gmail.com
lauro@jogos.etc.br

1 Introduction

Few domains in computer science map to a programming paradigm
so directly as computer games to object orientation. A Game class
matches the concept of a virtual world where several different in-
stances of a GameObject class reside. A GameObject instance can
be anything such as the player character, a house or an invisible
trigger object. The game execution usually consists of a loop inside
the Game class with three main goals:

1. Collect user and network input;

2. Update each GameObject instance based on input and/or
physics simulation, animation and Artificial Intelligence step;

3. Draw visible game objects on the output device.

There are alternative forms of this loop proposed to better exploit
parallelism [de Moraes Zamith et al. 2007], but we consider that
this basic model serves well to express the purposes of our work.

To represent different types of simulated objects, the programmer
usually creates subclasses of GameObject, each one specifying new
and more specialized content and behavior. The problems with the
inheritance approach are well known. A good example of this is
when two objects from different hierarchies sometimes have com-
mon functionality and characteristics, leading to redundancies in
code. This is a common issue in object oriented software design and
replacing inheritance by composition in game engines is already
recognized as a good practice [Folmer 2007; Stoy 2006; Ponder
2004; Billas 2002].

In its componentized alternative, the GameObject class holds only
common attributes that all game objects should have such as name,
position and orientation. Most important, however, is that it
acts as a container for reusable components. Each class extend-
ing AbstractComponent represents a different aspect/behavior of
a GameObject such as physics, AI or health, depending on the
needs of the game object being (now) composed. These compo-
nents should be highly flexible and easier to maintain while also

maximize code reuse as many of them are useful in several differ-
ent game genres.

Both approaches have a common issue, related to high coupling
between components (or game objects). For instance, an AI com-
ponent commonly depends on the existence of a health component
to decide actions to take and also on a physics component to apply
movements to. These dependencies are normally resolved directly
by the programmer, as shown in the following Java code, part of an
AIComponent class, adapted from the original C++ example [Stoy
2006]:

1 public void update(float interpolation) {
2 final GameObject o = getOwner();
3 Health h = (Health) o.getComponent("health");
4 if (h != null) {
5 // take AI actions based on health
6 }
7 }

Code 1: Traditional dependency handling

Its easy to see that this implementation has an implicit dependency
on the existence of a Health component (line 3), which is expected
to be registered at the same game object under the label ”health”. If
every game object containing an instance of this AIComponent class
is properly initialized with an accompanying Health component,
everything will work as planned by the programmer. Apparently
there is nothing wrong with this code, but a closer inspection shows
us that:

• While necessary for solving the implicit dependency, lines 2-
4 have nothing to do with the expected game logic of an AI
update, being just boilerplate code;

• The explicit cast in line 3, or the absence of strong typing
in the case of some script languages, is a common source of
runtime problems in dependent component/objects;

• If no Health component is initialized for this particular game
object, no proper AI action (code inside if clause) will ever
be taken, making it harder to debug while doing level design
(unless the component logs the unfound dependencies, some-
thing the programmer would have to code directly).

An equivalent code in UnrealScript [EpicGames 1998] would be
even more difficult to debug because the language hides all null
pointer references by making them equivalent to a void execution
line. This is such an issue that Tim Sweeney have recently said that
around fifty percent (50%) of the bugs found in Unreal were related
to this kind of dependencies and the lack of stronger typing in its
programming languages [Sweeney 2006]. He also points out that a
typical game object update usually touches five to ten other objects,
which shows how relevant and frequent the problem is.

In this paper we propose the use of the Dependency Injection de-
sign pattern [Jin 2007; Fowler 2004] to solve part of this prob-
lem by freeing the programmer from the responsibility of manually
checking for these dependencies. As will be shown in the next sec-
tions, our framework takes care of the safe initialization of game
objects and components, which can be coded in a much cleaner and
maintainable fashion. The rest of the paper is organized as follows:
section 2 discusses related work, section 3 presents the concepts
and design patterns implemented by the GCore framework while
section 4 explains the use of Dependency Injection and the advan-
tages of our framework over previous research. Finally, section 5
concludes the paper and outlines future work.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 64

2 Related Work

Successful Game engines from the industry are strongly based
on the game object inheritance model such as CryEngine [Cry-
Tek 2008] with its entities and entity-items being equivalent to
game objects and components respectively. The same architec-
ture is found in other commercially available engines such as Un-
realEngine [EpicGames 1998] and Torque [GarageGames]. At the
same time there are more consistent componentized architectures
[UnityTechnologies 2008; Spinor ; 3DVia ; Billas 2002]. The prob-
lems related to high dependency between objects are a common
issue of these tools, making them potential targets to our proposal.

In a talk presented by Tim Sweeney [Sweeney 2006], he exposed
in detail two problems with current game programming languages
and tools: poor concurrency handling and weak typing. He pro-
poses some features that a new programming language should have
that could solve most of the runtime bugs programmers deal with
when implementing game object scripts. While his arguments are
somehow similar to ours, he proposes the creation of new languages
with the suggested features, which is not a simple task. In this paper
we are proposing the use of a currently available technique that can
be adapted in most existing tools. Our Dependency Injection imple-
mentation is based on Java reflection features, being trivial to port
to C# based platforms such as XNA [Microsoft]. C++ and some
script languages doesn’t have the exact reflection features used by
our framework but it is possible to implement the same idea with
some workarounds [Pocomatic 2007].

Dungeon Siege was one of the first games to include a fully compo-
nentized game object system. In two different years at the Game
Developers Conference [Billas 2002; Billas 2003], Scott Billas
showed how this architecture and some other features helped the
development of the game and its ”continuous world”. In a more re-
cent talk [Billas 2007], he exposed ideas on how to improve a game
production pipeline, several of them being related to sanity checks
during game objects/components initialization such as attribute re-
quirements and dependencies. He proposes that these assertions
and error messages should be implemented directly by the compo-
nent programmer/engineer on the behalf of the level designer. We
recognize that these ideas are very important indeed, but also aim
to provide tools to automatically perform these sanity checks and
also dependency solving/injection, this time on the behalf of the
programmer/engineer and consequently improving the whole pro-
duction pipeline.

Haller et. al. [Haller et al. 2002] proposes a new architecture
for game objects and components using communication slots and
a message manager to remove the strongly typed dependencies be-
tween them. The solution enables easy composition and connection
of components but requires a strong commitment to a more com-
plex architecture. With our approach the programmer doesn’t have
to learn any new language or communication architecture, making
it more suitable to fast prototyping.

The Unity3D game engine [UnityTechnologies 2008] is a relatively
recent product that has gained attention from developers given its
well designed game object component system and scene editor,
which uses a visual approach to composition. In its latest version
(2.1, released in late July, 2008), a simplified form of dependency
sanity checking is provided for the script programmers, who can
specify that a component has a dependency on the existence of an-
other, which is checked at runtime and also inside the scene editor.
However, although automaticaly instantiated by the scene editor,
this instance is not automaticaly injected in the dependent compo-
nent, leaving this responsibility to the programmer, who still has to
explicitely call a getComponent(Type) method to obtain the refer-
ence. Our system does both the sanity checking and the automatic
injection (reference solving) of dependent components.

To our knowledge, all previous research and/or products only go so
far in the development of game object component systems. We pro-
pose the full adoption of Dependency Injection to handle the cou-
pling of components in a game engine. In the following sections,
our framework, named GCore, will have its architecture explained
together with the application of Dependency Injection in game ob-
jects composition.

3 GCore Architecture

GCore, abbreviation for Game Core, is a data-driven game frame-
work aimed at high productivity that abstracts the use of JMon-
keyEngine [JMonkeyEngine], a Java scene-graph engine imple-
mented over hardware-accelerated OpenGL for graphics and Ope-
nAL for audio. GCore also includes add-ons such as a physics en-
gine [JMEPhysics] and a network subsystem [Imagination] to
deliver an extensible and easy to use tool. Since its core concepts
are feasible to implement in other platforms and languages such
as C++ or C#, we focus our attention on its data-driven approach
and Dependency Injection features, which enable game designers,
level designers, programmers and artists to cooperate seamlessly in
a game production pipeline. The role of the programmer is to code
reusable components implementing the game design ideas while the
level designer integrate these components with the assets created by
artists. In this paper we show GCore tools and techniques to assist
both programmers and level designers.

3.1 Main Concepts

From a software engineering perspective, GCore defines four main
concepts/classes to represent a game: GameManager, GameState,
GameObject and AbstractComponent. GameManager is a Facade
[Gamma et al. 1995] for the whole system while a GameState is
similar to a use-case scenario, each one isolating a game scene (or
other user interaction concept) such as the 3D playing environment,
a menu or a heads up display (HUD). During execution, the player
alternates through these scenarios as the game switches between the
different instances of GameState. A runnable GameState is defined
with an unique name and containing a collection of GameObject
instances, each one composed by a collection of AbstractCompo-
nent implementations. In Figure 1 it is possible to see a simple
class diagram for GCore architecture while in Figure 2 one can see
the sequence diagram that explains the game loop concept used in
GCore by specifying the order of method calls at each discrete step.

GameManager

AbstractComponent

GameState

GameObject

cd: gcore architecture

Figure 1: GCore componentized architecture

As can be seen from the diagrams, each component is updated at
every frame. There is no render method in the AbstractComponent
class because most of them do not represent graphical properties of
the object. Instead, the GameObject class keeps a scene-graph node
where any graphical component can attach a drawable geometry if
needed. This node is rendered at the end of each frame step which
leads to the rendering of the geometries of graphical components
attached to the game object.

3.2 Data-driven Composition of Game Objects

The main reason for GCore’s productivity is the possibility of cre-
ating a game entirely in declarative form. An example of compo-

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 65

c:AbstractComponentg:GameManager o:GameObjects:GameState

sd: gcore game loop

1) .update

1)

2) .update

2)

3) .update

3)

4) .render

4)

5) .render

5)

Figure 2: GCore game loop

sition is shown in Figure 3, an object diagram where a GameState
is composed of two GameObject instances, each one with different
components representing their characteristics and behaviors.

c3:VisualComponentc2:AIComponent

c1:VisualComponent

tree:GameObjectnpc:GameObject

cd: game objects composition

state:GameState

Figure 3: Composition example

In the above example, there are two active objects in the game state
named ”npc” and ”tree” respectively. The ”npc” object is composed
of an instance of VisualComponent carrying its graphical represen-
tation and an AIComponent, responsible for controlling its actions
during game execution. Notice that since the update method is
called at every frame step, both components are updated. In the
AIComponent this method contains the actual implementation of
the AI step, while in the VisualComponent this method is empty.
The other game object, named ”tree”, is static and consists only of
a graphical geometry, represented by a single VisualComponent.

Game states and their companion game objects are all stored in
XML files, which are very easy to maintain and also suitable for
an integration tool such as a level editor. In Code 2 one can see the
main XML configuration file of a simple game. The root element of
the configuration is the ”game” element, which has two attributes:
a name and the first game state to be loaded. The ”game” element
must be composed of type declarations and game state composi-
tions, being possible to keep them in as many separate files as de-
sired, feature exemplified by the use of the ”include” tag.

Type declarations provide for a way to compose reusable types that
can be further specialized and instantiated into game objects inside
the game states. Types are composed of components which can
have their attributes values also specified inside the XML files. In
Code 3 one can see a type declaration showing the concepts of
composition, inheritance and attribute specification. The first type,
named ”basic”, defines that all derived types and objects will have
a VisualComponent attached. The second one, named ”npc”, ex-

<game name="example" init="menu">

<!-- type definitions -->
<include file="types.xml" />

<!-- game states -->
<include file="menu.xml" />
<include file="farm.xml" />

</game>

Code 2: Main configuration file (game.xml)

emplifies inheritance by extending ”basic”, from which it brings
the VisualComponent and also attaches a new AIComponent. The
”tree” type shows the specification capabilities of GCore by inher-
iting from ”basic” and modifying an attribute in the VisualCompo-
nent, in this case defining an external 3D model to be loaded as
geometry for any ”tree” typed game object.

<type name="basic">
<component class="VisualComponent" />

</type>

<type name="npc-type" extends="basic">
<component class="AIComponent" />

</type>

<type name="tree-type" extends="basic">
<component class="VisualComponent">

<model value="tree.3ds" />
</component>

</type>

Code 3: Sample type declarations (types.xml)

Game states are composed of game objects, which can inherit from
pre-defined types and specify or include any component as needed.
One can even define objects without a supertype, but this prac-
tice minimizes reuse and is not recommended. In Code 4 one
can see the XML for the game state shown in Figure 3 in Page
3. The ”npc” game object inherits from the previously declared
”npc-type” and specifies a 3D model for its VisualComponent. The
”tree” object specifies a new position vector for its VisualCompo-
nent. One can easily notice the flexibility of this data-driven ap-
proach for game objects composition and it is even possible to have
multiple named components of the same class in the same type.
The classes GameObject and AbstractComponent also implement
the Composite design pattern [Gamma et al. 1995], being possible
to have chain of nested components if needed.

<gamestate name="farm">

<!-- game object1: npc -->
<object name="npc" type="npc-type">

<component class="VisualComponent">
<model value="zombie.3ds" />

</component>
</object>

<!-- game object2: tree -->
<object name="tree" type="tree-type">

<component class="VisualComponent">
<position x="10" z="15" />

</component>
</object>

</gamestate>

Code 4: Game state and objects composition (farm.xml)

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 66

3.3 XML parsing and game execution

From the last section one can see that each game is completely spec-
ified by a meta-data configuration stored in XML files. This XML
specification is parsed during initialization and loaded into a set of
configuration objects. This light-weight meta-data structure is used
at runtime to instantiate game states and game objects as needed.
GCore is capable of parsing attribute values of all Java primitive
types and also 3-valued vectors, quaternions and assets (files) such
as textures, models and audio clips. It is also possible to create your
own parser for any user-defined structured type (class) by extending
the PropertyParser utility class.

There has to be at least one default game state in a game, which
will be the first (or only) to be loaded. Since a game is composed
by a collection of such game states, there should be a way to instan-
tiate, destruct or switch between them at runtime. To provide for an
elegant implementation of these features, the GameManager class
implements the Mediator design pattern [Gamma et al. 1995] with
public methods to (re)activate, pause or destroy any declared game
state by its name. The destroying of previously enabled game states
is optional (prior the activation of another one) since more than one
can coexist in memory at the same time.

The GameManager also take care of the correct initialization of
all game objects and its components. The Builder design pattern
[Gamma et al. 1995] was applied in the initialization code for game
states, objects and components, taking care of attribute and depen-
dency injection. However, for the sake of readability, in the next
section we will show a simplified version of this process instead.
The reason is that we will focus on the explanation of the depen-
dency injection usage, its advantages and implementation details.

4 Dependency Injection in GCore

Dependency Injection, sometimes referred to as inversion of con-
trol, is a design pattern that provides a flexible way to indirectly as-
sembly dependent software components together [Jin 2007; Fowler
2004]. In a complex componentized system, such as a game, it
is common to find classes that depend on others to perform their
tasks. The programmer usually implements this dependency as an
attribute declared with its type being the target class. Dependency
solving normally occurs at runtime by getting an instance using an
available pull-like API.

With Dependency Injection the underlying framework is respon-
sible for automatically look for this instance and setting it under
the dependent component. There are two gains associated with the
use of this pattern: smaller and cleaner code at the components,
since it’s not necessary to manually look for the dependency; and
safer initialization, because it’s a responsibility of the framework to
check for the existence of the dependencies, leading to less runtime
errors.

To implement this technique we make use of the runtime reflection
features of the Java language, especially annotations, which are a
special kind of meta-data available both at compile and runtime.
We created a custom annotation type, named @Inject, to be used to
mark dependencies between components in the source code. These
dependencies will be solved at loading time by the game object ini-
tializer every time an attribute identified with @Inject is found. In
the following section we explain two examples of Dependency In-
jection in our framework: the composition of a player game object
showing the safe initialization of dependent components in the first
example and the fast prototyping of new game mechanics in the
second one.

4.1 Example 1: Safe Initialization of Components

In GCore, all direct dependencies between components can be au-
tomatically solved by the framework. First lets consider how very
simple game object features can be implemented as reusable com-
ponents: external 3D model loading, player input and a chase cam-
era. It’s recomended, for the sake of reusability, to implement each
one as a separate component class, named VisualComponent, Play-
erInput and ChaseCamera. VisualComponent can be used indepen-

dent of the other two for any static object that needs a visual rep-
resentation such as a house or a tree. None of these need to be
followed by a camera or controlled by the player so there will be no
need to include the other respective components. However, when
used to compose a player object, ChaseCamera and PlayerInput are
used and both have a dependency on the existence of an oriented
geometry. They use this geometry respectively as a target to look at
or to update based on player commands. VisualComponent already
defines a geometry attribute (its loaded model) that fits this need. In
Figure 4 this relation is expressed in the form of an object diagram.
The player game object has a collection of components, all being
concrete subclasses of AbstractComponent and having dependen-
cies between them.

c2:PlayerInput c3:ChaseCamera

c1:VisualComponent

AbstractComponent

player:GameObject

cd: components dependency

dependency dependency

Figure 4: Dependent components example

Components c2 and c3 from Figure 4 show a dependency to com-
ponent c1. Now it’s clear that both ChaseCamera and PlayerCom-
ponent have a attribute of type VisualComponent, so they can use it
at their respective update methods. Instead of manually looking for
this object at each update method, the component programmer only
has to include the runtime-available custom annotation @Inject to
the attribute declaration as show in Code 5. When initializing each
component, as will be explained next, if the annotation @Inject is
found before any declared attribute, our framework looks for an in-
stance of this component type in the same game object and sets it
into the attribute.

class ChaseCamera extends AbstractComponent {

@Inject
VisualComponent vc;

public void update(float interpolation){
camera.lookAt(vc.getWorldTranslation());

}
}

Code 5: @Inject in ChaseCamera source code

One can see that there is no line of code looking for the Visual-
Component instance or checking its nullability. It’s also easy to
notice that, compared to the example in Code 1 in Page 1, the
above code is smaller, considerably cleaner and also safer since the
framework will stop initialization and show an error log if there is
no VisualComponent declared and already initialized for the related
GameObject. In Code 6 one can see a correct XML for the player
object composition.

Since this declaration includes a VisualComponent, the other two
components, which depend on the existence of the previous, are
initialized correctly. Game object initializations occurs as shown
in the sequence diagram presented in Figure 5. As shown in the

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 67

<object name="player">

<component class="VisualComponent">
<model value="knight.md5" />

</component>

<component class="PlayerInput" />

<component class="ChaseCamera" />

</object>

Code 6: Correct player object composition

diagram, when creating a game state, all game objects and their
components are first instantiated and their declared attributes set.
After this first step (messages 2, 3 and 4 in the diagram), the game
objects are properly initialized and components dependencies are
injected (messages 5 and 6). By running the injection last, all de-
clared components are already attached to the game object leading
to a complete dependency solving.

c:ConcreteComponento:GameObjects:GameStateg:GameManager

sd: components initialization

1)
<< create >>

1)

2)
<< create >>

2)

3)
<< create >>

3)

4) .injectAttributes

4)

5) .init

5)

6) .injectDependencies

6)

7) .activate

7)

Figure 5: Game objects initialization

In Code 7 an incorrect player object composition is presented. Let’s
imagine for instance that the level designer made a mistake and
thought the ”character” supertype already had a VisualComponent
declared and included only the (in his mind) two missing ones. In-
stead of leading to an unpredicted runtime error, this specification
is not valid and our framework will show a message at initialization
such as seen in Code 8.

<object name="player" type="character">

<component class="PlayerInput" />

<component class="ChaseCamera" />

</object>

Code 7: Incorrect player object composition

"Incomplete composition of object: ’player’.
Missing required ’VisualComponent’
needed by included ’ChaseCamera’."

Code 8: Unsolved dependency initialization error

By having automatic handling of the coupling between components
and a safer initialization of game objects, the programmer will not
need to manually check for explicit dependencies or their nullabil-
ity. From this example one can see that the level design step in

the production pipeline is improved with less dependency on code
debugging tools.

4.2 Example 2: Fast Prototyping of New Game Me-
chanics

During the paper introduction we pointed that one of the problems
caused by the dependency between game objects and components
was the high number of lines of code dealing with issues not related
to the core game logic being implemented. Boilerplate code like
this needs a lot of concentration from the programmer and, usu-
ally, also debugging. In this example we show how Dependency
Injection improves fast prototyping of components by making the
programmer focus only on the core mechanics implementation.

Lets assume we are going to implement a ”lunar cargo” game,
where the core mechanics consists of controlling a rocket-powered
heavy weight lift vehicle. The goal of the implementation is to
expose the core mechanics to early tests as fast as possible. The
following features are essential to the prototype:

1. A moon-like terrain;

2. Gravity and collision physics;

3. 3D model loading;

4. Player-controlled thrust to the lunar module (most important).

It is easy to notice that features 1-3 are also needed by several dif-
ferent game genres and are already available as reusable GCore
components. The only lasting, and important, feature is the player-
controlled thrust. In Code 9 one can see the complete XML used
for this prototype, declaring a single game state, composed of two
game objects: the terrain and the lunar module. The implementa-
tion of the missing Thrust class is explained next.

<game name="lunarCargo" init="moon">

<gamestate name="moon">

<!-- prototype object1: terrain -->
<object name="terrain">

<component class="TerrainComponent">
<heightmap value="moon.png" />

</component>
<component class="TerrainPhysics" />

</object>

<!-- prototype object2: lunar module -->
<object name="module">

<component class="VisualComponent">
<model value="cargo-ship.3ds" />

</component>
<component class="DynamicPhysics" />
<component class="Thrust" />

</object>

<gamestate>

<game>

Code 9: Lunar Cargo prototype XML

GCore’s DynamicPhysics component has a dependency to Visu-
alComponent that the former uses as collision geometry and also
to move as the simulation goes. The Thrust being implemented
clearly has a dependency to the DynamicPhysics, which is going
to have forces applied to as the user presses the ”thrust” key. In
Code 10 one can see the implementation of the Thrust class. The
dependency to DynamicPhysics is exposed to the framework by the
attribute annotated with @Inject and the update method just takes
for granted that this attribute will not be null at runtime.

It is clear that the programmer could concentrate on the core me-
chanics implementation: checking for the user input and imposing
a thrust to the lunar module physics. With this approach we believe

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 68

class Thrust extends AbstractComponent {

@Inject
DynamicPhysics physics;

public CargoController() {
KeyManager.set("thrust", KEY_SPACE);

}

public void update(float tpf) {
if (KeyManager.isValidCommand("thrust"))

physics.addForce(Vector3f.UNIT_Y);
}

}

Code 10: Thrust component source code

one can write better code and achieve faster prototyping in a game
production pipeline without compromising a good design.

5 Conclusion

Data driven is a proved approach to manage risk during a game pro-
duction pipeline. Putting this together with a well-designed game
engine, a powerful architecture is achieved, as can be shown by
several successful engines and frameworks. However, object orien-
tation, especially components composition, has some issues with
maintainability of highly dependent instances. In this paper we
have presented a technique based on the Dependency Injection de-
sign pattern that safely removes this task from the programmer du-
ties.

There is a know myth in game production circles that it is impos-
sible to fast prototype and write well-designed code at the same
time. We firmly believe that by using the GCore framework one
can achieve very fast prototyping without giving up most good
programming practices. By using Dependency Injection we com-
pletely removed the hard-coded implicit dependencies, which are
so common in game objects scripting, from GCore components li-
brary, providing a powerful, extensible and safer tool.

GCore is a constant work in progress and we are now investigating
how to apply the technique to other scenarios in game design such
as dependencies between a component and any attribute from other
game objects and components. We plan to extend the use of annota-
tion to enable the programmer to apply constraints, such as not-null,
min/max values/lenght, to any primitive type attribute (plus files,
strings, vectors and quaternions). The short-term roadmap also in-
cludes a level-editor, which provides for the visual composition of
games freeing the level designer from the need to write XML spec-
ifications.

Acknowledgements

We would like to thank Scott Bilas for the meaningful discussions
about game object components dependency and other relevant is-
sues related to software engineering and current trends in game en-
gines development.

We are also very thankful to everybody over the JMonkeyEngine
discussion forums, specially the developers, always willing to help
with the accurate solutions on rendering, audio and physics that
made the GCore framework possible.

References

3DVIA. Virtools. http://www.virtools.com/.

BILLAS, S., 2002. A data-driven game object system. Talk at the
Game Developers Conference ’02.

BILLAS, S. 2003. The continuous world of dungeon siege. In
Proceedings of the Game Developers Conference ’03.

BILLAS, S., 2007. Optimizing the development pipeline - tools,
technology, process. Lecture at the CGA Casual Connect Eu-
rope: West 2007.

CRYTEK, 2008. Cryengine sandbox 2 manual.
http://doc.crymod.com/SandboxManual/.

DE MORAES ZAMITH, M. P., CLUA, E. W., CONCI, A., MON-
TENEGRO, A., PAGLIOSA, P. A., AND VALENTE, L., 2007.
Parallel processing between gpu and cpu: Concepts in a game
architecture.

EPICGAMES, 1998. Unrealscript language reference.
http://unreal.epicgames.com/UnrealScript.htm.

FOLMER, E. 2007. Component based game development - a so-
lution to escalating costs and expanding deadlines? In Compo-
nent Based Software Engineering, Springer, vol. 4608 of Lecture
Notes in Computer Science, 66–73.

FOWLER, M., 2004. Inversion of control con-
tainers and the dependency injection pattern.
http://www.martinfowler.com/articles/injection.html.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995.
Design patterns: elements of reusable object-oriented software.
Addison-Wesley Professional.

GARAGEGAMES. Torque game engine.
http://www.garagegames.com/.

HALLER, M., ZAUNER, J., AND HARTMAN, W. 2002. A generic
framework for game development. In In Proceedings of the ACM
SIGGRAPH and Eurographics Campfire ’02, ACM.

IMAGINATION, C. Jgn: Java game networking.
http://forum.captiveimagination.com/index.php/board,4.0.html.

JIN, K., 2007. Why and what of inversion of control.
http://www.pocomatic.com/docs/whitepapers/ioc/.

JMEPHYSICS. Jmephysics: interface between jme and physics en-
gines. https://jmephysics.dev.java.net/.

JMONKEYENGINE. Jmonkey engine 1.0 online documentation.
http://www.jmonkeyengine.com/.

MICROSOFT. Microsoft xna. http://www.xna.com/.

POCOMATIC, 2007. Pococapsule/c++ ioc and dsm framework.
http://www.pocomatic.com/docs/whitepapers/pococapsule-cpp/.

PONDER, M. 2004. Component-Based Methodology and Devel-
opment Framework for Virtual and Augmented Reality Systems.
PhD thesis, Ecole Polytechnique Federeale de Lausanne.

SPINOR. Shark 3d real time 3d software. http://www.shark3d.com/.

STOY, C. 2006. Game object component system. In Game Pro-
gramming Gems 6, Charles River Media, M. Dickheiser, Ed.,
393–403.

SWEENEY, T. 2006. The next mainstream programming lan-
guage: a game developer’s perspective. In POPL ’06: Con-
ference record of the 33rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, ACM, New York, NY,
USA, 269–269.

UNITYTECHNOLOGIES, 2008. Unity3d game engine 2.1.
http://unity3d.com/unity.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 69

Supermassive Crowd Simulation on GPU based on Emergent Behavior
Erick Baptista Passos

UFF, Medialab
Mark Joselli

UFF, Medialab
Marcelo Zamith
UFF, Medialab

Jack Rocha
UFF, Medialab

Esteban Walter Gonzalez Clua
UFF, Medialab

Anselmo Montenegro
UFF, Medialab

Aura Conci
UFF, Medialab

Bruno Feijo
PUC-RIO, ICAD Games

Figure 1: Screenshots of a boids simulation with variable number of entities

Abstract

Computing and presenting emergent crowd simulations in real-time
is a computationally intensive task. This intensity mostly comes
from the O(n2) complexity of the traversal algorithm needed for
the interactions of all elements against each other based on a prox-
imity query. By using special data structures such as grids, and the
parallel nature of graphics hardware, relevant previous works re-
duces this complexity by considerably factors, making it possible
to achieve interactive frame rates. However, existent proposals tend
to be heavily bound by the maximum density of such grids, which
is usually high, yet leading to arguably inefficient algorithms. In
this paper we propose the use of a fine grained grid and accompa-
nying data manipulation that leads to scalable algorithmic complex-
ity. We also implement a representative flocking boids case-study
from which we run benchmarks with more than 1 million simulated
and rendered boids at nearly 30fps. We remark that previous works
achived not more than 15,000 boids with interactive frame rates.

Keywords:: GPGPU, CUDA, Crowd Simulation, Cellular Au-
tomata, Flocking Boids

Author’s Contact:

epassos,mjoselli,mzamith,esteban,anselmo,aconci@ic.uff.br
jack.f.rocha@gmail.com
bruno@inf.puc-rio.br

1 Introduction

Visual simulations and 3D games are growing fast in terms of con-
tent and visual accuracy due to the increasing power of graphics
hardware and computers architecture. One consequence of this evo-
lution is that users expectations are now much more sensible when
it comes to judging if a simulated entity behavior is overall believ-
able. At the same time, visual applications that were only available
at not real time applications regarding to the technology limitations
are now becoming possible to run in real-time systems. For this
reason the seek for more detailed graphics and more realistic ap-
pearance have been a easy to grasp trend, but there has also been a
growing interest in more complex animation and Artificial Intelli-
gence algorithms.

While the real world environments can be composed by thousands,
or even millions of moving entities, a simulated one is usually con-
strained by a limited number of them. In a typical environment in
the nature one can find a huge number of different animals or even
cells interacting between them and with physics elements. This can
happen in very different situations, like in a sports arena that is full

of autonomous individuals, ants or bee communities or even cells
in a blood system. When simulating a similar virtual and real time
scene, bound by available computational power, it is common to
find a very limited number of independent entities, most of them
behaving very predictably. There are several approaches that aim
to include more unpredictable behavioral models in simulated en-
vironments, such as [Reynolds 1987; Musse and Thalmann 1997;
Shao and Terzopoulos 2005; Pelechano et al. 2007; Treuille et al.
2006].

On the other hand, given its computational requirements, visual im-
provements have been made possible by the clever use of evolving
parallel graphics hardware technology. Even being graphics content
driven, many today 3D applications have bottlenecks stipulated by
the CPU, which is responsible for non-graphics calculations. The
use of graphics processing units (GPUs) for general purpose com-
puting has become a new and interesting research area that contin-
uously gains attention from industry and also academia, in order to
resolve in a huge parallel architecture problems that are not related
to graphics. Behavioral Artificial Intelligence algorithms, although
traditionally sequential and executed on the CPU are sometimes
suitable, but not easily, to parallel execution. In dynamic emer-
gent crowd simulation, algorithms are driven by the need to avoid
the O(n2) complexity of the proximity queries between active enti-
ties. Several approaches have been proposed to cope with this issue
[Reynolds 2000; Chiara et al. 2004; Courty and Musse 2005] but
none of them has reached an ideal level of scalability. It is also im-
portant to notice that no work until the present date has proposed
the real time simulation of more than just a few thousands of com-
plex entities that interact with each other. Applications for such
technique ranges from crowd behavior prediction in case of a sta-
dium fire or street traffic simulation, interactions between different
blood cells and enrichment of computer game worlds.

GPUs are specialized devices for graphics computation, often com-
prising a set of SIMD (Single Instruction, Multiple Data) process-
ing units due to the parallel nature of this task. The constant de-
velopment of these devices, pushed mainly by the computer games
industry, turned them fast enough to be appropriate for solving other
computational intensive problems. The broad adopt of the term
GPGPU (General Purpose computation on GPUs) to name this new
field of research shows its importance. However, the first applica-
tions of GPUs to do general purpose computing had to rely on the
adaptation of graphics rendering APIs to different concepts, repre-
senting a difficult learning curve to developers. The CUDA technol-
ogy [NVidia 2007] aims to provide a new abstraction layer on top
of (former) graphics hardware to facilitate its use for non graph-
ical processing. While being an important tool to enable a faster
modeling of problems to a more general parallel machine concept,
CUDA abstracted hardware still is very specialized, carrying a dif-

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 70

ferent memory model, with huge impacts on the performance of the
developed application, depending on its memory access patterns.

GPUs are SIMD processors that take advantage of the streamed na-
ture of graphics computation, where the processing of each sub-
sequent pixel would require localized data from textures. This
specialized hardware uses a great deal of read-ahead and caching
techniques to accelerate this computation based in this localization.
There are rules of thumb to create efficient streamed applications,
the most important being to structure the data in a way to maxi-
mize memory reads based on locality and avoiding random writes.
These rules enable an efficient use of available cache memory and
read ahead mechanisms of these devices.

In this paper we propose a novel simulation architecture for crowds
of autonomous geometric entities that are based on a partially sorted
matrix. The entities are simulated as Cellular Automata with Ex-
tended Moore Neighborhood [Sarkar 2000] over this matrix, which
is ideal for the memory model of GPUs. The high performance and
scalability are achieved by a very low parallel complexity and in-
dependence of the sorting and simulation algorithms. We call this
architecture Supermassive Crowd Simulation. To model the data
structures and the simulation technique we use a traditional emer-
gent behavior model of flocking boids [Reynolds 1987] but the ar-
chitecture can be further extended to other simulation models that
rely dynamic autonomous entities.

The rest of the paper is organized as follows: Section 2 discusses
related work on general purpose computation on GPU and emer-
gent behavior models. Section 3 explains the data structures and
simulation steps while section 4 describes the particular behavior
model used to validate the proposed architecture. Section 5 brings
benchmark results and performance analysis compared to the same
simulation on a CPU. Finally, section 6 concludes the paper with a
discussion on future work.

2 Related work

This work has two different goals and contributions in crowd be-
havior simulation. The first one is to provide data structures and
an architecture that are suitable for believable modeling of observ-
able behavior in the real world. The second goal is to extract the
best performance possible of current hardware. These two goals
are shared among the majority of the cited research. Hence, this
section is organized in approximate chronological order.

The first known agent-based simulation for groups of interacting
animals is the work proposed by Craig Reynolds [Reynolds 1987],
in which he presented a distributed behavioral model to perform this
task. His model is similar to a particle system where each individual
is independently simulated and acts accordantly to its observation
of the environment, including physical rules such as gravity, and in-
fluences by the other individuals perceived in the surroundings. The
main drawback of the proposed approach is the O(n2) complexity
of the traversal algorithm needed to perform the proximity tests for
each pair of individuals. At the time, this was such an issue that
the simulation had to be run as an offline batch process, even for a
limited number of individuals. In order to cope with this limitation,
the author suggested the use of spatial hashing. This work also in-
troduced the term boid (abbreviation for birdoid) that has been used
to designate an individual in animal crowd simulations ever since.

Musse and Thalmman [Musse and Thalmann 1997] propose a
more complex modeling of human motion based on internal goal-
oriented parameters and the group interactions that emerge from
the simulation, taking into account sociological aspects of human
relations. Others include psychological effects [Pelechano et al.
2007], social forces [Cordeiro et al. 2005] or even knowledge and
learning aspects [Funge et al. 1999]. Shao and Terzopoulos [Shao
and Terzopoulos 2005] extend the latest including path planning
and visibility for pedestrians. It is important to mention that these
proposals are mainly focused on the correctness aspects of behav-
ior modeling. While serving as foundations on the subject, these
structures and algorithms are not suitable for real-time simulation
of very large crowds, which is one of the goals of this papers.

Reynolds further developed his behavioral model to include more

complex rules and to achieve the desired interactive performance
by the use of spatial hashing [Reynolds 2000; Reynolds 1999].
This implementation could simulate up to 280 boids at 60fps in a
playstation 2 hardware. By using the spatial hash to distribute the
boids inside a grid, the proximity query algorithm could be per-
formed against a reduced number of pairs. For each boid, only
those inside the same grid cell and at adjacent ones, depending on
its position were considered. This strategy led to a complexity that
is close to O(n). This complexity value, however, is highly depen-
dent on the maximum density of each grid cell, which can be very
high if the simulated environment is large and dense. We remark
that the complexity of our data structure is not affected by the size
of the environment or the distribution of the boids over it.

Quinn et al. [Quinn et al. 2003] used distributed multiprocessors to
simulate evacuation scenarios with up to 10000 individuals at 45fps
on a cluster connected by a gigabit switch. More recently, a simi-
lar spatial hashing data-structure was used by Reynolds [Reynolds
2006] to render up to 15000 boids in playstation 3 hardware at in-
teractive framerates, with reduced simulation rates of around 10fps.
Due to the distributed memory of both architectures, it is necessary
to copy compact versions of the buckets/grids of boids to the in-
dividual parallel processors before the simulation step and copying
them back at the end of it, leading to a potential performance bottle-
neck for larger sets of boids. This issue is evidenced in [Steed and
Abou-Haidar 2003], where the authors span the crowd simulation
over several network servers and conclude that moving individuals
between servers is an expensive operation.

The use of the parallel power of GPUs to this problem is very
promising but brings another issue, related to its intrinsic depen-
dency on data-locality to achieve high performance. For agent-
based simulation that relies on spatial hashing, it is desired that the
individuals should be sorted through the containing data-structure
based on their cell indexes. The work by Chiara et. al. [Chiara
et al. 2004] makes use of the CPU to perform this sorting. To avoid
the performance penalty, this sorting is triggered only when a boid
departs from its group, which is detected by the use of a scattering
matrix. This system could simulate 1600 boids at 60fps includ-
ing the rendering of animated 2D models. The FastCrowd system
[Courty and Musse 2005] was also implemented with a mix of CPU
and GPU computation that could simulate and render a crowd of
10000 individuals at 20fps as simple 2D discs. Using this simple
rendering primitive, the GPU was capable of simultaneously com-
puting the flow of gases on an evacuation scenario. We also make
use of the fact that groups tend to move as blocks in crowd simula-
tions and, as will be explained in next sections, use a parallel partial
sorting algorithm on the GPU to achieve even higher performance.

The simulation architecture and data-structures of [Treuille et al.
2006] depart from the agent-based models presented so far. It uses
a 2D dynamic field to represent both the crowd density and the ob-
stacles of the environment. The individuals navigate through and
according to this continuum field. It is argued that locally con-
trolled agents, while providing for complex emergent behavior, are
not an appropriate model for goal-driven individuals, such as hu-
man pedestrians. The implemented system could simulate up to
10000 humans at 5fps (without graphics) even with the inclusion
of a dynamic environment such as traffic lights. The continuum
field is an interesting approach but limits the environment to a pre-
determined size.

Our architecture stores the entities/boids data over a matrix, with
an individual cell corresponding to exactly one boid and the sim-
ulation occurring in parallel on the GPU. In the implemented sys-
tem, each boid is modeled as an agent that, based on an Extended
Moore Neighborhood [Sarkar 2000], perceives a constant number
of other surrounding boids. This cellular automaton model matches
perfectly with the data-locality dependency of graphics hardware
but imposes that boids data have to be kept spatially sorted over the
matrix during simulation. Our proposal, such as most of the above
work, is based on distributed agents to yield emergent behavior, but
the novel data-strutures is prepared for unlimited environment size
and better scalability.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 71

3 Simulation Architecture

Individual entities in crowd behavior simulations depend on obser-
vations of their surrounding neighbors in order to decide actions
to take. The straightforward implementation of the neighborhood
finding algorithm has a complexity of O(n2), for n entities, since
it depends at least on distance tests performed for all entity pairs
in the crowd. Individuals are autonomous and move during each
frame, which leads to a very computationally expensive task.

Techniques of spatial subdivision have been used to group and sort
these entities to accelerate the neighborhood finding task. Current
implementations are usually based on variations of relatively coarse
Voronoi subdivisions, such as a grid. After each update, all enti-
ties have their grid cell index calculated. For GPU based solutions,
some kind of sorting has to be performed, so geometric space neigh-
bors are grouped together in the used data structure. However, static
Voronoi structures have some limitations related to the simulation
of very large geometric spaces, where each cell node may have a
large number of entities inside. This issue makes the neighborhood
finding problem again limited by a hidden O(n2) complexity fac-
tor.

Our architecture is built around a fine grained dynamic data struc-
ture that is used to store information about all entities and is sorting
a simulation agnostic, meaning one can use it with different sort-
ing strategies and simulation algorithms. The following subsections
describe these data structures, the role of sorting and the types of
simulation algorithms suitable to the proposed architecture.

3.1 Neighborhood Matrix

The proposed architecture was developed with the CUDA technol-
ogy [NVidia 2007], in order to keep the process entirely at the
GPU. To assure the desired high performance, all information about
entities is organized in matrixes that are mapped as textures. Fol-
lows the minimum information required for each entity: Position -
a 2D vector, representing the position of the entity; Speed - a vector
for storing the direction and velocity in a single structure; Type - an
integer that can be used to differentiate entity classes.

These entities information are stored in matrixes, where each in-
dex contains values for an individual entity. Since is possible to be
required a variable number of data about the entities, it may be nec-
essary to use more than one matrix. However it is a good practice to
avoid wasting GPU memory by sharing vectors to store more than
one single piece of information in each index.

The matrix containing the position vector for the entities is then
used as a sorting structure. In Figure 2, one can see an example of
such matrix where information about the position of 36 individual
entities. To reduce the cost of proximity queries, each entity will
have access to the ones surrounding its cells based on a given radius.
In the example, the radius is 2, so the entity represented at cell (2,2)
would have access to its 24 surrounding entities only. In Cellular
Automata, this form of information gathering is called Extended
Moore Neighborhood [Sarkar 2000].

Boid

Extended Moore Neighborhood
Radius = 2

Figure 2: Neighborhood matrix

This structure enables the exact prediction of the performance,
since the number of proximity queries will be constant over the sim-
ulation. This happens because instead of making distance queries,
taking as parameters all entities inside its own coarse Voronoi cell

and the ones in the adjacent regions, as in traditional implementa-
tions, each entity would query only a fixed number of surrounding
individual matrix cells. However, this matrix has to be sorted con-
tinually in such a way that neighbors in geometric space are stored
in cells close to each other. This guarantees that this extension of
cellular automata may gather information about close neighbors.

One can notice that the use of a matrix is tied to the two dimen-
sions of this particular case. For a 3D simulation the data structure
could be a 3 dimensional array, with no loose of generality, sim-
ilar to the usage of quadtrees or octrees in other applications of
spatial subdivisions. Since in this work the implementation of ev-
ery entity is mapped to one CUDA thread in both the sorting and
simulation steps, it is important to mention that these matrixes are
double buffered, so that each of these tasks does not write data over
the input structures that can still be read by other CUDA threads.

3.2 Sorting Pass

The matrix that stores position information is used to perform a
topological sorting over two dimensions of these vectors. The goal
is to store in the top-leftmost cell of the matrixes the entity with
the smaller values for X and Y, and the bottom-rightmost cell to
the entity with highest values of X and Y respectively. Using both
values to sort the matrix, the top lines will be filled with the entities
with higher values of Y while the left columns will store those with
lower values for X and so on. This kind of sorting allows builds
automatic approximate proximity query based on data locality.

When performing a sorting over an one dimension array of float
point values, the rule is that given an array A, the following rule
must apply at the end:

• ∀A[i] ∈ A, i > 0⇒ A[i− 1] ≤ A[i].

Extending this rule to a matrix M where each cell has two float
point values X and Y:

• Eq.1: ∀M [i][j] ∈M, j > 0⇒M [i][j−1].X ≤M [i][j].X;

• Eq.2: M [i][j − 1].X = M [i][j].X ⇒ M [i][j − 1].Y ≤
M [i][j].Y ;

• Eq.3: ∀M [i][j] ∈M, i > 0⇒M [i− 1][j].Y ≤M [i][j].Y ;

• Eq.4: M [i − 1][j].Y = M [i][j].Y ⇒ M [i − 1][j].X ≤
M [i][j].X;

The pass must be divided into four steps, one for odd and one for
even elements for each of both directions. The first step runs the
sorting between each entity position vector of the even columns
against its immediate neighbor in the subsequent odd column, based
first on the values of the X component. If it rules of Eq.1 or Eq. 2
are violated, the entities switch cells in the matrixes. It is important
to notice that not only the cells in the position matrix have to be
switched, but all data that is kept at the others as well, otherwise
a violation of the data structure will occur. The other three sorting
steps perform the same operation for even columns, odd lines and
even lines, respectively.

As shown above, the sorting has to be performed in both direc-
tions. This process is sorting agnostic, which means that it is pos-
sible to use different sorting strategies, as long as the rules above
are eventually or partially achieved during simulation. A partial
sorting strategy was tested using only one pass of a parallel im-
plementation for the odd-even transposition sort algorithm at each
simulation step. The odd-even transposition sort is similar to the
bubble sort algorithm and is possible to complete the pass, travers-
ing the whole data structure, in a O(n) sequential time. Because
there are two steps, one for odd and other for even elements, this
algorithm is suitable for parallel execution. In Figure 3 it is shown
a schematic presentation of a complete odd-even transposition sort
pass.

As seen from Figure 3, the four-step pass does one sort for odd and
one for even elements on both directions. The first step runs the
sorting between each entity position vector of even columns against
its immediate neighbor in the subsequent odd column based first on
the values of the X component. If it happens that sorting rules 1 or 2

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 72

Sorting Steps
Odd columnsEven columns Odd linesEven lines

Figure 3: Partial sorting pass with 4 odd-even transposition steps

are violated, the entities switch cells in the matrixes. It is important
to notice that not only the position vector have to be switched, but
all data that is kept at the matrixes, otherwise violating the safety of
the data structure. The other three sorting steps perform the same
operation for even columns, odd lines and even lines, respectively.

At the present work it was sufficient to run only one complete odd-
even pass for each simulation frame because we initialized the po-
sition matrix in an ordered state and, the flocking nature of the sim-
ulation algorithm imply that the entities do not overlap positions
frequently. In practice, this means that in a very few simulation
steps, the matrixes correctly represent the proximity relations be-
tween them. Depending on the simulation being performed, it may
be necessary to perform a complete sorting at each frame step. In
this case, it is recommended a sorting algorithm with better worst
case complexity, such as a parallel merge sort. However, for all
test scenarios built in this work, the incomplete odd-even transposi-
tion pass was enough to sustain a approximately correct simulation,
with no visual noticeable artifacts, and with a parallel complexity
(and performance) of O(1) against O(log n) of a complete sorting
based on a parallel merge sort.

3.3 Simulation Pass

The simulation pass can perform any kind of crowd emergent be-
havior of entities that are constrained to the knowledge of data from
their neighborhood, such as flocking boids or even dynamic fluids.
This pass must be implemented as a CUDA kernel function that
receives as arguments at least the neighborhood matrixes (double
buffered as input and output) and the time passed since the last step.

4 Case-Study: Flocking Boids

For the purpose of this work, we chose to validate the proposed
technique by implementing a well known distributed simulation al-
gorithm called, flocking boids [Reynolds 1987]. This is a good
algorithm to use because of its good visual results, proximity to
real world behavior observation of animals and understandability.
The implementation of the flocking boids model using our algo-
rithm enables a real time simulation of up to one million animals of
several species, with a corresponding visual feedback. The number
of different species is limited only by the number of animals in the
simulation.

Our model simulates a crowd of animals interacting with each other
and avoiding random obstacles around the space. This simulation
can be used to represent from small bird flocks to huge and complex
terrestrial animal groups or either thousand of hundreds of different
cells in a living system. Boids from the same type (representing the
species) try to form groups and avoid staying close to the other type
of species. The number of simulated boids and types is limited only
by technology but, as demonstrated in the next section, our method
scales very well due to the data structures used. In this section we
focus at the extension of the concepts of cellular automata in the
simulation step, in order to represent emergent animal behavior.

To achieve a believable simulation we try to mimic what is observ-
able in nature: many animal behaviors resemble that of state ma-
chines and cellular automata, where a combination of internal and
external factors defines which actions are taken and how they are
made. A state machine is used to decide which actions are taken.

The actions themselves performed by a cellular automaton algo-
rithm. With this approach, internal state is represented by the boid
type and external ones corresponds to the visible neighbors, de-
pending from where the boid is looking at (direction), and their
relative distances.

Based on this ideas, our simulation algorithm uses internal and
external states to compute these influences for each boid: Flock-
ing (grouping, repulsion and direction following); leader following;
and other boid types repulsion (used also for obstacle avoidance).
Additionally, there are multiplier factors which dictate how each in-
fluence type may get blended to another, in each step. In order to
enable a richer simulation, these factors are stored independent for
each type of boid in separate arrays. These arrays are indexed by
the boid type, meaning that the element at position 1 represents the
information that the array keeps for all boids of type 1. These ar-
rays size corresponds to the number of different boid types. Below
is a summary of the information kept for each boid type:

• Multiplier factors, one for each type of influence;

• Neighborhood matrix cell index for the leader of the type.

4.1 Vision

In nature, each animal species has a particular eye placement,
evolved based on its survival needs such as focusing on a prey or
covering a larger field of view to detect predators. To mimic this
fact, our boids have a limited field of view, parameterized by an
angle. Obstacles and other boids outside this field of view are not
considered in the simulation. Figure 4 shows a comprehensible rep-
resentation of this field of view.

Visible Area

Invisible Area

Figure 4: The visual field of a boid

When two boids are very close to each other, up to collide, corre-
sponds to a special case where a boid takes into account a neighbor
even if it is outside of the its field of view. If collisions where
allowed to happen, the simulation could become unstable since
neighbor boids comming from behind would suddently appear in
front of another. It is possible to think of this as a collision detec-
tion for a prevention system, having the same effect as a movement
made by animals that, even not seeing each other, would have got-
ten into a sudden contact.

4.2 Flocking Behavior

A boid keeps on moving by watching his visible neighbors and de-
ciding what direction to take next. Each neighbor influences this di-
rection in different conflicting manners, depending on its type and
distance from the simulated boid. From neighbors of the same type,
the simulated one receives three simulateous influences: grouping,
repulsion and direction following.

4.2.1 Grouping Influence

By grouping we mean the tendency that animals from the same
species have to keep forming relatively tight groups. To simulate
this behavior we compute the group center position by averaging
the positions of all visible neighbors of the same type as the one
being simulated. This grouping influence will be multiplied by a
grouping factor, unique for each type, and by the distance from the
centre. The last factor will make the influence stronger to boids that
are far from the group. Figure 5 illustrates grouping and repulsion
influences.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 73

4.2.2 Repulsion Influence

If only the grouping influence was taken into account, boids would
tend to form very dense groups, resulting in very frequent colli-
sions, not representing what we see in nature. To balance this
grouping tendency a collision avoidance influence is computed. For
each simulated boid, the relative distance to its neighbors is com-
puted and divided by its lenght. This weighted vector is then mul-
tiplied by a specified repulsion factor and added as an influence to
the desired motion vector. One can notice that the parameterized
factors of both the grouping and distance influences play a major
role in determining the density of the groups, since one cancels
each other at a certain distance when equilibrium is reached be-
tween them.

Grouping Repulsion

Figure 5: Grouping and repulsion influences

4.2.3 Direction Following Influence

Besides the tendency of forming groups, animals also tend to fol-
low the same direction as its companions. To achieve this behavior
we compute another influence every time a boid sees a neighbor
of the same type. This influence is represented by the current ve-
locity/direction followed by the neighbor. Figure 6 exemplifies this
influence.

4.3 Leader Following

Besides from recognizing its neighbors of the same type and trying
to move as a group, each type may have a leader to follow. Nor-
mal boids, when see the leader, have a stronger desire to follow it,
represented by a larger multiplier factor, that gets blended with the
other computed influences. Each leaders is simulated at the same
time as normal boids but also being identified as such and acting
accordingly. However, the movement of this leader is not driven
by the desire to keep grouping, but only trying to reach a desired
location and avoiding obstacles and other boid groups.

Inside the data structures, the leaders are represented as normal
boids. There is a small auxiliary array keeping the current matrix
index exclusively for the leaders of each boid type. The array size is
the number of different boid types. Element n of this array contains
the cell index of the leader for the boids of type t. To be correct
along the time, this array must be updated by the sorting pass if any
of the leaders change its cell.

Direction Leader

Figure 6: Direction and leader following

During the simulation step, for each boid the leaders array value for
its type is fetched and the value returned identifies the leader index
inside the matrixes. If the returned index corresponds to the boid
being simulated, it means that corresponds to the group leader and
follows to an alternative and more random simulation algorithm.

For normal boids, this leader index is used to fetch its position and
direction, so that the correct influence can be computed.

4.4 Obstacles, Enemies and Influences Composi-
tion

In this work, obstacles are also represented as boids inserted in the
same data structures, also being sorted and simulated. To avoid
movement during the simulation step, obstacles are initialized with
a different type value, and are not simulated. However, if a neigh-
bor of a specific simulated boid happens to be an obstacle, the only
influence calculated a is repulsion force. This force is then mul-
tiplied by a factor that is stored in the unused direction vector of
this still obstacle-boid, enabling the representation of obstacles of
arbitrary sizes with a round repulsion field. Neighbors of different
types that are not obstacles also have a strong repulsion influence
calculated, but the multiplier factor is kept at the simulated boid
type, representing an enemy-fearness factor. All calculated influ-
ences are added into an acceleration vector that is used to update
the position and direction/speed vectors.

5 Performance and Analysis

In this work, we evaluated two versions of the described simula-
tions. While the first was completely executed at the GPU, the
second was built for the CPU. Both versions used the same partial
sorting strategy, based on a single pass of the odd-even transposi-
tion sort algorithm. The tests were performed on an Intel Core 2
Quad 2.4GHz CPU, 4GB of RAM equipped with an NVidia 8800
GTS GPU. Each instance of the test ran for 300 seconds. The aver-
age time to compute a frame was recorded for each one. To assure
the results are consistent, each test was repeated 10 times.

A total of 8 different test instances were executed for each imple-
mentation type varying only the number of boids, ranging from 64
up to 1,048,576. At preliminary tests, we observed that the num-
ber of boid types had little influence on the performance, so a fixed
number of 8 types was used. Figure 7 brings a summary of the re-
sults showing how both implementations scale with the increasing
number of simulated boids. As expected, the CPU version presents
an early quadratical behavior, with more than one second to calcu-
late and render each frame when more than 250,000 boids where
present, which is another evidence of the better scalability of our
GPU implementation.

 0

 200

 400

 600

 800

 1000

 100 1000 10000 100000 1e+06

T
im

e
(m

s)

Number of boids

Average frame simulation time

GPU
CPU

Figure 7: CPU vs. GPU implementations

From the raw results, shown in Table 1, it is possible to see that
the performance of the GPU implementation bypassed the CPU at
around 250 boids and sustained interactive frame rates for more
than 250,000 boids. Impressive 25fps are achieved for a population
of more than 1 million boids. In our performance experiments, each
boid was rendered as a single point on the screen, which enabled us
to measure the cost of the simulation steps in CUDA, instead since
the rendering of complex models and other backgroung elements

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 74

Table 1: Raw results

of boids time GPU fps GPU time CPU fps CPU
64 1,06 946,13 0,30 3307,90
256 1,08 929,89 1,38 689,85
1024 1,11 904,07 5,56 174,40
4096 1,22 822,57 22,53 43,84
16384 1,66 594,86 89,89 10,92
65536 3,50 280,02 361,27 2,67
262144 9,67 101,96 1390,29 0,66
1048576 38,96 25,45 5394,65 0,17

would make this task the performance bottleneck. Figure 8 shows a
screenshot of a running simulation with 65536 flocking boids at an
average framerate of 280fps.

Figure 8: Simulation with 64K boids

6 Conclusion

In this paper we showed a novel technique for simulating emergent
behavior of spatial dynamic entities called Supermassive Crowd
Simulation. We showed an implementation capable of running up
to 1,048,576 autonomous flocking boids at an interactive frame rate
using current graphics hardware and CUDA technology. The data
structures are suitable for several different simulation algorithms as
long as they can be modeled as cellular automata.

As future work we plan to extend this model to include the repre-
sentation of more complex geometric obstacles such as buildings or
mazes. These augmented data structures and more complex algo-
rithms are being developed in order to have more complex 3D boids
representation and consequently more realistic simulations. The
project is being built as a crowd simulation library where users can
just plug in sorting and simulation strategies. Today our strategies
do not take into account time required for rendering complex geom-
etry. However, simple experiments are showing that more polygons
for each boid will not compromise to much the achieved perfor-
mance.

We also plan to further analyse the complexity of the data struc-
tures. We are specially interested in the distribution of perturbations
of the sorting rules during simulation when applying partial sorting
strategies such as the odd-even transposition sort pass used in the
presented example. This analysis will not be limited to the neigh-
borhood matrix presented but extended to tridimensional arrays.

References

CHIARA, R. D., ERRA, U., SCARANO, V., AND TATAFIORE, M.
2004. Massive simulation using gpu of a distributed behavioral
model of a flock with obstacle avoidance. In VMV, 233–240.

CORDEIRO, O. C., BRAUN, A., SILVEIRA, C. B., AND MUSSE,
S. R. 2005. Concurrency on social forces simulation model.
In Proceedings of the First International Workshop on Crowd
Simulation.

COURTY, N., AND MUSSE, S. R. 2005. Simulation of large crowds
in emergency situations including gaseous phenomena. In CGI
’05: Proceedings of the Computer Graphics International 2005,
IEEE Computer Society, Washington, DC, USA, 206–212.

FUNGE, J., TU, X., AND TERZOPOULOS, D. 1999. Cognitive
modeling: Knowledge, reasoning and planning for intelligent
characters. In Siggraph 1999, Computer Graphics Proceedings,
Addison Wesley Longman, Los Angeles, A. Rockwood, Ed., 29–
38.

MUSSE, S. R., AND THALMANN, D. 1997. A model of human
crowd behavior: Group inter-relationship and collision detection
analysis. In Workshop Computer Animation and Simulation of
Eurographics, 39–52.

NVIDIA, 2007. Cuda technology. http://www.nvidia.com/cuda.

PELECHANO, N., ALLBECK, J. M., AND BADLER, N. I. 2007.
Controlling individual agents in high-density crowd simula-
tion. In SCA ’07: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
99–108.

QUINN, M. J., METOYER, R. A., AND HUNTER-ZAWORSKI, K.,
2003. Interaction with groups of autonomous characters.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. In SIGGRAPH ’87: Proceedings of the 14th
annual conference on Computer graphics and interactive tech-
niques, ACM, New York, NY, USA, 25–34.

REYNOLDS, C. 1999. Steering behaviors for autonomous charac-
ters. In Game Developers Conference.

REYNOLDS, C. 2000. Interaction with groups of autonomous char-
acters. In Game Developers Conference.

REYNOLDS, C. 2006. Big fast crowds on ps3. In sandbox
’06: Proceedings of the 2006 ACM SIGGRAPH symposium on
Videogames, ACM, New York, NY, USA, 113–121.

SARKAR, P. 2000. A brief history of cellular automata. ACM
Comput. Surv. 32, 1, 80–107.

SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous
pedestrians. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
ACM, New York, NY, USA, 19–28.

STEED, A., AND ABOU-HAIDAR, R. 2003. Partitioning crowded
virtual environments. In VRST ’03: Proceedings of the ACM
symposium on Virtual reality software and technology, ACM,
New York, NY, USA, 7–14.

TREUILLE, A., COOPER, S., AND POPOVIĆ, Z. 2006. Continuum
crowds. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers,
ACM, New York, NY, USA, 1160–1168.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 75

Uma Engine em XNA e Prolog para Apoio ao Ensino
de Programação Declarativa

Alex F. V. Machado Esteban W. Clua *Flavio S. C. da Silva Marcelo da S. Corrêa

Universidade Federal Fluminense (UFF) *Universidade de São Paulo (USP)

Fig. 1: Interface do PNA Game Engine com a visualização de uma instância do jogo do template River Raid.

Abstract

This work presents a novel game oriented tool which
can motivate the teaching of declarative languages
programming (Fig. 1). It uses the P# compiler [COOK
2003, COOK 2, 2003] as a middleware between the
Prolog and the C# languages, allowing the usage of the
XNA library for the creation of games as a base for
developing applications focused on declarative
languages.

Keywords: Prolog, XNA, teaching

1. Introdução

Conforme apresentado em [SILVA & MELO 2006], a
programação declarativa e a programação imperativa
se fundamentam em modelos de computação que,
embora matematicamente equivalentes, enfatizam
conceitos distintos. A programação imperativa se
baseia no conceito de máquinas de estados, e se presta
melhor à resolução de problemas que conceitualmente
sejam melhor caracterizados dessa forma. Já a
programação declarativa se baseia no conceito de
reapresentação de teorias formais, e muitos problemas
difíceis de serem resolvidos imperativamente em
linguagens como VB, C++ e Java podem se tornar
simples com o uso do paradigma declarativo. Não há
muitos esforços registrados na literatura no que se
refere a compatibilizar sistemas de programação
declarativa com plataformas de desenvolvimento
modernas, fundamentalmente construídas visando o
atendimento de linguagens imperativas. Por exemplo,
não existem esforços no sentido de criar uma interface
PROLOG para uma ferramenta de desenvolvimento
como o Visual Studio, possibilitando a sua integração à
plataforma .Net. De fato, a criação de um sistema
completo nesta linguagem para a plataforma .Net pode

trazer complicações de design, pois a programação em
lógica não possui uma estrutura para a criação de
sistemas complexos de back-end compatível com as
estruturas existentes e já implementadas no Visual
Studio. Como conseqüência, o aprendizado de técnicas
de programação declarativa pode se tornar mais árido
que o aprendizado de programação imperativa.

Uma das ferramentas mais conhecidas para apoiar o
ensino de programação através do desenvolvimento de
jogos é o Robocode [HARTNESS 2004]. Ele permite o
exercício de conteúdos teóricos de forma prática em
aulas de inteligência artificial. Em [HARTNESS 2004]
demonstra-se que os alunos destas aulas foram capazes
de compreender melhor a teoria e adquiriram maior
confiança para implementar seus códigos.

Neste trabalho é proposto e documentado um
sistema, denominado PNA Game Engine, que utiliza a
programação em lógica como entrada para a definição
do comportamento inicial de um jogo desenvolvido
utilizando a biblioteca XNA. Esta ferramenta tem
como finalidade auxiliar o docente no processo de
ensino-aprendizagem, motivando o estudo deste
paradigma por permitir também a geração de
elementos visuais em jogos a partir de programas
declarativos simples em PROLOG.

Esse sistema disponibiliza templates para jogos
(com modelos 2D e 3D prontos, mas com as classes
principais sem instanciação) que podem ser acessados
através de uma API batizada de PNA (Pna is Not an
Acronym) pela interface em PROLOG.

O artigo está organizado da seguinte forma: a seção
2 apresenta uma justificativa para o uso de PROLOG
no ensino de computação e as várias maneiras de como
esta linguagem pode ser utilizada para o
desenvolvimento de jogos. Ainda nesta seção faz-se

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 76

uma revisão sobre uma ferramenta similar à proposta
do presente trabalho. Na seção 3 são detalhadas as
principais tecnologias presentes no desenvolvimento
deste software, em especial a plataforma .Net, a
integração de XNA com formulários e o compilador
P#. Na seção 4 demonstra-se a aplicação dessas
tecnologias no processo de desenvolvimento do PNA
Game Engine e seus principais componentes e
funcionalidades. Nas sessões 5 e 6 são apresentadas
algumas conclusões e trabalhos futuros.

2. Visão Geral Sobre Prolog

A linguagem de programação PROLOG possibilita
resolver problemas lógicos através da programação em
um computador. Ela foi desenvolvida na década de 70,
visando especificamente a formalização e resolução de
certos problemas de lingüística computacional, e seu
uso posteriormente se estendeu para outras áreas em
que a programação declarativa e a caracterização
conceitual de problemas baseada em lógicas formais –
clássicas ou não clássicas – se mostrasse conveniente
[SILVA & MELO 2006]. Dentre muitos problemas da
vida real, que podem ser modelados por meio de
linguagens lógicas, destacamos os jogos de
computador. As características do PROLOG
associadas às características estratégicas de um jogo
proporcionam um ambiente adequado para a
programação declarativa, especificamente a
fundamentada em uma modelagem baseada em
inferências lógicas.

Nesta seção será justificada a relevância do ensino
de PROLOG, assim como sua área de aplicação no que
diz respeito ao desenvolvimento de jogos de
computador.

2.1 Vantagens do Ensino de Prolog

Além do fato de a linguagem de programação
PROLOG ser adotada por muitos docentes da área de
inteligência artificial, o ensino desta linguagem possui
diversas outras vantagens [PALAZZO 1997], tais
como:

• Aprendizado mais fácil e natural em
comparação com as linguagens imperativas;

• Permite a implementação de sistemas
reflexivos;

• Libera o aluno dos problemas associados ao
controle de suas rotinas, permitindo-lhe
concentrar-se nos aspectos lógicos da situação
a representar.

• Exercita fundamentos de linguagens de
especificação.

• Facilita a implementação de regras
gramaticais de gramáticas livres de contexto.

• Permite o estudo avançado de recursividade
através de mecanismos simples como
backtracking, cut e fail.

No presente trabalho, destaca-se a contribuição do
uso e desenvolvimento de jogos, a partir de técnicas de
programação em lógica, para o processo de
aprendizagem de PROLOG e programação declarativa.

2.2 Prolog Aplicado a Jogos

O uso de linguagens imperativas muitas vezes inibe o
programador de usufruir das vantagens que a
programação declarativa pode oferecer ao
desenvolvimento de aplicações.

O desenvolvimento de um engine que permita
visualizar os resultados de uma rotina declarativa sem
a necessidade de implementação das funções
imperativas fundamentais presentes em um jogo (como
gerenciamento dos dispositivos gráficos, controle do
teclado e carga dos arquivos de imagem), pode
aumentar a motivação do aluno para o estudo de
linguagens e ambientes de programação que permitam
obter tais facilidades.

Podem-se destacar três grandes áreas para uso de
PROLOG no desenvolvimento de jogos: controle da
lógica, sistemas especialistas e criação de diálogo.

2.2.1 Controle da lógica

A programação em lógica é constituída por dois
elementos principais: a lógica e o controle [PALAZZO
1997]. O componente lógico corresponde à definição
(especificação) do que deve ser solucionado, enquanto
que o componente de controle estabelece como a
solução pode ser obtida. A estrutura lógica é
responsável por gerar a base de conhecimento e a
estrutura de controle coordena o entendimento sobre a
mesma. É necessário somente descrever o componente
lógico de um programa, deixando o controle da
execução ser exercido pelo sistema de programação em
lógica que se está utilizando. Portanto a tarefa do
desenvolvedor passa a ser simplesmente a
especificação do problema que deve ser solucionado,
razão pela qual as linguagens lógicas podem ser vistas
simultaneamente como linguagens para especificação e
linguagens para a programação de computadores.

Trazendo o conceito de lógica e controle para os
jogos podemos definir, respectivamente, o ambiente e
o comportamento dos elementos. Por exemplo, em um
jogo do estilo plataforma os obstáculos poderiam ser
gerados seguindo um princípio lógico na base de dados
de informação de posições e definir a IA de ações dos
inimigos usando a estrutura de controle que analisará
essa base lógica.

2.2.2 Sistemas especialistas

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 77

Um sistema especialista resolve problemas que
normalmente são solucionados por pessoas
especializadas. Ele recebe uma entrada do usuário,
analisa as possíveis respostas da base de conhecimento
e, dependendo da resposta, pode exigir uma nova
entrada do usuário, repetindo este processo até uma
solução ser obtida.

O estudo e a criação de sistemas especialistas
representam uma das subdivisões mais importantes das
linguagens de programação em lógica, bem como dos
jogos com inteligência artificial. Pode-se criar, por
exemplo, as possíveis ações de um NPC (non-player
character, ou personagem sem-jogador) que pode
variar com as ações do player (personagem controlado
pelo jogador).

2.2.3 Criação de Diálogo

A maior parte dos jogos eletrônicos, e principalmente
os do gênero RPG (Role Playing Game), necessitam de
diálogo entre os NPCs e o player. Em [LEBBINK,
WITTEMAN & MEYER 2004] é apresentado um
sistema multi-agentes de diálogo para jogos que
permite a análise semântica das sentenças através de
um motor escrito em PROLOG.

 A criação de diálogos entre players e personagens
do mundo virtual representa uma das principais áreas
de estudo da aplicação de PROLOG para jogos
[LEBBINK, WITTEMAN & MEYER 2004].

2.3 Ferramentas de Programação Gráfica para
o Ensino de PROLOG

Em [SILVA & SILVA 2006] foi apresentado um
sistema com um ambiente virtual 3D, animações e
interação com múltiplos agentes, para permitir que
alunos de graduação exercitem a programação lógica.

Para tanto foram utilizados:
• Uma interface para a interação entre

programas em PROLOG e programas em
C++;

• O engine 3D Ogre para a visualização de
ambientes virtuais tridimensionais,
controlados por programas em C++;

• O interpretador SWI PROLOG para a
construção e execução de programas em
PROLOG.

O trabalho mostra, através de experimentos em
sala, que o desenvolvimento de programas em
PROLOG com visualização gráfica do comportamento
dos mesmos representa uma valiosa ferramenta para
docentes que desejam motivar os alunos no
aprendizado de inteligência artificial, lógica formal e
programação declarativa.

3. Tecnologias para a Criação da
Ferramenta Proposta

Toda tecnologia utilizada na ferramenta proposta é
gratuita, de forma a facilitar seu uso em fins
acadêmicos. Além de programas e linguagens da
plataforma .Net, incluem-se rotinas para integração do
XNA em formulários, DLL do compilador P# e a
própria linguagem PROLOG.

3.1 Tecnologias Microsoft

Optou-se pela plataforma Microsoft Visual Studio
.NET como principal ferramenta de desenvolvimento,
por ser uma ferramenta RAD (Rapid Application
Development) e permitir a interoperabilidade entre
múltiplas linguagens [LIBERTY 2001].

Dentre as principais linguagens suportadas por esta
plataforma, escolheu-se C# por ser uma linguagem
orientada a objetos similar ao JAVA (mas com
determinadas configurações extras, herdadas do C++) e
por ser a única a trabalhar com XNA.

O XNA (XNA is Not an Acronym) Game Studio
Express é uma API da plataforma .Net que permite
fácil acesso aos periféricos (como o teclado), ao
hardware gráfico, controle de áudio e armazenamento
de informações (em arquivos ou banco de dados)
[CREATORS CLUB 2008]. Essa API pode também
ser usada como base para o desenvolvimento de jogos
para o console XBox 360.

Outra ferramenta importante do framework da
Microsoft é o CSC (C-Sharp Compiler), aplicativo
stand alone que é chamado para compilar classes .cs
em arquivos executáveis (.exe) ou DLL’s através de
uma linha de comando.

3.2 XNA em Formulários

O PNA Game Engine foi desenvolvido utilizando os
formulários do Visual Studio e a linguagem XNA.
Estes formulários permitem de forma fácil e rápida a
criação de menus de configuração e de uma interface
amigável para o aluno. Entretanto, a união dessas duas
tecnologias não é um procedimento nativo da
plataforma. A dificuldade reside no fato do gerenciador
de dispositivos gráficos do XNA criar sua própria
janela e não cooperar com a janela normal dos
formulários do Visual Studio. Isto exige ao
desenvolvedor criar seu próprio código de gerência de
dispositivo gráfico.

Existem dois caminhos para se criar um projeto do
Visual Studio que use formulários da plataforma. Net e
o XNA framework:

• Criar um novo projeto de aplicação do
windows com formulário e referenciar as
DLL’s do XNA nele; ou,

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 78

• Criar um novo projeto de jogo do windows e
referenciar uma diretiva para uso de
formulários (opção adotada neste artigo).

As principais etapas para a integração do
formulário no Windows Game Project no Visual Studio
são:

1. Preparação do ambiente a partir de um novo
Windows Game, substituindo a classe
principal por um formulário.

2. Criação de um componente para exibição do
conteúdo do XNA através de um User
Control.

3. Criação de um procedimento para atualizar a
cada momento o gráfico contido no User
Control.

4. Criação de um procedimento no formulário
para gerenciar o dispositivo gráfico. Ele
possui duas funções principais, o Draw() para
renderizar o conteúdo e o Blit() para aumentar
a eficiência, pois este limitará o código de
visualização para ser executado somente
quando exigido, uma vez que armazena todo
resultado de cada renderização em uma
textura para evitar que a próxima renderização
do frame comece do zero.

5. Criação da função RenderToTexture() para
configurar o dispositivo gráfico para usar o
render target e o depth buffer, de forma a
esvaziar os buffers, desenhar a tela e adquirir
o resultado em forma de textura.

6. Criação do método principal do controle do
comportamento do jogo em uma linha do
tempo. Para tanto é criado um conjunto de
funções para usar do game loop do XNA no
evento OnIdle() do formulário. Neste
procedimento de repetição é incorporado as
funções de Update() e Draw(), nesta ordem.

Portanto estas etapas têm por objetivo criar um
componente capaz de simular o ambiente de
desenvolvimento do XNA (por implementar os
métodos Draw() e Update() entre outros) integrado ao
código do formulário do Visual Studio.

3.3 O Compilador P#

O compilador P# [COOK 2003] foi desenvolvido a
partir do projeto do PROLOG Café [BANBARA &
TAMURA 1999] para produzir C# ao invés de Java a
partir de um script PROLOG. Ele pode ser usado de
forma stand alone para testar, executar ou gerar
aplicações a partir de códigos PROLOG, ou como um
módulo (uma única DLL) para compilar arquivos
PROLOG em classes C#. Quando um código
PROLOG é compilado no P#, ele gera uma classe para
cada predicado definido. A convenção usada no nome
do arquivo gerado é:

NomeDoPredicado_NumeroDeArgumentos.cs
(Ex.: Pai_2.cs)

Quando o assembly do módulo P# é usado em uma
aplicação C# ele dispõe de diversas classes para o
desenvolvedor comunicar com os predicados e
configurações do lado ambiente do PROLOG (classes
geradas a partir do código PROLOG). Um exemplo de
script é:

1. VariableTerm pai = new VariableTerm();
2. PrologInterface sharp = new

PrologInterface();
3. sharp.SetPredicate(new

Pai_2(pai,SymbolTerm.MakeSymbol("Zé"
),new ReturnCs(sharp)));

4. sharp.Call();
5. Console.WriteLine("O pai é: {0}",

pai.Dereference());

Na linha 1 é instanciado um termo PROLOG
(variável PROLOG) com o nome de pai; na linha 2
cria-se a interface para comunicação com o código
PROLOG, sharp; na linha 3 realiza-se uma consulta
através do método SetPredicate em uma classe
denominada Pai_2 (que é um arquivo .cs gerado a
partir de um script PROLOG convencional)
armazenando no termo pai todos os resultados cujo
segundo termo é Zé; na linha 4 chama-se o primeiro
resultado; e na ultima escreve-se esse resultado na tela.

4. Desenvolvimento do Sistema

Nenhum engine de desenvolvimento de jogos atual
(como o XNA ou o 3D Game Studio) utiliza qualquer
linguagem de programação em lógica em seu módulo
de script. Mas devido às suas inúmeras aplicações na
área de Inteligência Artificial [CASANOVA 2006,
GIORNO E FURTADO], muito estudo existe neste
sentido [SILVA e SILVA 2006]. O PNA Game Engine
é uma ferramenta que preenche esta lacuna (Fig. 2).

Fig. 2 - Interface do PNA Game Engine

Com base no compilador P# e na biblioteca de
códigos gráficos para desenvolvimento de jogos da
Plataforma .Net, a XNA, são criados jogos “vazios” ou
game templates compostos de bibliotecas de classes,
modelos 3D de objetos, modelos 2D de sprites e
elementos sonoros. O template completo desenvolvido
nesta primeira versão do programa foi o clássico River
Raid (Fig. 3), que é um jogo do console Atari, no qual

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 79

um avião sobrevoando um rio deve destruir e
ultrapassar os navios e helicópteros que são seus
obstáculos.

Fig. 3 – Jogo River Raid

Nesta versão o programador está limitado a usar
somente os games templates pré-definidos, excluindo a
possibilidade de criação de um jogo mais
personalizado.

4.1 O Engine PNA

O engine PNA é o software que vai integrar o template
do jogo com o restante do sistema. Suas principais
funcionalidades são (Fig. 4):

• Abrir arquivo PNA – permite abrir um novo
código em sua área de edição.

• Definir template - permite trocar o template
atual. Isto carrega as bibliotecas de código e
altera todas as opções de configuração e
compilação para este determinado modelo.
Sempre que o programa for aberto, será
exibida uma tela para a definição do template
inicial. Durante o desenvolvimento de um
programa se seu modelo for alterado, a área
de edição será reiniciada (para não criar uma
confusão de predicados, pois eles são
diferentes para cada template) e será dado
início a um novo arquivo PNA.

• Exemplo – permite abrir arquivos PNAs pré-
definidos (ver tabelas Tab. 1 e Tab. 2). Esses
arquivos têm a extensão .pl, porque embora
possuam predicados pré-estipulados para o
game template definido ainda assim não
deixam de representar scripts do PROLOG.

• Arquivo existente - permite abrir um arquivo
PNA desenvolvido pelo usuário.

• Salvar Arquivo PNA – salva o script
desenvolvido pelo usuário. Somente depois de
salvo que esse script pode ser compilado.

• Compilar – realiza as etapas: verifica o ultimo
código PNA salvo e exibe mensagem de erro
em console caso exista (P#); traduz o código
para arquivos .cs, sendo uma classe para cada
predicado (P#); e, transforma cada arquivo
gerado em DLL (CSC).

• Executar jogo – carrega os parâmetros
definidos nas DLLs e exibe as novas
configurações do jogo na tela.

• Consultar ajuda – permite ver opções de ajuda
para auxiliar aos novos usuários.

• Ver Sobre – exibe informações dos autores e
do software.

• Ver Tutorial – exibe instruções gerais para o
uso do PNA e os predicados específicos do
template River Raid.

Fig. 4 - Diagrama UML de Caso-de-Uso
do PNA Game Engine

4.2 Componentes do Sistema

Os principais componentes do PNA Game Engine são
(Fig. 5):

• Fonte PROLOG – código inteiramente em
PROLOG acrescido de predicados especiais
que facilitam na comunicação com o C#.

• Compilador P# - Traduz o código PROLOG
em arquivos de classe C#. Posteriormente ele
será usado para comunicar com as DLLs
geradas pelo CSC.

• CSC – C# Compiler é um executável da .Net
Framework responsável por transformar as
classes .cs em DLLs para permitir a exibição
do jogo final em runtime.

• XNA Framework – fornece todo suporte para
a execução de rotinas em XNA.

• User Control XNA – componente criado no
Visual Studio para permitir a integração de
formulários com XNA sem problema de
compatibilidade entre os gerenciadores de
dispositivos gráficos.

• Game Template PNA – pacote que integra os
arquivos necessários para a execução do
respectivo template.

• Inicializador – representa um componente
vital do sistema. Possui um conjunto de
funções que utilizam a DLL do compilador P#

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 80

para interpretar os predicados das DLLs das
classes criadas pelo CSC e gerar o
comportamento do jogo do template.

• Imagens e Sons – pacote que armazena os
sons e imagens dos sprites necessários neste
template.

• Exemplos – Códigos PNA de exemplo para o
template carregado.

Fig. 5 - Diagrama de componentes
do sistema desenvolvido.

4.3 O Código PNA para o Template River Raid

O PNA é uma mistura de PROLOG com predicados
pré-definidos do template específico carregado. Nele é
possível inserir objetos 3D ou 2D (dependendo do
template), alterar o visual, fazer o game design,
controlar o fluxo dos dados, gerenciar o
comportamento, animar, etc.

Foi implementado, nessa primeira versão do
programa, somente o comportamento inicial do jogo.
No método Update() estará pré-configurada a
animação do movimento dos objetos simulando o vôo
de uma nave.

Como exemplo, na Tab. 1 e na Tab. 2 são criados
códigos para o template River Raid com os seguintes
predicados PNA:

• objeto – permite inserir um sprite 2D. Possui
quatro parâmetros: nome do objeto (restrito
aos objetos existentes no jogo), índice
(identificador do objeto, deve ser único para
cada de objeto), posição X e posição Y.

• controle – permite definir os controles básicos
(movimentos e tiros) de evento do teclado
para um determinado objeto. Os dois
parâmetros permitem identificar o objeto a ser
manipulado: nome e índice.

O exemplo da Tab. 1 cria a posição inicial de 20
navios e de 1 nave, e define o controle do teclado para
a nave.

objeto(nave,1,0,0).
objeto(navio,1,150,50).
objeto(navio,2,50,150).
objeto(navio,3,250,250).
objeto(navio,4,150,350).
objeto(navio,5,150,450).
objeto(navio,6,250,550).
objeto(navio,7,50,650).
objeto(navio,8,150,750).
objeto(navio,9,150,850).
objeto(navio,10,100,950).
objeto(navio,11,150,1050).
objeto(navio,12,200,1150).
objeto(navio,13,200,1250).
objeto(navio,14,50,1350).
objeto(navio,15,150,1450).
objeto(navio,16,300,1550).
objeto(navio,17,300,1650).
objeto(navio,18,200,1750).
objeto(navio,19,300,1850).
objeto(navio,20,50,1950).
controle(nave,1).
Tab. 1 – Exemplo de um código em PNA

O exemplo da Tab. 2 gera um navio com uma
posição pré-determinada e outros 19 com posições
aleatórias no eixo x enfileirados no eixo y. Ele também
insere e cria o controle para uma nave.

objeto(nave,1,0,0).
controle(nave,1).

objeto(navio,1,150,50).
objeto(navio,N,POSX,POSY):-
N>1,
N<21,
Ntemp is N-1,
objeto(navio,Ntemp,POSXtemp,POSYtemp),
POSX is integer(random*300),
POSY is POSYtemp+100
.

Tab. 2 – Mesmo código da Tab. 1
criado a partir de recursão.

Portanto, estes códigos das tabelas anteriores são
semelhantes, pois distribuem navios no caminho à
frente da nave (Fig. 6). Entretanto, eles exercitam
técnicas distintas de PROLOG: o primeiro mostra
claramente o uso de predicados e atributos formando
um conjunto de fatos; no segundo é criado uma
cláusula com o uso de recursividade e todo princípio
definido no primeiro exemplo.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 81

Fig. 6- Exemplo de código PNA para o jogo
River Raid

5. Conclusão

Neste trabalho foi apresentado o PNA Game Engine,
uma ferramenta com a entrada de dados em PROLOG
e o retorno visual de um jogo desenvolvido em XNA.
Para este fim foi desenvolvida a API PNA capaz de
controlar o comportamento do game template através
do paradigma de programação declarativo.

 Esta engine é capaz de gerar elementos visuais e
comportamentos de objetos em jogos a partir de
programas declarativos simples. Assim como em
[HARTNESS 2004], este aplicativo busca motivar o
aprendizado de técnicas de programação, mais
especificamente de programação em lógica, utilizando
a linguagem PROLOG. Além deste objetivo
pedagógico, demonstrou-se que a criação de um engine
voltado para a programação de jogos através de uma
interface em PROLOG pode auxiliar na exploração
científica desta área de games.

Todos os componentes do sistema criado utilizam
tecnologia Microsoft e foram desenvolvidos na versão
freeware da plataforma .Net.

Na engenharia deste processo destacam-se, devido
à interoperabilidade proporcionada, as rotinas de
integração dos formulários do Visual Studio com o
XNA e comunicação da linguagem C# com o
PROLOG através do uso do compilador P# [COOK
2003].

6. Trabalhos Futuros

Uma continuidade natural deste trabalho é a criação de
novos game templates em ambientes virtuais 3D,
dentre os quais destacamos:

• Mundo de Wumpus - jogo de tabuleiro em
que um caçador deve andar entre as casas a
procura de um tesouro. Estas casas podem
possuir elementos nocivos ao caçador
(fogueira e o monstro Wumpus) e dicas para
evitar estes elementos. O Mundo de Wumpus
tem sido amplamente utilizado no ensino de
conceitos fundamentais de Inteligência
Artificial.

• Jogo do gênero Racing – jogo de corrida de
carros com obstáculos e disputas de
velocidade. Jogos de corrida possibilitam o
aprendizado de técnicas avançadas de
programação, como por exemplo
programação multithreaded.

Embora existam experimentos preliminares com
resultados positivos de aplicação em aulas de
inteligência artificial, especificamente para o
ensino de PROLOG, de ferramentas gráficas
[SILVA & SILVA 2006], é de interesse dos
autores documentar atividades práticas em sala de
aula para uma avaliação mais criteriosa dos
resultados.

Referências Bibliográficas

BANBARA, M.; TAMURA, N. Translating a Linear Logic
Programming Language into Java. ICLP’99 Workshop,
1999.

CASANOVA, Marco A.; GIORNO, Fernando A. C.;
FURTADO, Antonio L.. Programação em Lógica e a
Linguagem Prolog. 2006.

COOK, Jonathan. P#: Using Prolog within the .NET
Framework. Laboratory for Foundations of Computer
Science, University of Edinburgh. 2003.

COOK, Jonathan. P# Manual (version 1.1.3). Manual do
programa. 2003.

CREATORS CLUB. XNA definition. Disponível em:
http://creators.xna.com/ . Acessado em Agosto/2008.

HARTNESS, Ken. Robocode: using games to teach artificial
intelligence. Journal of Computing Sciences in Colleges
archive. Volume 19. 2004

LEBBINK, Henk-Jan. WITTEMAN, Cilia. MEYER, John-
Jules. A Dialogue Game Approach to Multi-Agent
System Programming. Belgium-Netherlands
Conference on Artificial Intelligence, 2004

LIBERTY, J. Programming C#. O’Reilly, 2001.

PALAZZO, Luiz A. M. Introdução à Programação Prolog.
Editora da Universidade Católica de Pelotas, 1997

SILVA, Flávio Soares Corrêa da; SILVA, Filipe Corrêa
Lima da. A Game-based Animation Tool to Support the
Teaching of Formal Reasoning. SBGames 2006.

SILVA, Flávio Soares Corrêa da; MELO, Ana Cristina
Vieira de. Modelos Clássicos de Computação. Thomson,
2006.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 82

A Real-Time Proxy for Flexible Teamwork in Dynamic Environments
Ivan M. Monteiro and Luis Otavio Alvares

Instituto de Informática, UFRGS, Brazil

Abstract

The demand for believable behavior in computer games has driven
the research in artificial intelligence to improve character’s behavior
in games. However, little has been done to improve the collective
behavior in partially observable, dynamic, and stochastic environ-
ments. In this work, teams of agents are developed, based on Joint
Intentions, for environments with such features as the game Unreal
Tournament 2004. Because of some limitations of existing tools,
we introduce a new proxy-based tool to help agents to be a team-
mate. Experiments have shown that it is feasible to use a distributed
approach and the advantages of our tool face to Machinetta.

Keywords:: Teamwork, Multi-agent System, Artificial Intelli-
gence, Distributed System

Author’s Contact:

{immonteiro,alvares}@inf.ufrgs.br

1 Introduction

In computer games, the demand for believable behavior has grown,
in order to decrease the distance to the human behavior [de Byl
2004]. However, the importance given to behavioral aspects is usu-
ally less than the importance given to graphic aspects. When the
subject is team-based games the situation is worst, because bots do
not assume coherent roles inside the team. Thus, although there
is progress on individual behavior, little has been done for social
behavior.

Some team-based games, such as sport games, seem to use team-
work1, but in reality they use a centralized solution that access the
full knowledge about the state of the entities. Thus, a soccer game
does not need a multi-agent coordination to perform a team move,
because all bots have a centralized control. This centralized solu-
tion also allows bots to cheat the human, using knowledge about
hidden state. It makes the game development easier but the result
are games less believable.

The immediate advantages for distributed control of bots are the
new possibility of gameplay and the load balance of bots compu-
tation. The intuition leads to belief that with more computation
power it becomes easier to develop more believable behavior. This
model is interesting for massive multiplayer games, that are inher-
ently distributed. Indeed, it opens new possibilities for other kinds
of games.

Teamwork has emerged as the paradigm for coordinating cooper-
ative agents in dynamic environments and it has been shown to
be capable of leading to flexible and robust behavior [Sycara and
Sukthankar 2006]. It has been applied to many domains, such as:
rescue disaster [Nair et al. 2000], militar combat [Hill et al. 1997]
[Jones et al. 1999], robocup soccer [Kaminka 1999] [Marsella et al.
1999] [Marsella et al. 2001], and collaboration between human and
agents [Scerri et al. 2003c]. Flexible teamwork, promoted by the
explicit team model, that defines commitments and responsabili-
ties for teammate, allows a robust coordination, keeping coherence
even with individuals faults and unpredictable changes in the envi-
ronment [Steven 2005].

Some theories have been proposed to formalize the behavior of a
group of agents to act as a team. Two of these theories have impor-
tant results for real problems. They are Joint Intentions [Levesque
et al. 1990] and Shared Plans [Grosz and Kraus 1996]. Both are
described through logic formalism, but with different approaches.
Joint Intentions focus on a team’s joint mental state, while Shared

1A cooperative effort realized for teammate to achieve a goal.

Plans focus on the agent’s intentions towards its collaborator’s ac-
tion or towards a group’s joint action.

Tools as STEAM [Tambe 1997] and Machinetta [Steven 2005]
had successful in many complex environments [Hill et al. 1997]
[Tambe and Zhang 1998] [Tambe and Zhang 2000] [Marsella et al.
2001] [Jones et al. 1999] [Pynadath and Tambe 2003] [Scerri et al.
2003a] [Schurr et al. 2005] [Scerri et al. 2003c] [Scerri et al. 2004]
[Chalupsky et al. 2001] [Scerri et al. 2001] [Scerri et al. 2003b]
[Yen et al. 2001]. The natural way would be to use some of
these tools to improve teamwork on bot’s development in computer
games. However, practical issues have pointed out for the devel-
opment of a new specialized tool. STEAM was developed using an
old version of SOAR [Laird et al. 1987], that made changes in its
language since than. Machinetta, that is a successor of STEAM, has
shown many limitations for the game domain.

The aim of this work is to promote social behavior for agents inside
computers games. The paradigm known in multi-agent systems as
teamwork is used to achieve this goal. In this context, a team is a
group of autonomous pro-active entities, with capability of reflec-
tion about their own abilities and the abilities of the group that share
a common goal.

This work also introduces TWProxy, a new tool that enables agents
to perform teamwork. TWProxy uses many of the good ideas from
Machinetta, avoiding some of its limitations and adding new fea-
tures. Thus, this article focuses on the development of TWProxy
and its usage on the development of team bots. Tests and evalua-
tion compare how good this new solution is.

The remainder of the paper is organized as follows: Section 2 shows
the main related work, Section 3 describes the environment pro-
vided by the game, Section 4 describes the features of TWProxy,
Section 5 presents tests and evaluation, and Section 6 concludes the
paper.

2 Related Work

In a teamwork problem, a group of agents acts coordinated, in a
cooperative way, to achieve a shared goal. The main difference
between classical coordination and teamwork is how to achieve a
shared goal. Classical coordination uses a set of pre-defined plans
to apply according to the situation. The teamwork extends the
classical coordination using cooperation and commitment between
agents, been applicable in other domains that are not the locker-
room agreements [Stone and Veloso 1998].

Theoretical works in agent teamwork [Levesque et al. 1990] [Grosz
and Kraus 1996] [Grosz and Kraus 1998] define some features
about team behavior. They describe what the agents need to share
in order to perform a teamwork: goals to achieve, plans to per-
form together, and knowledge about the environment. The agents
need to share their intentions to perform a plan in order to achieve
a common goal, the teammates need to be aware about their capa-
bilities and how to fill roles to perform the high level team plan.
They must be able to monitor their own progress and the group
progress toward team goals. Many systems have been developed
using the teamwork idea as team with human collaboration [Scerri
et al. 2003a], teams for disaster situation [Nair et al. 2000], and
teams for industry production line [Jennings 1995].

The formalism about Joint Intentions [Levesque et al. 1990] fo-
cuses on teammates’ joint mental states. A team jointly intends a
team action if team members are jointly committed to completing
such team action, while mutually believing that they were doing it
[Tambe 1997]. Joint Intentions assume that the agents are modeled
in a dynamic multi-agent environment, without complete or correct
beliefs about the world or other agents. They have changeable goals
and their actions may fail. Thus, the teammate jointly commits to

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 83

make public the knowledge if a goal becomes achieved, impossible
to be reached, or irrelevant.

In contrast with Joint Intentions, the concept of SharedPlans [Grosz
and Kraus 1996] relies on a novel intentional attitude, intending-
that. An individual agent’s intending-that is directed toward its col-
laborator’s action or toward a group’s joint action. It is defined
via a set of axioms that guide an individual to take actions, in-
cluding communication actions, that either enable or facilitate its
teammates, subteam or team to perform the assigned tasks [Tambe
1997].

Based on these theories, important teamwork infrastructures have
been developed, like STEAM [Tambe 1997] and Machinetta [Steven
2005]. STEAM was developed to provide flexibility and reusabil-
ity of agent coordination through the use of a general model of
teamwork. Such model exploits the autonomous reasoning about
coordination and communication. Previous works had failed in ful-
filling responsibilities or in discovering unexpected opportunities,
once they had used precomputed coordination plans, which are in-
flexible. Indeed, they had been developed for a specific domain,
what hampers the reuse. STEAM is specially based on Joint Inten-
tions in order to make the basic building blocks of teamwork, and
it uses Shared Plans to avoid an agent undo the actions of another.

Machinetta is a proxy-based integration infrastructure where there
is a beneficial symbiotic relationship between the proxies and the
team members. The proxies provide teamwork models reusable
for heterogeneous entities. Machinetta provides each agent with
a proxy and the proxies act together in a team. The Machinetta
project was build over previous works like STEAM and TEAM-
CORE proxies [Pynadath and Tambe 2003]. The pair agent-proxy
execute Team-Oriented Programs(TOP) [Scerri et al. 2004], ab-
stract team plans that provide high-level description of the activities
to be performed. Such programs specify joint plans of the team, but
do not contain all of the required details of coordination and com-
munication. The team plans are reactively instantiated and they
allocate roles to capable agents.

3 The Environment

In this work, the case study is Unreal Tournament 2004 (UT2004),
a multiplayer First-Person Shooter(FPS) game. The classical team-
based game type Capture The Flag was chosen to evaluate the team
coherence, because it is easy to measure the results and simple to
identify the team behavior. The GameBOTs [Andrew Scholer 2000]
[Kaminka et al. 2002] project is used to communicate the developed
bot with the game.

The GameBOTs project works as an extended game control that en-
ables the character to be controlled via socket TCP. Thus, it is possi-
ble to develop agents to control characters using any language with
socket support. This modification offers four new gametypes, Re-
mote Team DeathMatch, Remote Capture The Flag, Remote Double
Domination and Remote Bombing Run, that can be used as environ-
ment to test bots. Using the remote connection, the bot has percep-
tion about the environment, similar to the human player. Figure 1
shows the way points seen by the bots.

The UT2004 game provides an environment with the following fea-
tures [Russel and Norving 2004]:

• partially observable - the agent, using its perception, can not
access all relevant environment states;

• stochastic - the next state of the environment is not com-
pletely determined by current state and actions selected by
the agents;

• nonepisodic - the quality of bot’s actions depends on its pre-
vious actions;

• dynamic - the environment state can change between the
agent’s perception and agent’s actions;

• continuous - the number of environment states is unlimited;

• multi-agent - there is cooperative and competitive interaction
between agents.

Figure 1: Waypoints seen by the bot.

When the bot is connected to the game, sensory information is re-
ceived through the socket connection and the agent can act by send-
ing commands to the game. This commands define the character
behavior inside the virtual world, controlling moves, attack, and
communication with other characters. The interaction between an
agent and UT2004 is realized through messages exchange. The per-
ception messages may be synchronous or asynchronous, and their
complete description can be found in [Andrew Scholer 2000].

The synchronous messages arrive in batch, with a configurable in-
terval. They are formed by visual information and the state of the
agent. The asynchronous messages indicate events occurred in the
environment. This events may be a damage taken, hit an obstacle,
broadcast message from another agent, and other information about
the game.

Actions performed by the characters are results of commands sent
by the agent. An important issue about this is that the commands
have persistent effects, it means that a move command will execute
until the bot achieves a point or until it receives a new command
that conflict with the previous, like move in another direction. Thus,
the command scheme is near to human interface, where the human
player need release a mouse button to stop the attack.

4 TWProxy

In order to meet the requirements for the development of teams of
agents in the games domain, this work introduces the TWProxy, a
new lightweight and efficient infrastructure to provide coordination
to teams of heterogeneous agents. The TWProxy is based on the
Joint Intentions [Levesque et al. 1990] formalism and it is inspired
on Machinetta, adding new important features, including: (i) a sim-
ple and extensible language to describe plans and beliefs, (ii) atomic
communication between agents, (iii) reuse of terminated plans, and
(iv) plans that are invariant to the number of agents.

In our approach, summarized in Figure 2, each agent is related to
a proxy that performs the communication and the multi-agent plan-
ning. The team coordination is achieved using role allocation. Each
proxy knows about the capabilities of other teammates and when
plan preconditions are achieved, and roles are assigned according
the current plan. When the plan postconditions are achieved, the
teammate can release the role. The proxy does not tell how to ex-
ecute the role, it just deliberates about what to do. Because of the
high-level coordination, a flexible teamwork is possible, leaving the
details about role execution with the agent.

The model about role allocation is similar to the common team-
work in the real world. When people need to execute some action
together, they usually divide the task in subtasks that each one can
perform. In the real world, people also use the role allocation to
coordinate actions. Thus, the responsibility is distributed, and if
there exists commitment between the teammates, the entire group

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 84

Figure 2: Teamwork model based on proxy.

Figure 3: TWProxy organization.

acts consistently.

TWProxy also provides the functionality of distributed blackboard
because it keeps the shared beliefs consistent. This belief reposi-
tory helps the agents to take a decision. Due to the environment to
be partially observable, the agents have sensory restrictions. There-
fore, the TWProxy can store some shared information that is not
directly sensed by the agent.

Figure 3 shows the TWProxy internal organization. Link 1 indi-
cates that information from the agent can update the knowledge
base. The set of beliefs can be used by the planner (link 2) that
can deliberate about role allocation(link 3 and 4). Information from
other proxies can update the set of beliefs (link 5) and an agent can
share information using the TWProxy(link 6).

4.1 Describing Plan and Beliefs.

The initial agent beliefs and its plans are stored in a structured file
described with the language shown in listing 1. This file contains
agent beliefs about: capabilities, team composition and the specific
domain. It also describes the roles and the high-level team plan.

Teams of Agent-proxy pairs execute Team-Oriented Programs
(TOPs) [Scerri et al. 2004]. These TOPs specify the joint plans
of the team, and the inter-dependencies between those plans, but do
not contain all the required details of coordination and communica-
tion.

Listing 1: Grammar of the description language
<blf> ::= <block> |

<block> <blf>

<block> ::= "belief" <belief_block> |
"role" <role_block> |
"plan" <plan_block>

<belief_block> ::= <id> "{" <inside_belief> "}"

<inside_belief> ::= <attr_value> |
<attr_value> <inside_belief>

<attr_value> ::= <id> ":" <value> ";"

<value> ::= <id> |
<id> "," <values> |
<number> |
<number> "," <value> |
"true" |
"false"

<role_block> ::= <id> "{" <inside_role> "}"

<inside_role> ::= <attr_value> |
<attr_value> <inside_role>

<plan_block> ::= <id> "{" <inside_plan> "}"

<inside_plan> ::= "roles" ":" <role_values> ";"
<pre_block> <post_block>

<role_values> ::= <id> |
<id> "," <role_values> |
<id> "+" |
<id> "+" <role_values>

<pre_block> ::= "precondition" "{" <expr> "}"

<post_block> ::= "postcondition" "{" <expr> "}"

<expr> ::= "(" <expr> ")" |
<id> "." <id> <comp> <number> |
<id> "." <id> <comp> <id> "." <id> |
<id> "." <id> <comp> "true" |
<id> "." <id> <comp> "false" |
<expr> "|" <expr> |
<expr> "&" <expr>

<id> ::= "[a-zA-Z][a-zA-Z_0-9]*"

<number> ::= "[+-]?[0-9]+|[+-]?[0-9]+\.[0-9]+"

<comp> ::= "==" | "!=" | "<" | "<=" | ">" | ">="

Listing 2,3,4,5 and 6 show examples of different parts of the beliefs
file for the Capture The Flag domain. Listing 2 defines that the
agent agent001 can perform the role CTFProtectTheBase if it is not
executing another role.

Listing 2: An example about capability belief
belief capability_agent001_CTFProtectTheBase {

type: capability;
rapId: agent001;
load: 100;
roleId: CTFProtectTheBase;

}

Listing 3 shows the belief about the team composition, and in this
case also describes that agents should communicate with a peer to
peer connection.

Listing 3: An example about team composition
belief teamComposition {

type: teamComposition;
members: agent001, agent002, agent003;
myself: agent001;
agent001_host: localhost;
agent002_host: localhost;
agent003_host: localhost;

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 85

agent001_port1: 6001;
agent002_port1: 6002;
agent003_port1: 6003;
agent001_port2: 7001;
agent002_port2: 7002;
agent003_port2: 7003;

}

The domain specific belief is also described in the beliefs file, as
shown in listing 4. The belief contents is flexible to describe new
properties, because the new attributes are handled dynamically.

Listing 4: An example about domain specific belief
belief flag_enemy{

type: flag;
owner: enemy;
have: false;

}

belief flag_friend{
type: flag;
owner: friend;
have: true;

}

It is possible to define meta-information about role allocation. In
the example of listing 5, priority helps to solve allocation conflicts,
before defines actions to execute before allocation, and preference
defines who should receive this role. These parameters of the meta-
information should be handled through inheritances of base classes
in the TWProxy, otherwise, just priority has effect.

Listing 5: A role example
role CTFRecoverMyFlag {

priority: 3;
before: getAllRapPosition;
preference: nearToTheEnemyBase;

}

Listing 6 shows an example of a plan for the Capture The Flag con-
text. When a team has its flag and it does not have the enemy flag,
plan p1 is activated launching a role allocation process. This plan
specifies two roles to be allocated, CTFProtectTheBase and CTF-
CaptureTheFlag, where the second is flexible for more than one
allocation, it is indicated by signal + in the end of the role’s name.
If a team has four free agents, one performs CTFProtectTheBase,
while three execute CTFCaptureTheFlag.

Listing 6: A plan example
plan p1{

roles: CTFProtectTheBase, CTFCaptureTheFlag+;

precondition{
(flag_friend.have == true) &
(flag_enemy.have == false)

}

postcondition {
(flag_friend.have == false) |
(flag_enemy.have == true)

}
}

4.2 Communication

The inter-proxy communication assumes the usage of atomic com-
munication over a network without shared memory. To solve the
problem of atomic communication, TWProxy was developed over
a simple atomic broadcast layer. However, it is possible to extend
base classes to develop a new atomic broadcast layer. Thus, the
sharing beliefs is done by atomic broadcast [Défago et al. 2004],
and just the specific order messages(like to assign a role) is per-
formed via unicast.

Two communication channels are used by each instance of TW-
Proxy. The first channel is used to share knowledge and the second
is used to exchange information about role allocation. The mes-
sages sent through these channels are serialized objects that are re-
composed by a factory in the other side.

4.3 Planner

The TWProxy planner uses team leader to launch a new plan. The
first team leader is defined statically but it may be changed dynam-
ically at run-time. The usage of team leader avoids to solve conflict
problems in role allocation, saving time to react to the environment
changes. The team leader has updated beliefs and it can launch a
plan consistently, because everyone is committed to share relevant
information.

The planner is like a rule-based system. Every plan contains rules
to activate it (the preconditions) and to stop it (the postcondition).
These rules are checked using the current knowledge. Roles are
assigned in the activation of a plan, and in the stopping, the involved
agents can release their roles.

4.4 Agent Interface

Each individual agent is attached to a TWProxy forming a social
agent. The communication between the individual agent and the
TWProxy is defined by a flexible interface, allowing interaction with
several kind of agents.

The interface between proxy and agent is defined by a base class
that must be extended to implement this communication. Such in-
terface is based on message exchange and it can be adjusted to each
kind of agent. In a new domain, the interface with the agent is the
main modification needed. Thus, it is possible to make a team, to a
new domain, developing just the interface between agent and proxy,
and the team program. The individual agent does not need to have
social commitment, because the TWProxy does this for it.

5 Experiments and Evaluation

In our experiments, the agents have been developed using the
framework IAF [Monteiro and dos Santos 2007], that implements
a hybrid agent architecture [Monteiro 2005]. Such agents commu-
nicate with the game controlling a player. For these experiments
every agent has the same capabilities. Thus, just the teamwork is
different. In order to compare the TWProxy with another proxy, Ma-
chinetta is used, because of large number of successful applications
[Scerri et al. 2003a] [Schurr et al. 2005] [Scerri et al. 2003c] [Scerri
et al. 2004] [Chalupsky et al. 2001] [Scerri et al. 2001] [Scerri et al.
2003b].

A great concern in the teamwork problem is to avoid teamwork
inconsistency. In the Capture The Flag domain, a teamwork incon-
sistency may be the following: Given a team composed by agents
A, B and C, if either A or B are trying to recover a flag that was re-
covered by C, then the team is in an inconsistent state. Every team
in a dynamic environment will stay in a inconsistent state during
some period of time. The goal is to minimize inconsistency states.

The first step to develop a team is the modeling of the problem in
the multi-agent context. It is necessary to divide the team actions in
roles that will be performed by the agents. After that, it is possible
to develop, in the agent, the abilities to execute the roles. The next
step is the definition of knowledge and plans under Team-Oriented
Programs.

This work shows two kinds of experiments. The first measures the
time of teamwork inconsistency, evaluating the elapsed time be-
tween an important change in the environment and the team adop-
tion of a new strategy. The second kind of experiment are matches
that intend to show teamwork efficiency using the TWProxy, in or-
der to show that it is possible to use the multi-agent paradigm and
distributed artificial intelligence in the domain of modern games.

In the experiment of the time of teamwork inconsistency, agents
send a sequence of changes about the environment, and the time
of team reaction using TWProxy and Machinetta is calculated. The
battle experiments play Capture The Flag where one team uses TW-
Proxy and the other team uses Machinetta, self game BOTS or hu-
man players.

In the battle, the game UT2004 is used to provide the Capture The
Flag gameplay. Thus, it is possible to evaluate the team actions,

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 86

Figure 4: Time of Teamwork Inconsistency - TWProxy.

because it is easy to see which role the agent is performing, and it
is also possible to measure the teamwork efficiency using the game
score.

The team, that plays Capture The Flag using the TWProxy, has just
four plans, that are activated when the state of a flag changes. Such
plans generate the following team behavior:

1. when a team has its own flag but it has not the enemy’s flag,
someone needs to protect the base while others go to capture
the enemy’s flag;

2. when a team has both, its own and the enemy’s flag, all agents
must go back to their base;

3. when a team does not have its own flag but it has the enemy’s
flag, the agent that has the enemy’s flag must go back to its
base and the others should recover the team’s flag;

4. when the team has no flags, every agent must search any flag.

The Machinetta proxy showed some limitations in the experiments,
and a critical problem for this context was the impossibility to reuse
a terminated plan. Thus, it was necessary to create many redundant
plans to keep the bots playing the game. Other problem was the
memory and the CPU usage, being impracticable to apply in a real
game. However, Machinetta has many successful applications, be-
ing interest for comparison purposes, as will be shown in the next
section.

5.1 Evaluating Time of Teamwork Inconsistency

The experiment about time of Teamwork Inconsistency(TTI) in-
tended to evaluate the ability of TWProxy to react in (soft) real-time
to environment changes. In order to compare its performance, Ma-
chinetta was exposed to the same situation. A group of three agents
was updating their beliefs about the flag status, and an external en-
tity was listening the communication between agents and proxies.
Therefore, this external entity was computing the time between the
environment change and the role allocation to the whole team.

The sequence of environment changes was the same for Machinetta
and TWProxy. It was composed by 23 updates and it represented a
whole match. Each proxy played 40 matches, in order to get a
general behavior of the TTI. This experiment was performed in a
single machine. For this reason, the network latency did not appear
in the results.

The results shown in Table 1 describe the mean(µ) and the stan-
dard deviation(σ) of the experiments set. The measure unit is mil-
liseconds and the time represents the total time between a new
belief received and the modification of the strategy. TWProxy, in
this experiment, achieved a mean of 3.9ms, while Machinetta got
12182.40ms. In other words, TWProxy was more than three thou-
sand times faster than Machinetta to reach a consistent state. The

Figure 5: Time of Teamwork Inconsistency - Machinetta.

Table 1: Mean and standart deviation of experiment.
- Elapsed time(ms)
- µ σ

TWProxy 3.9 0.79
Machinetta 12182.40 7159.01

standard deviation shows how stable TWProxy execution was com-
paring with Machinetta.

Table 2 presents an example of values of TTI for one match. In
this table it is possible to see the difference of magnitude between
TWProxy and Machinetta. Figures 4 and 5 show the same example
of Table 2 in a graphical format , in order to show the stability of
the TWProxy in this application. It is important to say that these
graphics are in different scales in an effort to compare the data dis-
persion.

The performance and stability of TWProxy against Machinetta was
the main result from this experiment. In the midst of this circum-
stance, Machinetta also presented a high usage of memory (more
than 100MB per proxy), making it difficult to use in modern games.
TWProxy, in these experiments, did not use more than 1.6MB of
memory. The key of these results relies on the kind of applica-
tions for which Machinetta was designed. While TWProxy design
was concerned in achieve real-time requirements, Machinetta was
originally developed to allow humans to participate in teams with
artificial agents. Several points may explain this efficiency, includ-
ing: the usage of C++ instead of Java; optimization in access to
the beliefs; and mainly the fewest conflicts to resolve, because the
communication with atomic broadcast guarantees the total order of
message and the usage of team leader avoids the role allocation
conflict.

5.2 Teamwork Efficiency

The second kind of experiment evaluates the teamwork efficiency
using the gameplay Capture The Flag. Each experiment spent 15
minutes and it was played in order to assess different aspects. The
first experiment evaluates TWProxy’s efficiency against Machinetta
using the same agents in a battle, but with different proxies. The
second experiment was composed by battles between a team using
the TWProxy and the default bots from UT2004. The third experi-
ment shows a battle between a team with TWProxy and an human
team.

5.2.1 TWProxy-Team vs Machinetta-Team

The aim of this experiment is to assess how better can a team’s ef-
ficiency be by changing just the proxy that provides the teamwork.
Both teams had the same agents and they used the same strategy,
the only difference was the teamwork proxy. Figure 6 shows the

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 87

Table 2: An example of TTIs measured in one match played by
TWProxy and Machinetta.

Interaction Elapsed time(ms)
- TWProxy Machinetta

01 4 5838
02 5 13307
03 3 3360
04 3 17463
05 4 13256
06 3 12369
07 3 10497
08 4 13358
09 3 14211
10 4 13212
11 4 18211
12 5 17195
13 4 15251
14 4 15138
15 3 9337
16 3 15262
17 4 16251
18 3 15299
19 4 22208
20 4 18207
21 3 23274
22 5 8248
23 4 11264

result of a match, in which the team using TWProxy won but the
game was very disputed with just two points of difference. The in-
dividual agents using Machinetta had higher score than those using
TWProxy, however, the effort of the team should precedence over
individual actions. The key point is that the best for the team is not
necessarily the best for each individual.

5.2.2 TWProxy-Team vs UT2004-Team

An important point in the use of multi-agent teamwork in modern
games is to decide if it is possible to use distributed artificial intel-
ligence in a domain in which nowadays the centralized solution is
simpler. The centralized solution can access the full state of game
and decide the best to do. However, in a distributed approach, the
full state is not accessible, and each entity needs to cooperate in an
effort to coordinate their actions. Thus, this experiment confronts
these two approaches, the distributed versus the centralized.

The battle was composed by bots from UT2004 in their default skill
level and agents using the TWProxy. Figure 7 is a example of re-
sult in this experiment. The difference in scores was very high in
favor of the team with the TWProxy, both individually and in team.
Therefore, it shows the possibility of usage of the distributed ap-
proach which also creates a new possibility of gameplay.

5.2.3 TWProxy-Team vs Human-Team

The last experiment aims to evaluate the team coherence, putting
the team with TWProxy against a human-team. A human-team has
the ability to explore some coherence fault in a team of bots. For
this reason, this experiment was interesting.

Although the agents were using a static set of strategies, the human-
team failed to explore any teamwork inconsistency. The battle was
very disputed even though the human players had average skill in
First Person Shooter. Figure 8 shows the result of a match between
TWProxy-Team and Human-Team, where the balance can be seen.

6 Conclusion

This work shows that it is possible to overcome the deficiencies
about social behavior in team-based games using the teamwork ap-
proach. With this purpose, this work presents TWProxy, a team

Figure 6: Results of a Capture The Flag match between TWProxy-
Team and Machinetta-Team.

Figure 7: Results of a Capture The Flag battle between TWProxy-
Team and UT2004Bots-Team.

Figure 8: Results of a Capture The Flag match between TWProxy-
Team and Human-Team.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 88

proxy for dynamic environment with real-time requirements. In or-
der to evaluate TWProxy, teams using it were developed, and the
agents acted coherently as a team, without to use a central con-
trol. Such application creates new possibilities in the gameplay,
specially in distributed games like massive multiplayer online.

Using TWProxy the group activities are described by a high-level
team-oriented programming language, giving more flexibility and
autonomy to the team to perform a task. Besides that, agents have
a distributed blackboard provided by TWProxy, due to the mainte-
nance of beliefs between proxies. The belief description language
is also extensible, being able to use in several domains.

The experiments show that it is feasible to use a distributed ap-
proach and also the advantages of TWProxy face to Machinetta.
Indeed, the experiments have shown the limitations of Machinetta
for this specific domain. TWProxy had good results in these exper-
iments, showing its stability and efficiency. Besides, TWProxy has
new important features to team composition, like reuse of plans,
easy and extensible language to describe team plan, atomic com-
munication, invariant plans to the number of agents, and extensi-
bility in role allocation using knowledge from a specific domain.
TWProxy is also more lightweight than Machinetta. In the matches
experiments, it is possible to conclude that: less time of team incon-
sistency gives better performance to a group; a distributed approach
is feasible and its performance is comparable to team centralized
control; and it is feasible to keep the team coherence making be-
lievable teams.

References

ANDREW SCHOLER, G. K., 2000. Gamebots. Último acesso em
01 de dezembro de 2006.

CHALUPSKY, H., GIL, Y., KNOBLOCK, C., LERMAN, K., OH,
J., PYNADATH, D., RUSS, T., AND TAMBE, M., 2001. Electric
elves: Applying agent technology to support human organiza-
tions.

DE BYL, P. B. 2004. Programming Believable Characters for
Computer Games. Charles Development Series.

DÉFAGO, X., SCHIPER, A., AND URBÁN, P. 2004. Total order
broadcast and multicast algorithms: Taxonomy and survey. ACM
Comput. Surv. 36, 4, 372–421.

GROSZ, B. J., AND KRAUS, S. 1996. Collaborative plans for
complex group action. Artificial Intelligence 86, 2, 269–357.

GROSZ, B., AND KRAUS, S., 1998. The evolution of sharedplans.

HILL, R., CHEN, J., GRATCH, J., ROSENBLOOM, P., AND
TAMBE, M. 1997. Intelligent agents for the synthetic battlefield:
A company of rotary wing aircraft. In Innovative Applications
of Artificial Intelligence (IAAI-97).

JENNINGS, N. R. 1995. Controlling cooperative problem solving
in industrial multi-agent systems using joint intentions. Artificial
Intelligence 75, 2, 195–240.

JONES, R. M., LAIRD, J. E., NIELSEN, P. E., COULTER, K. J.,
KENNY, P. G., AND KOSS, F. V. 1999. Automated intelligent
pilots for combat flight simulation. AI Magazine 20, 1, 27–41.

KAMINKA, G. A., VELOSO, M. M., SCHAFFER, S., SOLLITTO,
C., ADOBBATI, R., MARSHALL, A. N., SCHOLER, A., AND
TEJADA, S. 2002. Gamebots: a flexible test bed for multiagent
team research. Commun. ACM 45, 1, 43–45.

KAMINKA, G. A. 1999. The robocup-98 teamwork evaluation
session: A preliminary report. In RoboCup, 345–356.

LAIRD, J. E., NEWELL, A., AND ROSENBLOOM, P. S. 1987.
Soar: an architecture for general intelligence. Artif. Intell. 33, 1,
1–64.

LEVESQUE, H. J., COHEN, P. R., AND NUNES, J. H. T. 1990.
On acting together. In Proc. of AAAI-90, 94–99.

MARSELLA, S., ADIBI, J., AL-ONAIZAN, Y., KAMINKA, G. A.,
MUSLEA, I., AND TAMBE, M. 1999. On being a teammate:
experiences acquired in the design of RoboCop teams. In Pro-
ceedings of the Third International Conference on Autonomous
Agents (Agents’99), ACM Press, Seattle, WA, USA, O. Etzioni,
J. P. Müller, and J. M. Bradshaw, Eds., 221–227.

MARSELLA, S., TAMBE, M., ADIBI, J., AL-ONAIZAN, Y.,
KAMINKA, G. A., AND MUSLEA, I. 2001. Experiences ac-
quired in the design of robocup teams: A comparison of two
fielded teams. Autonomous Agents and Multi-Agent Systems 4,
1/2, 115–129.

MONTEIRO, I. M., AND DOS SANTOS, D. A. 2007. Um frame-
work para o desenvolvimento de agentes cognitivos em jogos de
primeira pessoa. In Anais do VI Workshop Brasileiro de Jogos e
Entretenimento Digital.

MONTEIRO, I. M. 2005. Uma arquitetura modular para o desen-
volvimento de agentes cognitivos em jogos de primeira e terceira
pessoa. In Anais do IV Workshop Brasileiro de Jogos e Entreten-
imento Digital, 219–229.

NAIR, R., ITO, T., TAMBE, M., AND MARSELLA, S., 2000.
Robocup-rescue: A proposal and preliminary experiences.

PYNADATH, D. V., AND TAMBE, M. 2003. An automated team-
work infrastructure for heterogeneous software agents and hu-
mans. Autonomous Agents and Multi-Agent Systems 7, 1-2, 71–
100.

RUSSEL, S., AND NORVING, P. 2004. Inteligência Artificial -
Tradução da segunda edição. Editora Campus.

SCERRI, P., PYNADATH, D., AND TAMBE, M. 2001. Adjustable
autonomy in real-world multi-agent environments. In AGENTS
’01: Proceedings of the fifth international conference on Au-
tonomous agents, ACM, New York, NY, USA, 300–307.

SCERRI, P., PYNADATH, D., JOHNSON, L., SCHURR, R., SI,
M., AND TAMBE, M., 2003. A prototype infrastructure for dis-
tributed robot-agent-person teams.

SCERRI, P., PYNADATH, D., AND TAMBE, M., 2003. Towards
adjustable autonomy for the real world.

SCERRI, P., JOHNSON, L., PYNADATH, D. V., ROSENBLOOM, P.,
SCHURR, N., SI, M., AND TAMBE, M., 2003. Getting robots,
agents and people to cooperate: An initial report.

SCERRI, P., PYNADATH, D., SCHURR, N., FARINELLI, A.,
GANDHE, S., AND TAMBE, M. 2004. Team oriented program-
ming and proxy agents: The next generation. In Proceedings
of 1st international workshop on Programming Multiagent Sys-
tems.

SCHURR, N., MARECKI, J., TAMBE, M., AND SCERRI, P., 2005.
Towards flexible coordination of human-agent teams.

STEVEN, N. S., 2005. Evolution of a teamwork model. Disponı́vel
em citeseer.ist.psu.edu/679191.html. Acesso em: Outubro 2007.

STONE, P., AND VELOSO, M. M. 1998. Task decomposition and
dynamic role assignment for real-time strategic teamwork. In
Agent Theories, Architectures, and Languages, 293–308.

SYCARA, K., AND SUKTHANKAR, G. 2006. Literature review of
teamwork models. Tech. Rep. CMU-RI-TR-06-50, Robotics In-
stitute, Carnegie Mellon University, Pittsburgh, PA, November.

TAMBE, M., AND ZHANG, W., 1998. Towards flexible teamwork
in persistent teams.

TAMBE, M., AND ZHANG, W. 2000. Towards flexible teamwork
in persistent teams: Extended report. Autonomous Agents and
Multi-Agent Systems 3, 2, 159–183.

TAMBE, M. 1997. Towards flexible teamwork. Journal of Artificial
Intelligence Research 7, 83–124.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 89

YEN, J., YIN, J., IOERGER, T. R., MILLER, M. S., XU, D., AND
VOLZ, R. A. 2001. CAST: Collaborative agents for simulating
teamwork. In IJCAI, 1135–1144.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 90

Neuronal Editor Agent for Scene Cutting in Game Cinematography

Erick B. Passos
Media Lab - UFF

Anselmo Montenegro
Media Lab - UFF

Vinicius Azevedo
UFSM

Vitoria Apolinaro
Media Lab - UFF

Esteban W. G. Clua
Media Lab - UFF

Cezar Pozzer
UFSM

Figure 1: Shot library of an editor agent

Abstract

The use of cinematography techniques in games aims to provide
high level abstractions for operating the virtual camera based on
concepts borrowed from the movie industry such as scene, shot and
line of action, among others. One usual approach is the develop-
ment of agents to execute tasks that are similar to their counterpart
in a real movie set: director, editor and cinematographer. However,
a game is an interactive application and resembles a live TV-show,
where the actions taken by all the actors is not known previously. In
such scenario, the role of the editor is of great importance since he
is the one who ultimately decides what point of view should appear
on the screen. In the context of game cinematography, most previ-
ous works have proposed ways of mapping scene concepts and au-
tomatically controlling the virtual camera but without paying much
attention on the role of an editor agent. Our paper shows an intel-
ligent editor agent that uses neuronal network classifiers to decide
shot transition and has an intuitive user interface to the learning
mechanism.

Keywords:: Game Cinematography, Virtual Camera, Shot Transi-
tion, Cut, Neuronal Networks

Author’s Contact:

{epassos,anselmo,esteban}@ic.uff.br
socorosca@gmail.com
vitoriamachay@hotmail.com
pozzer@inf.ufsm.br

1 Introduction

Visual simulations such as games have always relied on cutting
edge real-time graphics. However, the search for simulation com-
plexity has also given rise to new challenges in other areas such as
artificial intelligence, physics and also storytelling. All the efforts
in such areas account for the level of immersion in the virtual world
and, in this trend, intelligent real-time camera handling plays an
important role. Good use of the virtual camera has gaining even
more importance because of trends such as games with spectators
[Drucker et al. 2002], the use of real-time game engines to create
films [Elson and Riedl 2007; Morris et al. 2005] and also story-
telling research [Courty et al. 2003; Amerson et al. 2005; Pozzer
2005]. Previous research has been applying movie industry stan-
dards and concepts, such as scenes and shots, to video games in
order to create higher levels of abstraction to manipulate the virtual

camera.

The most common concept in game cinematography is that of a film
idiom, which represents the most usual way to present an specific
type of scene event such as an over the shoulder shot for a dia-
logue sequence between two characters, or a helicopter-mounted
camera for a fast paced car chase in a highway. Film idioms are
good to represent specific camera behaviors that are then isolated
and treated as a problem of its own with different possible solu-
tions. Complete solutions for game cinematography, however, have
to deal with other problems as well and are sometimes organized
as agents that represent the various roles people play in a movie set
[Hawkins 2004]. The most common approach is to consider three
types of agents: director, editor and cinematographer.

Usually, the director agent is responsible for analyzing the scene
and proposing film idioms to present it to the player. The edi-
tor agent is responsible for choosing which one to use, while the
cinematographer agent directly controls the virtual camera [ref-
hawkins]. It is important to remember that games are different from
films in the sense that, being interactive applications, there is no
prior knowledge of future events. A better analogy is to think of
them as live TV-shows, where the scene and the actors are known,
but not all the dynamic dialogues, events and actions taken are. In
this kind of environment, one of the most important roles is that
of the editor, who ultimately decides what to present to the audi-
ence. Based on these concepts, a distributed multi-agent system
was proposed in [ref-short-paper-ours] to deal with the issues re-
lated to massive online games.

In such system, the role of the editor agent is of great importance,
and these are the main concerns related to its implementation:

• What information should be available from the scene in order
to enable good decisions;

• How to decide which of the available film idioms to use at
each time;

• When to cut from one shot to the other without breaking
frame-coherence.

In general, the ultimate goal is to create an agent that mimics the
behavior of a human editor. In this paper we present the details
of an editor agent that uses neuronal networks to enable consistent
shot transitions in dynamic environments and also:

• Provides for a very fast learning mechanism based on real-
time teaching by example;

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 91

• Requires minimal, not film-structured, information from the
scene;

• Uses an intuitive, edit-like, real-time interface for the learning
mechanism that requires no programming experience from the
user.

The rest of the paper is organized as follows: section 2 compares
our approach with previous research. Section 3 presents the sys-
tem architecture and explains some details about the different agent
layers. Section 4 brings a detailed look at the editor agent imple-
mentation, while section 5 details the game prototype developed to
the experiments while section 6 analyzes these experiments and re-
sults. Finally, section 7 concludes the paper and presents our future
work on the subject.

2 Related Work

A good amount of previous works were already dedicated to ap-
plying cinematographic techniques or other intelligent mechanisms
of virtual camera control in video games. The majority of this re-
search proposes the creation of higher level mechanisms for con-
trolling the virtual camera with the adoption of cinema concepts,
constructs and language such as scenes, shots, cuts, directors, edi-
tors and cinematographers [Drucker and Zeltzer 1995; wei He et al.
1996; Christianson et al. 1996; Halper and Masuch 2003; Hawkins
2004; Amerson et al. 2005; Tomlinson 2000; Hornung et al. 2003].
Some of these works use the concept of a film idiom, which en-
capsulates the combined knowledge of several personal roles in a
traditional filming set. In the context of a complete solution, how-
ever, film idioms are good to solve only two parts of the problem:
direct manipulation of the virtual camera; and creating a simple API
for communicating with other layers.

In a work by Hawkins [Hawkins 2004], a three-layer architecture
is proposed to split the issues through different agents categories:
directors, editors and cinematographers. The director agent recog-
nizes actions in the scene and suggests shot options to an editor
agent, that chooses the best way to present them. This later issue is
the responsibility of the third layer: a cinematographer agent, which
directly operates the virtual camera. Bringing this organization to
virtual cameras in computer graphics makes it easier to decouple
the different modules needed by such system. Our work proposes
a novel approach for the design and implementation of an editor
agent that doesn’t require the scene information to be structured in
the form of scene events.

Other previous works are foundations on how to solve the issues
related to the implementation of the virtual camera manipulation
itself. Drucker [Drucker and Zeltzer 1995] studies the basic ele-
ments that compose and motivate the movements of a virtual cam-
era, ending up proposing a agent-based framework to solve this
task. Camera modules are designed as independent tasks that can be
used independently or combined. Hermann e Celes [Hermann and
Celes 2005] proposed a system that dynamically translates and ori-
entates the camera with the use of physical constraint satisfaction.
This later work is a good approach for implementing cinematogra-
pher agents, being complementary to our proposed editor.

Kneafsey and McCabe [Kneafsey and McCabe 2005] create an in-
telligent cinematography system for first person shooters based on
a commercial engine. Their system dynamically switches camera
shots based on specific information extracted from the 3D scene and
use a Finite State Machine (FSM), augmented with fine grained ac-
tivation rules, to represent the knowledge used to decide which shot
to use at each time. Although appropriate to represent this king of
decision making knowledge, FSMs lack the ability to learn, and the
user has manually specify the conditions that trigger each shot type.

He [wei He et al. 1996] also uses a FSM to represent film idioms
but organizes them as a hierarchical structure. Each film idiom in-
cludes activation information as well as camera-modules, which are
the equivalent to our cinematographer agent. Other works [Chris-
tianson et al. 1996; Amerson et al. 2005] also use hierarchical data
structures to encode film idioms and provide a decision mechanism
for shot transitions. Our system uses neuronal networks to store this
knowledge and also present a very intuitive learning interface.

Hornung [Hornung et al. 2003] proposes an agent based system
that drives the virtual camera based on relevant scene information
of the cut-scenes from the game Half-Life. The editor agent of this
system also use neuronal network classifiers to choose shot types,
but uses a different approach (from ours) in that it receives infor-
mation about the scene in the form of narrative events, containing
coded information such as actors and targets. More important, how-
ever, is that it needs data to be translated from the scene domain to
that of a narrative: emotional level, action level, among others. Be-
cause of this dependency on domain translation, this approach relies
on a very complex director agent and is only appropriate to narra-
tive applications that can provide such semantic information. Our
editor agent does not need any domain translation and only requires
input normalization.

Our work provides for a shot transition system that is more suitable
to games, but its also important to mention research on storytelling
since intelligent cinematography is one of the building blocks of
this area. Pinhanez [Pinhanez 1999] studied the foundations for
the representation and recognition of action events in interactive
systems and developed a discrete mechanism and algorithm for the
temporal structure of such actions called PNF (past, now, future)
networks. This propagation algorithm is used to recognize the ac-
tions in an interactive context in replacement of other temporal rep-
resentations such as Finite State Machines. Our system does not
rely on action recognition to learn the rules for shot transition.

Pozzer [Pozzer 2005] developed an architecture for the genera-
tion and representation of dynamic interactive stories, including the
presentation on a 3D engine and cinematographic techniques. The
goal of the work is to provide an integrated tool to manage story
generation for the brazilian digital TV system. In a more recent
work, Guerra [Guerra 2008] proposes the term story engineering
for this process, that is divided into three sub-problems: ontologies
for story-driven data; story generation and storytelling, in which
intelligent cinematography is included. Even being game-driven,
our proposed editor agent is a suitable option for the shot transi-
tion issue, given its learning mechanism and intuitive interface. In
the next two sections, our game cinematography system will be ex-
plained together with the editor agent’s architecture.

3 Cinematography System Architecture

The proposed system architecture comprises three separate layers
modeled as agents: scene mapper, editor and cinematographer. The
role of the scene mapper agent is to gather relevant information
about the 3D scene and to map it to normalized values (between
-1 and 1). This approach provides a knowledge mapping of a scene
data converted to a float-valued domain, which is independent of the
specific 3D environment implementation, enabling a simple data
structure to be used by the editor agent, which is called input-hub.
This data structure does not require information to be coded with
movie semantics such as other works [Hornung et al. 2003].

The movie semantics are not required because our shot-transition
system relies much more on learning by examples than in pre-
defined cuts specified in declarative languages [Christianson et al.
1996; Amerson et al. 2005] The information kept at the input hub
will be the sole input of the editor agent, which is thus indepen-
dent of the specific 3D environment. Figure 2 illustrates the role
of the scene mapper: feed an input hub (float array container) with
normalized information gathered from the 3D scene.

The editor agent contains a set of neuronal network classifiers, one
for each available shot (cinematographer). This agent uses the out-
put of each neuronal network to classify the candidate cinematog-
raphers at runtime. The key feature of the system is the use of an
interactive training mechanism that enables the user to teach his
shot preferences at runtime while watching gameplay. The basic
architecture of the editor agent is illustrated in Figure 3, while a
detailed explanation is given in the next section.

In our architecture, cinematographer agents are components imple-
mented almost independently of the other ones. Their responsibility
is to represent film idioms, such as a chasing camera or an over the
shoulder shot, among others. The available cinematographer imple-

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 92

INPUT-HUB
SCENE

TRANSLATOR

Reads scene data

Float values

3D SCENE

Figure 2: Scene Mapper

INPUT-HUB

EDITOR AGENT

Neural
Classifier

Neural
Classifier

Neural
Classifier

Cinematographer
Cinematographer

Cinematographer

Figure 3: Editor Agent

mentations are enabled or disabled by the editor agent at runtime,
based on the values given by the respective classifiers. In this cur-
rent work, we are more interested in the cut/transition editing issue,
so one is encouraged to read relevant previous research on the topic
of film idiom implementations such as those pointed out in the re-
lated work section.

The communication between the three layers, shown in Figure 4,
is made as follows:

1. The scene mapper, with the knowledge of the 3D environ-
ment, gathers and normalizes information about the scene to
an array of float values within the range of [-1,1]. It con-
stantly feeds these values into an input-hub, that is the only
data-structure needed by the editor agent’s neuronal network
classifiers;

2. The editor keeps references to cinematographer agents and
decides which one to use at each time, based on the output of
the respective classifiers;

3. In our prototype, the cinematographers operate directly on the
3D environment, each one controlling its own virtual camera
(viewport);

4. The position and orientation of the camera controlled by the
chosen cinematographer are replicated to the editor viewport
of the system.

INPUT-HUB
SCENE

TRANSLATOR

Reads scene data

Float values
EDITOR AGENT

Neural
Classifier

Neural
Classifier

Neural
Classifier

Cinematographer
Cinematographer

Cinematographer

3D SCENE

Figure 4: Communication Architecture

4 The Editor Agent

The role of the editor agent is to chose which shot, provided by
the cinematographer agent, to use at each time for a given dynamic
scene. It feeds all the values kept at the input-hub into several neu-
ronal network classifiers simultaneously, one for each cinematog-
rapher. The output of each classifier is used as an activation value
for the respective cinematographer. The goal of the training mech-
anism is to teach each classifier to recognize the situations that are
favorable to its cinematographer. This training is performed by a
user who only has to indicate his favorite camera at each relevant
situation while interactively watching a player testing the game. In
this section we explain in more detail the features of our proposed
editor agent: the neuronal network classifiers; the learning mecha-
nism; and the user interface.

4.1 Neuronal Network Classifiers

Neuronal network building blocks are called neurons, which are
computation units that take as input a collection of values in a nor-
malized range - usually from -1 to 1) and compute an output. Each
input value has an associated weight that, after training, indicates
its importance to that neuron. The output is given by two func-
tions: input and activation. The input function often calculates the
weighted sum of the input values, while the activation function is
commonly the step, sigmoidal functions, among others. Figure 5
presents a schematic representation of a neuron. In our system, we
chose to use the sigmoidal function because the output of the net-
work has to be a float activation value instead of the binary output
of the step function. The formulae for computing the output of each
neuron is given bellow:

output = 1

1+ε
−
∑

W j∗Ij

Where,

• j is an index for the neuron input and weight vectors, ranging
between [0, size− 1];

• W is the weight vector;

• I is the input vector.

Neuronal networks can be composed by sets with only one to sev-
eral neurons, which are thus arranged in layers. Single layer net-
works are also called perceptrons. In our system, it’s possible to
use either perceptrons or multilayered networks as classifiers for the
cinematographers. The choice will depend on the complexity of the
scene input and the number of available cinematographers. Figures
6 and 7 illustrate how the perceptron and multi-layered neuronal
networks are built in our system, showing the connection between
input neurons and the input-hub. One can notice that all classifiers
share the same input-hub, which is just a simple data-structure used
for distributing the input vector, not a weighted neuron.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 93

Neuron

Inputs
Output

Input
function

Activation
function

Figure 5: Schematics of a Neuron

Shared Input Values

Single-neuron perceptrons

Editor
Agent

Input Hub

P

P

P

Figure 6: Editor with Perceptron Classifiers

Input Hub

Shared Input Values

Multi-layer Classifiers

Editor
Agent

Figure 7: Editor with Multi-layer Classifiers

4.2 The Learning Mechanism

By modifying the weights associated to the inputs, one can teach
each neuron the importance of each input value for its respective
output. A set of know tuples of inputs together with the associated
desired output is called a training set. To train a neuron network,
one should feed its input with each example from the training set,
comparing the calculated output with the desired one and feeding
back the computed error to a training function, which adjusts the
weights properly. Each time the training set is fed through the net-
work is called a training age. For single neuron networks, the sim-
ple training rule given in the following formulae is applied to each
classifier while for multi-layered networks the back propagation al-
gorithm is used.

Wj = Wj + α× (desired− current)× Ij

Where,

• α is the learning rate for the training mechanism;

• desired is the correct output for the training sample;

• current is the calculated output using current weights;

One can notice that the training function updates the weights
of the neuron proportionally to the input (Ij), the output error
(desired−current) and the training rate (α). It is important to bal-
ance between large training rates and the number of training ages.
In section 6 we present experiments and analysis about these vari-
ables with a game prototype implemented exclusively for this work.

In our system, the training set is initially empty, and is populated as
the user chooses favorite shots while watching gameplay. Each time
he informs the system of a preferred shot, a snapshot of the current
input is taken and the desired value for each cinematographer is
set: 1 for the chosen one and 0 for all the others. Each sample
consisting of the input values and the desired output is then added
to the respective cinematographer agent’s training set. At each time
a new sample is included, the weights are reset and a new training
is performed for all the classifiers. To keep the training cost low
throughout the simulation, we use the minimum necessary number
of training ages, which will be better explained in Section 6.

4.3 The Learning Interface

The proposed system interface used for training the editor agent in
our work, shown in Figure 8, is composed of several viewports to
show at the same time:

• All the available shots (cinematographers) - seen in the small
viewports on the right;

• The current choice of the editor agent - lower-right viewport;

• The main screen for the player during training - bigger view-
port.

Main Screen

Editor's
Choice

Shot 1

Shot 2

Shot 3

Figure 8: Learning Interface with 3 Cinematographers

When the system starts, the training set is empty and will be filled
by the user (or a spectator beside him) as he plays. At each time
the game developer finds the simulation state in a representative
situation for a specific shot, he should press the numeric key of
that cinematographer. This will fire the mechanism that feeds each
cinematographer’s training set by taking the input snapshot, adding
the respective desired output. After the new samples are included
in each set, a training age is performed for all cinematographers. In
the next sections we show the prototype, exclusively developed to
test the system, and the results of experiments performed to verify
the accuracy of the learning mechanism.

5 Prototype: Race Game

We developed a game prototype to illustrate the use of our editor
agent. It consists of a simple race game where the goal is to make
the editor agent learn to use different camera shots to increase the
dramatic appeal of action situations such as jumps and rocks cross-
ing the road. The game takes place on a small modeled island with

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 94

a race track around it. There are several bumps through the track
that make the car jump. In addition, there is a volcano that throws
rocks over the track in the back part of the circuit. The player con-
trols the car as usual, using the directional keys, while the editor
agent training controls are the number keys corresponding to the
available shots. Figure 9 shows a high view of the island, showing
the race track and the volcano.

Figure 9: Screenshot of the Island and the Race Track

5.0.1 Editor Agent

The editor agent for the prototype includes three shot options and
the respective classifiers, which are single neuron perceptrons. This
example does not need multi-layer networks because the functions
we are trying to teach for each classifier are linear. The goal is
to use a chasing camera for normal racing situations, and different
ones for jumps and for when the car is near the falling rocks. One
can notice that it would be easy to implement a rule based system to
achieve the same goals, but our intelligent editor is flexible to learn
any other set of rules with the same simple teaching interface, and
also, we target it for non technical users, who would find it difficult
to specify logical rules.

The shot library comprises of three cinematographer agents, refer-
enced by the editor and implemented by directly manipulating the
virtual camera. Figure 10 shows a screenshot of the learning in-
terface of the prototype game, while the description of the three
available cinematographers is given bellow.

• Chasing Camera - follows the car from behind - default;

• Front Camera - keeps ahead of the car, pointing back to it -
for jumping situations;

• High-view Camera - fixed at the volcano top, and its orienta-
tion follows the car - for the volcano area.

Figure 10: Prototype game interface, showing the available shots

The input for the editor, which is illustrated in Figure 11, comprises
of only three values:

• Boolean value (0 or 1) saying if the car is touching the ground;

• Normalized values for the X and Z coordinates of the car,
based on the limits and center of the island.

INPUT-HUB

Jumping ? (0,1)

Normalized X position

Normalized
Z position

Figure 11: Input-hub for the prototype

6 Experiment Results

We were specially interested in experimenting with the learning
mechanism to verify its performance with only a minimal number
of training ages and a very small training set, so the user would
not notice the computational penalty of this task. By classification
performance we mean both classification quality, the correctness
rate that the classifier generates against the expected output; and
accuracy, characterized by small dispersion values over the test in-
stances. We expected to confirm that the size of the training set
could be small, so the user would not have to choose the adequate
camera for each situation too many times. The less the user has
to inform/teach the system, more simple it becomes to operate.
But before actually performing interactive tests with real users and
small training sets we did some experiments to find what was the
ideal number of training ages and the influence of the learning rates
of the neurons over the classification performance. This section de-
scribes both parts of the experiment: first, we analyze the influence
of learning rates and number of ages over performance; second, we
show the results of tests with real users.

6.1 Learning Rate and Ages

For both parts of the experiment we used an auxiliary sample set
for validation purposes which consisted of 300 collected samples,
with all three expected values for each cinematographer classifier.
This training set was carefully built with actual application data to
represent all possible situations during gameplay. The first exper-
iment aimed to check the influence of the learning rate over ac-
curacy. Using this validation sample set, we performed Ten Fold
Cross-validation tests for each learning rate value, and measured
the average output correctness and standard deviation for each in-
stance of the test. Ten Fold Cross-validation works by shuffling the
sample set and splitting it in ten parts. Then, each one of these 10%
subsets are used to validate the system, which is trained with the
remaining 90%.

We performed this test with the learning rates ranging from 0.05 to
0.5 and noticed that the learning rate does not influence much on
the performance, given that the system converges to a trained state.
The only influence is noticed in the training speed, meaning that
small values take too long to converge, while higher values are too
sensible to errors in the training set. Given this, we chose to run the
remaining experiments with a learning rate of 10%.

With the second experiment, we wanted to find appropriate maxi-
mum value for the number of ages to be performed at each train-
ing of the networks, big enough to achieve good accuracy even if
the system does not converge and still small enough to avoid high
computational intensity. We ran the same kind of Ten Fold Cross-
validation tests, this time fixing the learning rate in 10% and vary-
ing the maximum number of ages from 1 to 50. The results for
this tests are presented in a chart in Figure 12. The horizontal axis
represents the number of ages, while the vertical axis shows the
measured classification performance (100% is full correctness).

One can notice from the chart that the number of ages has a strong
influence over the trained network performance. Only with 30 or
more ages has the accuracy converged to 100%, with a measured
standard deviation of around 3%. Fortunately, even when executing
50 training ages with the small training sets expected to be used in

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 95

 80

 85

 90

 95

 100

 5 10 15 20 25 30 35 40 45 50

C
o

rr
e

c
tn

e
s
s
 (

%
)

Training ages

Learning performance vs. training ages

Figure 12: Classifier performance with varying ages number

actual interactive training, the computational penalty is almost im-
perceptible, so this was the number used in the final experiments.
We also checked how robust the prototype classifiers were, by in-
troducing random error on the validation sample set in the range of
5% to 25%. Figure 13 shows the influence of this errors over the
different number of training ages. The axis represent the same vari-
ables as the previous test results, and the different lines represent
the different error ranges.

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40 45 50

C
o

rr
e

c
tn

e
s
s
 (

%
)

Training ages

Learning performance with errors

No error
5%

10%
15%
20%
25%

Figure 13: Classifier performance in the presence of errors in the
training set

One can notice that the presence of error in the training set is par-
ticularly influent with the smaller number of ages. By training with
50 ages, even with in the presence of 25% incorrect samples, the
accuracy is still high, reaching more than 85%. This robustness is
one of the reasons neuronal networks are a good choice for such
system. Following, we analyze the results of interactive training
experiments with real users creating very small training sets.

6.2 Interactive Experiments

For the interactive experiments, we wanted to check if the learning
mechanism was robust enough to perform well even with a very
small training set, which is mandatory for the system to be consid-
ered user friendly from an usability point of view. The tests con-
sisted of a user watching live gameplay and choosing the correct
shot (cinematographer) during the simulation. We only instructed
the users to choose the first shot (chase camera) for normal situa-
tions, the second one (front camera) for jumping moments, and the
last one (volcano shot) when the car was near that part of the island.

Since this prototype editor agent is composed of three different cin-
ematographers, we used a minimal training set of at least three sam-
ples, one for each available shot. From this minimum value, the test
users increased the number of samples by 3 for each new test cat-
egory, always adding one more sample to favor each one of the
cinematographers. To better validate the results through standard
deviation, the users were asked to ”teach” the system several times
by starting from scratch for each desired training set size. Table
1 shows the computed results for this experiment with the training
set size ranging from 3 to 12 samples, while Figure 14 shows the
performance of the editor agent in a line chart.

Table 1: Performance and deviation with small training sets
Samples 3 6 9 12
Accuracy 83,134 95,945 98,894 99,447
Std. Dev. 17,020 3,938 0,232 0,463

 70

 75

 80

 85

 90

 95

 100

 3 4 5 6 7 8 9 10 11 12

C
o

rr
e

c
tn

e
s
s
 (

%
)

Number of samples

Learning performance with small training set

Figure 14: Classifier performance with small training sets

One can see that, apart from the trivial case of only one sample for
each shot, the accuracy results are statistically very satisfactory. It
is also important to say that again, apart from this trivial training set
with only 3 samples, the system has always reached 100% correct-
ness over the validation set in several test instances. The average
accuracy was a little under this value probably because of some
mistakes by the user, who failed to choose good samples, which is
expected to happen even in production situations. The test results
were very important because they showed us strong evidences that
this mechanism is good enough for a real case production scenario,
where such intelligent system becomes very handful, specially be-
cause non technical users are not expected to learn how to specify
complex logical rules such as an equivalent decision tree.

7 Conclusion

In this paper we presented an editor agent for intelligent game cine-
matography that features a learn by example mechanism with very
good accuracy, does not impose big performance penalties and is
suitable to be included in a production pipeline, given its very easy
user interface. This editor agent is part of a cinematography archi-
tecture that has been designed and developed for games and other
interactive applications, even those where there is no prior knowl-
edge of the action events that will take place in the 3D environment.
Although designed to work in games, we think our system is suit-
able for other types of interactive 3D visualization applications as
well and we plan to experiment it with those scenarios. In our opin-
ion, the major contributions of this work are the robust learn by
example mechanism, the independency of complex domain transla-
tion of scene data and the intuitive user interface.

The experiments made with the neuronal networks classifiers pro-
vided very important results that have lead to some modifications
on the implemented ideas. For instance, we originally thought it

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 96

would be possible to run smaller number of training ages, but the
results showed us that this number is much more important than the
learning rate and even the training set size. The final tests with real
users showed us very important evidence that the system is viable
to a production scenario, given the near-ideal performance that was
obtained with very small training sets.

Future work on this cinematography architecture include:

• Experimenting with more complex environments, input sets
and shot types, which will need multi-layer neural network
classifiers;

• Design a learning mechanism to interactively specify cine-
matographer agent’s constraints;

• Integrate the system with a distributed architecture targeting
spectators of massive online games.

References

AMERSON, D., KIME, S., AND YOUNG, R. M. 2005. Real-time
cinematic camera control for interactive narratives. In ACE ’05:
Proceedings of the 2005 ACM SIGCHI International Conference
on Advances in computer entertainment technology, ACM, New
York, NY, USA, 369–369.

CHRISTIANSON, D. B., ANDERSON, S. E., WEI HE, L.,
SALESIN, D., WELD, D. S., AND COHEN, M. F. 1996.
Declarative camera control for automatic cinematography. In
AAAI/IAAI, Vol. 1, 148–155.

COURTY, N., LAMARCHE, F., DONIKIAN, S., AND RIC MARCH.
2003. A cinematography system for virtual storytelling. In in
Int. Conf. on Virtual Storytelling, ICVS’03, Springer, 30–34.

DRUCKER, S. M., AND ZELTZER, D. 1995. Camdroid: a sys-
tem for implementing intelligent camera control. In SI3D ’95:
Proceedings of the 1995 symposium on Interactive 3D graphics,
ACM, New York, NY, USA, 139–144.

DRUCKER, S., HE, L., COHEN, M., WONG, C., AND
GUPTA, A., 2002. Spectator games: A new enter-
tainment modality for networked multiplayer games.
http://research.microsoft.com/˜sdrucker/
papers/spectator.pdf.

ELSON, D. K., AND RIEDL, M. O. 2007. A lightweight intelligent
virtual cinematography system for machinima production. In
AIIDE, The AAAI Press, J. Schaeffer and M. Mateas, Eds., 8–
13.

GUERRA, F. W., 2008. Engenharia de estorias: um estudo sobre a
geracao e narrao automatica de estorias.

HALPER, N., AND MASUCH, M. 2003. Action summary for com-
puter games: Extracting action for spectator modes and sum-
maries. In Proc. of 2nd Int?l Conf. Application and Development
of Computer Games, 124–132.

HAWKINS, B. 2004. Real-Time Cinematography for Games (Game
Development Series). Charles River Media, Inc., Rockland, MA,
USA.

HERMANN, R., AND CELES, W. 2005. Posicionamento auto-
matico de cameras em ambientes virtuais dinamicos. In Pro-
ceedings of IV workshop on games and digital entertainment of
the Brasilian Simposium on Computer Games and Digital Enter-
tainment.

HORNUNG, E., LAKEMEYER, G., AND TROGEMANN, G. 2003.
Autonomous real-time camera agents in interactive narratives
and games. In Proceedings of the IVA 2003: 4th Interna-
tional Working Conference on Intelligent Virtual Agents, 15.-
17.9.2003, Irsee, Germany, Lecture Notes in Computer Science
2792, Springer, 236–243.

KNEAFSEY, J., AND MCCABE, H. 2005. Camerabots: Cinematog-
raphy for games with non-player characters as camera operators.
In DIGRA Conf.

MORRIS, D., KELLAND, M., AND LLOYD, D. 2005. Machinima:
Making Animated Movies in 3D Virtual Environments. Muska &
Lipman/Premier-Trade.

PINHANEZ, C. S. 1999. Representation and recognition of ac-
tion in interactive spaces. PhD thesis, Massachusetts Institute of
Technology. Adviser-Aaron F. Bobick.

POZZER, C. T. 2005. Um sistema para geracao, interacao e visual-
izacao 3D de historias para TV interativa. PhD thesis, Pontificia
Universidade Catolica - RJ.

TOMLINSON, B. 2000. Expressive autonomous cinematography
for interactive virtual environments. In In Proceedings of the
Fourth International Conference on Autonomous Agents, ACM
Press, 317–324.

WEI HE, L., COHEN, M. F., AND SALESIN, D. H. 1996. The vir-
tual cinematographer: a paradigm for automatic real-time cam-
era control and directing. In SIGGRAPH ’96: Proceedings of
the 23rd annual conference on Computer graphics and interac-
tive techniques, ACM, New York, NY, USA, 217–224.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 97

IRTaktiks: Jogo de Estratégia para Mesa Multitoque

Willians S. Schneider Nilson C. Dias F.o Luis H. M. Mauruto Fábio R. Miranda

Centro Universitário Senac, Bacharelado em Ciência da Computação
São Paulo – SP, Brasil

Figura 1: IRTaktiks jogado simultaneamente por dois jogadores, que manipulam suas unidades diretamente com as mãos

Abstract

We present IRTaktiks, a real-time two-player strategy
game playable on a custom multi-touch table.
Details regarding the construction of the interface
hardware, the detection and recognition of events and
the architecture of the software that was designed and
implemented are presented. Aspects of how the game
works and results of the finished project are also
presented and discussed.

Keywords: Architectures, Engines, and Design
Patterns; Computer Graphics, Human-computer
Interfaces, Interface hardware, Programming
Techniques.

Authors’ contact:
willians.schneider@gmail.com,{lhmenezes,
nilmesmo}@gmail.com,
fabio.rmiranda@sp.senac.br

Sample Video:
www.tinyurl.com/irtaktiks/

Source code:
http://www.codeplex.com/irtaktiks

1. Introdução

Em tempos recentes tem havido interesse crescente em
dispositivos de interação multitoque, caracterizados
por um ou mais usuários poderem interagir através dos
dedos diretamente com uma interface gráfica,
dispensando o uso de dispositivos de entrada mais
convencionais, como teclados, mouses ou canetas
especiais. Inicialmente protótipos de telas e mesas de
interação multitoque desenvolvidos por pesquisadores
de interação e entusiastas foram demonstrados, e

agora este conceito já se encontra embutido em
produtos computacionais, o telefone celular iPhone ou
no futuro Windows 7.

Uma materialização bastante comum das interfaces
multitoque é na forma de mesas, que são interessantes
por ser um objeto do domínio cotidiano das pessoas e
naturalmente um meio para colaboração, quer na forma
de espaço de trabalho, quer na forma de jogos. As
interfaces multitoque podem trazer para o ambiente
computacional uma forma de colaboração e interação
simultânea que normalmente é inviabilizada nas
estações de trabalho convencionais por questões
ergonômicas (estão disponíveis apenas um mouse e
teclado), mas que muitas vezes está presente em jogos
de mesa e tabuleiro.

Tanto na forma de mesas de interação quanto na de
outros tipos de dispositivos, é razoável supor que o
potencial de interação intuitiva dos dispositivos de
interação multitoque aliado ao suporte crescente ao
desenvolvimento de aplicações deste tipo em sistemas
operacionais e em bibliotecas independentes constitui
uma oportunidade interessante para o desenvolvimento
de jogos inovadores.

Este trabalho trata do projeto e implementação do
IRTaktiks, um jogo de estratégia jogável
simultaneamente por dois jogadores (exemplificado na
Figura 1) numa mesa de interação multitoque
desenvolvida com materiais de baixo custo (que pode
ser vista na Figura 5). Serão apresentados aspectos
relacionados à construção do dispositivo de interação,
detecção dos múltiplos toques a partir do uso de
bibliotecas de código aberto, transformação dos toques
em eventos de jogo e o significado destes eventos no
domínio do jogo. Este trabalho também detalha
elementos de projeto do jogo.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 98

A organização deste artigo é descrita a seguir. Na
próxima seção alguns trabalhos relacionados que
tratam de interação multitoque são apresentados. Na
seção 3 a reflexão total interna frustrada da luz (FTIR),
que é o princípio do dispositivo de entrada usado neste
trabalho, é apresentada. A infra-estrutura de software
usada no projeto é discutida na seção 4 enquanto na
seção 5 apresentam-se detalhes do desenvolvimento do
projeto, cujos resultados são apresentados na seção 6.
A seção 7 trata das conclusões e trabalhos futuros.

2. Trabalhos relacionados

A interação multitoque popularizou-se em 2006 com a
ajuda de vídeos na Internet em que Jefferson Y. Han,
pesquisador do instituto de ciências matemáticas
Courant demonstrou seu trabalho de pesquisa de
interação multitoque utilizando uma superfície com
display gráfico interativa que permitia a interação
simultânea de múltiplos usuários. Foram apresentadas
implementações de diversas aplicações, entre as quais
jogos multitoque simples. Os protótipos de J. Han
[Han 2005] despertaram o interesse de diversas
iniciativas de pesquisa sobre essa nova alternativa de
interação, e logos estavam disponíveis na WWW
diversos tutoriais e weblogs [Buxton 2008] que trocam
experiências entre pesquisadores e fomentam o
desenvolvimento de protótipos.

O multitoque teve seu início em 1982
[Multigesture.net 2008], com tablets feitos na
universidade de Toronto e com telas dos laboratórios
Bell. Nos anos 90 a universidade de Delaware
desenvolveu um sofisticado sistema de reconhecimento
de gestos e escrita, base para o mouse-pad iGesture e
teclados TouchStream, comercializados pela
FingerWorks em 2001. Estes teclados eram
reconhecidos pela sua ergonomia, os usuários apenas
precisavam apontar e arrastar com um ou mais dedos,
eliminando totalmente a necessidade de um dispositivo
apontador, como o mouse.

O primeiro dispositivo multitoque com display
integrado a ser comercializado foi o Lemur Input
Device, um controlador multimídia profissional da
companhia francesa JazzMutant lançado em 2005
[Multigesture.net 2008]. Em julho de 2007, a Apple
Inc. lançou o produto iPhone que tinha interação
multitoque e a empresa Microsoft demonstrou logo a
seguir uma mesa de interação chamada Microsoft
Surface.

A mesa ReacTable [Kaltenbrunner et al. 2006]
funciona como um instrumento musical colaborativo,
que permite o reconhecimento de objetos postos sobre
sua superfície e tem a possibilidade de permitir
interação multiusuário. Na ReacTable o usuário pode
sintetizar sons através de uma cadeia de fontes, filtros e
osciladores manipuláveis, todos gerados por software.
Cada objeto colocado sobre sua superfície é
classificado por um software a partir de marcadores

fiduciais situados em sua superfície e capturados por
uma câmera situada abaixo da mesa. Cada objeto é
classificado como um dos geradores e filtros de uma
aplicação musical obtendo-se como resultado um som
único, resultado da interação destes objetos. Este
instrumento utiliza como base o software de detecção
de fiduciais ReacTIVision, que reconhece os objetos
sobre a mesa. A ReacTable ganhou notoriedade
recentemente ao ser utilizado em shows e
apresentações pela cantora Björk, no Coachella
Festival, em 2007 na California [Wired 2008].

3. FTIR e Multitoque

Atualmente, existem diversas técnicas para a detecção
de múltiplos toques em superfícies, por exemplo,
análise da imagem de câmeras que enquadram o
dispositivo, utilização de sensores medidores de
pressão, utilização de um grids de filamentos
eletrônicos, onde o toque simplesmente fecha contato
permitindo a passagem de corrente elétrica, até a
utilização de circuitos eletrônicos que percebem o
contato dos dedos humanos por uma alteração de
capacitância na região do toque.

As técnicas mais simples e baratas costumam

utilizar iluminação infravermelha e uma superfície de
acrílico. Em geral um anteparo de projeção é colocado
junto ao acrílico, e a superfície de interação é
iluminada lateralmente com luz infravermelha. A mesa
multitoque utilizada neste trabalho (que pode ser vista
na Figura 5) baseia-se em iluminação infravermelha,
mais especificamente a FTIR (reflexão total interna
frustrada da luz).

A reflexão da luz é o fenômeno físico em que um
feixe de luz incide sobre uma determinada superfície e
é refletida para o mesmo meio de propagação de
origem. Quando a reflexão é total, todos os fótons do
feixe de luz são redirecionados ao meio de propagação
de origem, ao contrário da reflexão parcial, em que
alguns fótons atravessam a interface entre os meios de
propagação, caso em que ocorre um desvio no ângulo
de incidência do feixe de luz emitido, chamado de
refração. O pesquisador J. Y. Han, durante suas
pesquisas sobre técnicas de interação multitoque,
percebeu que a pele é um material difusor, ou seja,
quando um feixe de luz que seria refletido totalmente
entra em contato com a pele, ele é difundido em todas
as direções. A esse efeito de difundir a luz que seria
totalmente refletida, se deu o nome de reflexão total
interna frustrada da luz, que encontra-se ilustrado na
Figura 2.

Este fenômeno é passível de aplicação em
interfaces multitoque, em que pode-se em iluminar as
laterais de uma superfície de acrílico com diversos
LEDs infravermelhos de modo que a luz emitida fique
presa dentro do acrílico devido ao fenômeno da
reflexão total da luz. Quando o dedo do usuário toca a
superfície da mesa, a luz é difundida para baixo, onde

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 99

uma webcam obtém imagens. Essa difusão é
reconhecida como pontos de alta luminosidade na
imagem capturada e a posição dos toques é facilmente
detectada. Pode-se ver este fenômeno em efeito na
imagem mostrada na Figura 6.

Figura 2: A reflexão total interna da luz na superfície de
acrílico é frustrada no ponto de contato com o dedo do

usuário

4. Infra-Estrutura e Ferramentas

Alguns softwares publicamente disponíveis foram
utilizados para o reconhecimento de toques sobre a
superfície da mesa multitoque. Existe uma grande
quantidade de superfícies multitoque sendo
desenvolvidas por uma comunidade de entusiastas que
trocam informações pela Internet, e um padrão para o
armazenamento das informações relacionadas aos
toques e sua integração com outras aplicações foi
sendo adotado pelos desenvolvedores de software.

Durante o projeto da ReacTable, desenvolveu-se

um protocolo capaz de armazenar informações sobre
toques e objetos em qualquer superfície multitoque. A
esse protocolo deu-se o nome de TUIO.

 Outro componente importante do sistema da

ReacTable é o reacTIVision, [Kaltenbrunner et al.
2007] software responsável pela identificação de
toques e fiduciais, que analisa a imagem da superfície e
emite mensagens do tipo TUIO [Kaltenbrunner et al.
2006]. Para comunicar os pacotes TUIO com
informação sobre os toques com aplicações voltadas a
gerar sons e efeitos sonoros, na ReacTable tais pacotes
são encapsulados num outro protocolo que é
compatível com uma grande variedade de bibliotecas
de código aberto, chamado OSC (Open Sound Control)

Após o desenvolvimento do reacTIVision, diversos
softwares com o propósito de identificação de toques
foram desenvolvidos. A grande maioria buscou seguir
o mesmo padrão, ou seja, mensagens TUIO sob o
protocolo OSC, tornando-os padrão no
desenvolvimento de aplicações multitoque. Um
exemplo de projeto que adotou mensagens TUIO/OSC
é a biblioteca Touchlib, adotada no IRTaktiks para o
reconhecimento dos toques na mesa desenvolvida
devido à sua estabilidade e funcionalidades úteis ao
projeto. A adoção do Touchlib é um fator interessante,

pois permite que o projeto IRTaktiks funcione
corretamente em qualquer superfície multitoque que
siga os padrões propostos.

A seguir serão fornecidos mais alguns detalhes a

respeito de TUIO, OSC e Touchlib.

4.1 Open Sound Control (OSC) e TUIO

O Open Sound Control (OSC) [Cnmat 2008] é um
protocolo desenvolvido para a comunicação entre
computadores, sintetizadores de som e outros
dispositivos multimídia. É utilizado em produtos de
Realidade Virtual, interfaces Web e também como
meio de transporte para outros protocolos que não
possuem facilidade de comunicação.

A biblioteca OSCpack [Bencina 2008] é um

conjunto de classes em C++ responsáveis por criar e
ler pacotes do protocolo OSC, incluindo as
funcionalidades mínimas para a comunicação
utilizando UDP nas plataformas Windows e POSIX.
Atualmente é utilizada em diversos projetos, como o
ReacTIVision, Touchlib e AudioMulch por causa de
sua capacidade de prover comunicação simplificada
entre as plataformas Windows, Linux e Mac OS X.

TUIO é um protocolo de comunicação
desenvolvido com a finalidade de atender os requisitos
de comunicação entre interfaces tangíveis. Este
protocolo define propriedades comuns baseadas no
controle de objetos, toques e gestos. Há
implementações do TUIO nas linguagens Java, C, C++
e Adobe Flash, entre outras.

As mensagens do TUIO dividem-se em perfis
baseados na interação com a interface tangível.
Atualmente, o TUIO possui perfis para interfaces 2D,
3D e interfaces customizadas. Cada perfil, por sua vez,
possui dois tipos de mensagens diferentes, usadas na
representação da interação de objetos e toques com o
dispositivo. A mensagem carrega diversas informações
sobre a interação, dentre as quais destacam-se a sessão,
um identificador da interação, posições no espaço 2D
ou 3D, ângulo, vetor de movimento, vetor de rotação,
aceleração de movimento e aceleração de rotação.
[Tuio 2008]

4.2 Touchlib

O Touchlib é uma biblioteca que permite a detecção de
toques em superfícies multitoque que utilizam o
princípio da reflexão total interna frustrada da luz, quer
se utilizem de iluminação traseira ou iluminação
frontal. Esta biblioteca foi desenvolvida pela Natural
User Interface Group em parceria com a White Noise
Audio [Nuigroup 2008].

Através de algoritmos de divisão e comparação,
detecta realces no histograma das imagens enviadas

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 100

por uma webcam transformando-os em informações
sobre cursores, e disparando eventos que podem ser
tratados em aplicações C/C++. Estes eventos são
disparados nos momentos em que um dedo toca,
percorre ou é retirado da superfície multitoque. Esta
biblioteca permite a integração com demais aplicativos
através de TUIO/OSCpack.

O Touchlib aplica técnicas de processamento de

imagem no resultado capturado das webcams a fim de
melhorar a percepção de toques. Atualmente esta
biblioteca trabalha apenas na plataforma Windows,
porém existem esforços sendo realizados para portá-la
para outras plataformas, como Mac OS X e Linux.

Os eventos detectados pelo Touchlib são

convertidos para uma escala que vai de zero até um. O
canto superior esquerdo da imagem é o ponto (0, 0),
enquanto o inferior direito é o (1, 1). O Touchlib
limiariza e segmenta a imagem obtida pela webcam e a
divide em 20 imagens menores. Quando um toque é
detectado, sua posição é calculada através de uma
interpolação linear apenas na respectiva fatia da
imagem. Isso permite que a câmera não necessite estar
perpendicular à superfície de projeção, pois a distorção
provocada é compensada pela interpolação. A Figura 3
exemplifica este conceito: na sua parte inferior tem-se
o detalhe de uma célula da grade em que a superfície
de toque é dividida.

Figura 3: Exemplo de interpolação feita em cada célula no

cálculo da posição do toque

5. O projeto IRTaktiks

O jogo IRTaktiks é um RPG tático, em que o jogador
controla diversos personagens com características
diferentes, cujo objetivo é derrotar o inimigo através de

ataques, magias e itens, utilizando táticas, como por
exemplo se beneficiar de uma determinada posição no
campo de batalha para obter vantagens sobre o
inimigo.

O processamento de eventos de entrada no jogo
está exemplificado na Figura 4. As interações do
usuário sobre a mesa, por exemplo o toque de um ou
mais dedos sobre sua superfície, são reconhecidos pelo
Touchlib através da análise das imagens enviadas por
uma webcam posicionada sob a mesa e que enquadra a
superfície de interação. O Touchlib processa as
informações e envia uma mensagem TUIO para cada
dedo sobre a mesa, contendo as informações como
posição, ângulo de movimentação, velocidades
calculadas entre outras.

O jogo utiliza a biblioteca OSCpack e implementa

um cliente OSC que recebe as mensagens TUIO/OSC
geradas pela Touchlib e as decodifica para obter
informações a respeito dos toques efetuados pelo
usuário na mesa. Há um módulo do IRTaktiks chamado
Input que se encarrega de disparar um evento interno
ao jogo para cada interação executada pelo usuário na
mesa. Estes eventos se propagam para os diversos
componentes do jogo que se atualizam conforme
necessário. Finalmente, uma imagem do jogo é
projetada com o auxílio de um projetor sob a superfície
da mesa. O efeito percebido pelo jogador é o de
manipular diretamente os objetos do jogo.

Figura 4: Arquitetura de deteção e processamento de eventos

do sistema

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 101

5.1 Concepção

O IRTaktiks deve ser jogado por dois jogadores, e cada
um terá várias unidades de combate. Cada unidade
possui diversos atributos que quando configurados a
tornam única e diferente das demais. Além de
atributos, as unidades possuem classes que lhes dão
características, vantagens, desvantagens e ações
diferentes ampliando as possibilidades de estratégia de
cada um dos usuários. O objetivo é derrotar todas as
unidades do jogador adversário, utilizando as
características de cada unidade de combate e suas
respectivas ações em conjunto com o cenário onde a
batalha acontece.

5.2 Mesa multitoque

A mesa multitoque utilizada no IRTaktiks é formada
por uma superfície de acrílico transparente de
aproximadamente 1,2m x 1,6m, acoplada a um suporte
de madeira sobre rodas, que facilita seu deslocamento.
O acrílico é encaixado numa esquadria de alumínio que
possui 47 entradas nas laterais que funcionam como
soquetes para LEDs infravermelhos, de modo que a luz
por eles emitida percorra o interior do acrílico
capturada de acordo com o princípio da reflexão total
interna da luz. Os LEDs infravermelhos utilizados são
de alto brilho com corrente máxima suportada de
100mA e tensão de barreira de potencial de 1.2V,
subdivididos em 10 trechos de circuito elétrico que
estão dispostos ao longo do perímetro do acrílico.

Figura 5: Mesa multitoque utilizada no projeto

Para obter as imagens dos toques foi utilizada uma

webcam Microsoft LifeCam VX-6000. A escolha desta
webcam se deveu a possuir ângulo de visão com 71º,
sensor CCD (Charge Coupled Device) com resolução
de 800 por 600 pixels e ser capaz de suportar uma taxa
de atualização de 30fps (quadros por segundo). A
webcam veio de fábrica com um filtro que inibe a
passagem da luz infravermelha posicionado entre a
lente e o CCD que teve de ser removido.

 A fim de minimizar as influências da luz do
projetor e da iluminação ambiente da sala na detecção
dos eventos nas imagens adquiridas pela webcam, foi

adicionado à câmera um filtro que bloqueia a maior
parte da luz visível mas permite a passagem de luz
infravermelha. Utilizou-se como filtro bloqueador de
luz visível um pedaço de filme fotográfico queimado
após ter sido revelado, pode-se ver a diferença
representada por este filtro na Figura 6.

Figura 6: Toque sem e com o filtro inibidor da luz visível

A webcam fica posicionada sob a mesa com a

superfície de acrílico contida em seu campo de visão,
de modo a obter as imagens dos toques realizados
pelos usuários. Devido à câmera utilizada ser dotada de
um ângulo de visão maior que o de webcams
convencionais, pôde ser colocada a uma distância
menor em relação ao acrílico e mesmo assim cobrir
uma área da mesa maior ou equivalente.

A projeção é feita com um projetor de resolução
nativa de 800 por 600 pixels e um espelho simples,
como pode ser visto na Figura 7. A imagem do projetor
é direcionada pelo espelho para a superfície inferior do
acrílico. É necessário posicionar um anteparo de
material difusor sob a superfície do acrílico para que o
usuário veja a projeção.

Figura 7: Sistema de projeção situado sob a mesa

O material ideal para este tipo de mesa é um polímero
para projeções, fabricado pela empresa Rosco. Como
este material não é encontrado facilmente no Brasil,
sua utilização foi descartada. Para substituir o material
difusor, foram realizados testes utilizando papel
vegetal e sacolas plásticas brancas de polietileno.

Testes realizados indicaram que os sacos plásticos
de polietileno permitiram maior nitidez na imagem

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 102

capturada pela webcam que é usada na detecção dos
toques quando comparados com o papel vegetal. Este
material não foi encontrado no tamanho necessário
para cobrir uma área razoável da mesa sem que fossem
necessárias emendas e foi também descartado.
Utilizamos papel vegetal como anteparo na maior parte
das execuções do protótipo e no vídeo disponibilizado
online que mostra o trabalho em execução.

5.3 Arquitetura do software

A utilização do Touchlib para reconhecimento de
toques e sua compatibilidade com TUIO/OSC não
representa nenhuma restrição ou condição de contorno
em relação a escolhas relacionadas à bibliotecas
gráficas. A parte visual do jogo poderia ser
desenvolvida em praticamente qualquer plataforma de
computação gráfica ou API 3D, pois existem diversas
implementações do protocolo OSC, em diversas
plataformas e linguagens de programação. Dessa
forma, a escolha foi baseada principalmente em qual
ambiente a produtividade seria maior e qual proveria
mais recursos, como controle de versões, gerenciadores
de conteúdo e linguagens com suporte a programação
orientada a objetos. Dentre frameworks existentes,
optou-se pelo Microsoft® XNA 2.0, devido à
experiência anterior dos integrantes do projeto com o
ambiente de desenvolvimento da Microsoft com C#,
grande variedade de recursos disponíveis, ampla
documentação, desempenho do código gerado e
possibilidade de utilizar o ambiente integrado de
desenvolvimento voltado à produtividade, Microsoft
Visual Studio.

Após a definição da plataforma em que o jogo seria
desenvolvido, iniciou-se a construção de um módulo
chamado Listener, responsável pela comunicação entre
o jogo e o software que controla a detecção dos toques
sobre a mesa (Touchlib). Dessa forma, futuros
problemas de integração seriam eliminados, uma vez
que a construção do jogo levaria este módulo de
comunicação em consideração, sem alterá-lo. Foi
decidido que este módulo utilizaria eventos internos
para representar as interações dos usuários com a mesa.
Desta forma o projeto do jogo foi simplificado e
modularizado. O serviço que lê as informações
contidas nas mensagens OSC/TUIO e dispara os
eventos é executado em uma thread à parte;
aumentando o desempenho do módulo de
comunicação.

Este módulo foi construído utilizando as bibliotecas

do OSCpack, que é responsável por obter as mensagens
TUIO enviadas pela mesa, decodificá-las e transformá-
las em entradas para o jogo através da comunicação
com o módulo Input. Baseia-se em uma arquitetura
cliente-servidor, exercendo a função de cliente.

As mensagens TUIO possuem informações sobre
cada um dos toques e objetos que estão sobre a mesa.
Cada cursor ou objeto possui um identificador, que é
de base para o reconhecimento de ações mais

complexas como, por exemplo, funcionalidades de
arrastar e soltar.

Além de identificadores, cada cursor e objeto
posicionado sobre a mesa possui três tipos de
mensagens diferentes: Down, Update e Up.

 As mensagens Down são enviadas quando o

objeto ou o cursor são criados, ou seja, quando o objeto
é colocado sobre a mesa ou quando o dedo do jogador
encosta sobre sua superfície. As mensagens Update são
enviadas para informar que o cursor ou o objeto estão
ativos, ou seja, servem para informar que o objeto
continua sobre a mesa, parado ou em movimento. Já
as mensagens do tipo Up são enviadas quando o objeto
ou o cursor não estão mais disponíveis e foram
removidos da superfície da mesa. Com estes três tipos
de mensagens é possível rastrear qualquer tipo de
movimento sobre a mesa, seja ele usando objetos,
toques, ou até mesmo uma combinação de ambos.

A arquitetura do jogo foi projetada de modo a
deixar o IRTaktiks o mais leve e rápido possível, além
de possibilitar a agregação de novas funcionalidades
rapidamente e de maneira robusta. Utilizando reuso de
módulos, processamento da placa de vídeo em
conjunto com o do computador, cache de texturas e
imagens e atualizações lógicas dos componentes
somente quando necessário foi possível obter uma boa
velocidade de execução sem comprometer a cobertura
dos requisitos propostos ou a facilidade de manutenção
do código fonte.

Dividiu-se a arquitetura em diversos módulos a fim

de facilitar a implementação e extensão de
funcionalidades, uma vez que com padrões definidos, a
agregação de novas funcionalidades é bastante fácil e
ágil. O diagrama da Figura 8 ilustra os módulos
presentes no IRTaktiks.

O módulo Listener é responsável pela
decodificação das mensagens TUIO/OSC, enviando as
informações para o módulo Input, que dispara os
eventos de adição, movimentação e remoção de dedos
sobre a mesa. O módulo Resource efetua o
carregamento dos recursos gráficos que serão
desenhados pelo módulo Drawable, como texturas,
imagens, partículas, efeitos e fontes. O módulo Game é
a representação dos objetos do jogo, por exemplo, os
jogadores e suas unidades. Cada unidade possui
características que são descritas pelo módulo Logic,
ações que são implementadas no módulo Action e
menus que são construídos pelo módulo Menu. A
interação entre as ações e os menus é realizada pelo
módulo Interaction. O módulo Screen implementa as
várias telas do jogo e suas transições, enquanto o
módulo Debug é utilizando para auxiliar o
desenvolvimento e testes de novas funcionalidades.

A arquitetura interna no XNA é centralizada na

classe Game, que provê métodos para atualização e
desenho de objetos, além de possuir uma lista de
GameComponents e Services, que são atualizados e

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 103

desenhados automaticamente pela classe Game.
Internamente, o XNA cria uma thread para cada
componente e serviço e não há uma ordem de execução
pré-especificada. A vantagem desta arquitetura é a
velocidade na execução, uma vez que várias threads
executando paralelamente se beneficiam dos
processadores multi-core, bastante comuns hoje em
dia.

Figura 8: Arquitetura da versão final

6. Resultados

6.1 Funcionamento do jogo

O IRTaktiks é jogado por dois jogadores competindo
entre si, que terão a disposição unidades de combates
customizáveis. O controle destas unidades é feita
através de gestures: para mover uma unidade basta
tocar a unidade e arrastar o dedo pela superfície da
mesa. Através do toque também são feitas as seleções
de menu. Todas as ações podem ser executadas
paralelamente por ambos os jogadores, com toques
suaves, permitindo mais naturalidade ao jogar.

Não foi tomada nenhuma precaução específica
relacionada a controle de acesso às unidades, ou seja,
qualquer um que toque em determinada unidade poderá
comandá-la. Considera-se que seja aceitável este
funcionamento do jogo, pois este problema também
está presente em jogos de tabuleiro convencionais
como o xadrez, em que os jogadores ativamente
obedecem às regras limitando-se a procurar controlar
apenas suas peças.

Conforme se observa na Figura 9, a área de jogo é

divida entre as unidades (1), os menus (2) e o mapa (3).

As unidades podem se movimentar pelo mapa e
executar ações, controladas através dos menus laterais.
As informações de cada unidade e dos jogadores
também são exibidos neste menu. O posicionamento
das unidades pelo mapa é um dos principais fatores de
estratégia do jogo. A posição, de acordo com a altura
do terreno, em combinação com as características das
unidades, afeta o campo de visão e o alcance das
habilidades.

Figura 9: Elementos do jogo.

 Outro fator que permite a estratégia é a
personalização de cada uma das características das
unidades que o jogador possui. Uma unidade possui
características básicas que influenciam em desde seu
ataque, velocidade de ação, defesa, magia e destreza
até porcentagem de desvio e ataque, pontos de vida e
mana, como podem ser visto na Figura 10. Estes
atributos de cada unidade são configurados pelos dois
jogadores simultaneamente numa tela pré-jogo.

Figura 10: Características de uma unidade

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 104

Além de características, as unidades também
possuem tipos, que determinam as habilidades que a
unidade vai possuir e quais características serão mais
influentes. Sua combinação com as características
básicas permite a construção de uma unidade voltada
para ataque, defesa ou suporte de personagens,
aumentando as possibilidades de jogo e uso de táticas.

Cada tipo de unidade possui ações específicas que

podem ser disparadas sob o comando de seu jogador.
Estas ações foram escolhidas de acordo com as
características mais influentes, de modo a efetuar um
balanceamento entre as unidades e não deixar um tipo
mais forte que outro em todas as circunstâncias. Um
exemplo do menu de ações com as habilidades de uma
unidade pode ser visto na Figura 11.

Figura 11: Menu de ações de uma unidade

Todas as ações de um mesmo tipo seguem um

mesmo padrão de utilização por parte do jogador. Há
três tipos de ações: movimentação, uso e bônus. As
ações de movimentação requerem que a unidade se
movimente pelo mapa. Já as de uso necessitam que o
jogador escolha uma unidade no mapa para ser o alvo
da habilidade que será executada. Finalmente, as ações
de bônus têm como alvo a própria unidade que a
invocou, não necessitando de uma utilização especial
por parte do jogador.

Quando uma ação de movimentação é escolhida,

uma área circular é desenhada em volta da unidade,
determinando os limites de movimento da mesma. De
posse dessa informação, o jogador pode mover a
unidade para qualquer posição dentro da área
delimitada, como pode ser visto na Figura 12.

Quando uma ação de uso é selecionada, uma área é

desenhada em volta do personagem determinando o
limite de uso da habilidade escolhida e uma mira é
criada. A escolha do alvo é feita arrastando essa mira
sobre a unidade alvo. Se ela estiver sobre um aliado,

sua cor será verde, enquanto sobre um inimigo ela
ficará vermelha, como na Figura 13.

Figura 12: Unidade se movimentando dentro de uma área

Quando a mira é solta, a ação escolhida no menu é

executada. Todas as ações são graficamente
representadas com animações e as informações sobre
modificações nos status das unidades são exibidos,
como na Figura 14. Quando uma unidade recebe um
bônus, a informação é exibida em verde, enquanto a
informação de danos é mostrada em vermelho. Quando
os pontos de vida de uma unidade chegarem a zero ela
desmaia e se torna inativa. O jogo encerra quando um
jogador conseguir deixar todas as unidades de seu
adversário desmaiadas.

Figura 13: Mira sobre uma unidade inimiga

Quando uma ação é executada, independentemente

de seu tipo, ela é regida por um fluxo, que determina
como a ação deve ser executada. Isso se dá ao fato da
ação poder ser executada sobre nenhuma unidade, ou
ainda aplicar efeitos não instantâneos, ou seja, que
duram um determinado periodo de tempo. O fluxo de
execução de uma ação é exibido na figura 15.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 105

Figura 14 - Exemplo de exibição de informações

6.1 Funcionamento do jogo

O IRTaktiks é executado em dois computadores:
um deles tem a webcam e executa a Touchlib, que usa
os protocolos TUIO/OSC para enviar os dados da
interação ao módulo principal que executa em uma
outra estação. Nos testes realizados utilizou-se um
Celeron com 2.0 GHz para executar a Touchlib e uma
estação com um Intel Core 2 Duo e placa gráfica
NVidea GeForce 8800 para execução da parte visual,
que precisa ser compatível com DirectX Pixel Shaders
3.0 para poder gerar a malha 3D do terreno e executar
um shader que define sua aparência com base em um
mapa de alturas. Estes shaders não são um requisito
para suportar a maior parte da funcionalidade do
IRTaktiks, de modo que pode ser reescrito para
executar em uma configuração mais modesta.

Cerca de 30 pessoas jogaram o IRTaktiks no dia
03/10 num evento no Centro Universitário Senac, e
observou-se que a familiarização de novos usuários
com os conceitos do jogo é bastante rápida. Depois de
receber uma explicação sucinta sobre o que é o jogo e
quais os objetivos e verem outros jogadores em ação, a
maior parte das pessoas já era capaz de jogar
rudimentarmente mesmo sem muita familiaridade com
os diversos tipos de unidades, atributos e táticas
permitidas pelo jogo.

Figura 15 - Diagrama de execução de ações

7. Conclusões e Trabalhos Futuros

 Durante a realização deste trabalho, percebeu-se a
importância de uma adequada gerência nas interações
dos diversos usuários da interface multi-toque. Ignorar
este quesito no desenvolvimento de uma aplicação para
este fim pode transformar a interação, que deveria ser
fácil e natural, em algo difícil e cansativo. Na versão
aqui apresentada supunha-se que apenas o jogador que
é o legítimo dono de uma unidade tentaria comandá-la,
mas às vezes por uma confusão sem má intenção por
parte dos jogadores esta regra falhava em ser seguida.

 Os principais objetivos traçados durante a
concepção do jogo foram atendidos. Dois jogadores
controlam suas respectivas unidades em batalhas, em
que as características únicas de cada unidade, aliadas à
tática são os fatores decisivos para derrotar o
adversário. A interface natural e o bom feedback do
jogo às ações do usuário também faz com que seja
divertido mesmo para jogadores iniciantes.

Agradecimentos

Os autores gostariam de agradecer a João J.
Maranhão Jr. pela construção da estrutura da mesa e
pela primeira versão de sua parte elétrica.
Agradecemos também ao Centro Universitário Senac
por viabilizar com sua infra-estrutura o
desenvolvimento do projeto.

Referências

HAN, J. Y. Low-Cost Multi-Touch Sensing through

Frustrated Total Internal Reflection. Proceedings of the
18th Annual ACM Symposium on User Interface
Software and Technology, 2005.

BUXTON, Bill. Multi-Touch Systems that I Have Known and

Loved. Disponível em:
http://www.billbuxton.com/multitouchOverview.html
(Acessado em 06 de outubro de 2008).

MULTIGESTURE.NET. A Multi-Touch and Multi-Gesture

research blog. Disponível em:
http://www.multigesture.net/ (Acessado em 06 de
outubro de 2008).

NUIGROUP. Touchlib: A multitouch Development Kit.

Disponível em: http://nuigroup.com/touchlib (Acessado
em 06 de outubro de 2008).

CNMAT, UC Berkeley. Open Sound Control. Disponível em:

http://opensoundcontrol.org/ (Acessado em 06 de
outubro de 2008).

BENCINA, Ross. OSCPack. Disponível em:

http://www.audiomulch.com/~rossb/code/oscpack/
(Acessado em 06 de outubro de 2008).

TUIO. TUIO: A Protocol for Tangible User Interfaces.

Disponível em: http://tuio.lfsaw.de (Acessado em 06 de
outubro de 2008).

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 106

KALTENBRUNNER, MARTIN, ET AL. TUIO: A Protocol for
Table-Top Tangible User Interfaces. Proceedings of the
6th International Workshop on Gesture in Human-
Computer Interaction and Simulation (GW 2005).
Vannes, France, 2005.

KALTENBRUNNER, MARTIN, BENCINA. reacTIVision: A

Computer-Vision Framework for Table-Based Tangible
Interaction. Proceedings of the First International
Conference on Tangible and Embedded Interaction (TEI
2007). Baton Rouge, Louisiana, 2007.

KALTENBRUNNER, M. & JORDÀ, S. & GEIGER, G. & ALONSO,

M. The reacTable: A Collaborative Musical Instrument.
Proceedings of the Workshop on "Tangible Interaction in
Collaborative Environments" (TICE), at the 15th
International IEEE Workshops on Enabling Technologies
(WETICE 2006). Manchester, U.K

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 107

Simulation of Deformable Bodies Based on Tetrahedral Meshes and
Shape Matching

Guina Sotomayor Alzamora∗ Yalmar Ponce Atencio Claudio Esperança
Universidade Federal do Rio de Janeiro

Laborátorio de Computação Gráfica - LCG

Abstract

We present a simplified approach for animation of geometrically
complex deformable objects represented by tetrahedral meshes.
Our prototype system detects and responds to collisions of ob-
jects subject to elastic deformations of variable stiffness. The pro-
posed approach combines several techniques, namely, collision de-
tection using spatial hashing, collision response through a contact
surface with consistent penetration depth obtained by propagation,
estimated displacement vectors for the deformation region, and bi-
nary search to separate objects. The dynamics is based on shape
matching and a modal analysis scheme, using an Euler explicit-
implicit integrator. Preliminary results show that collisions between
objects containing several hundreds tetrahedra can be animated in
real-time.

Keywords:: Collision detection, physically based animation, de-
formable bodies

Author’s Contact:

{yalmar, esperanca}@lcg.ufrj.br
∗guinas@gmail.com

1 Introduction

Physically based animation is a computational process, where an-
imated objects behave in a physically plausible manner. This is
in contrast to “physics animation”, which is employed to design
simulations where physically correct behavior is sought. This work
adopts the former rationale, since it employs simplified approaches,
emphasizing performance over accuracy. Nevertheless, as with
other physically based models, motion is still produced based on
the same physical principles; namely, dynamics is based on New-
ton’s laws.

Methods for animation of both rigid bodies and deformable bod-
ies are commonly based on particle systems. In addition to the
requirements for the animation of rigid bodies, deformable objects
also require some physical deformation model such as mesh-based
methods like mass-spring [Baraff and Witkin 1998] and finite ele-
ments, or meshless methods [Müller et al. 2004; Müller et al. 2005;
Pauly et al. 2004]. Deformable objects also require a more involved
representation, since their shapes can change in time, due to inter-
action with other objects or themselves.

This work focuses on the use of a simple methodology for animat-
ing geometrically complex deformable objects represented by tetra-
hedral meshes. The goal is obtain a stable dynamic simulation with
physically plausible behavior. The presented method combines sev-
eral techniques employed for the animation of deformable bodies,
namely:

• A broad phase collision detection based on bounding spheres
for filtering the set of potentially colliding objects.

• Narrow phase collision detection employing the Spatial Hash-
ing approach [Teschner et al. 2003].

• Collision response is achieved by computing the penetration
depth [Heidelberger et al. 2004] of all collided vertices. For
asymmetric collisions we use the free obstacle method de-
scribed in [Jakobsen 2001]. Finally, the separating process
is based on a binary search [Heidelberger et al. 2004], which
computes the contact surface.

• Dynamics is based on shape matching [Müller et al. 2005]
which does not need a mesh representation of the model – the
tetrahedral mesh is used only in the collision detection and
response stages.

• The system integration uses semi-implicit Euler method
[Müller et al. 2005].

Preliminary results are shown interacting objects with several hun-
dred of tetrahedra in real time. On the other hand, the material
properties are not yet modeled in our prototype.

The remainder of text is organized as follows: Section 2 reviews
related works in collision detection and deformable models. Sec-
tion 3 describes some required prerequisites. Section 4 describes
the collision detection process in its two phases, broad and narrow.
Section 5 describes the collision response process. Section 6 de-
scribes the shape matching technique employed for the dynamics.
Section 7 describes the integration method. In Section 8 some re-
sults using our prototype are shown. Finally, concluding remarks
and suggestions for future work are discussed in Section 9.

2 Related Work

Many methods and models have been proposed in computer graph-
ics to simulate deformable objects including finite difference ap-
proaches [Terzopoulos et al. 1987], mass-spring systems [Baraff
and Witkin 1998] Finite Element Methods (FEM) [Müller et al.
2002; Müller et al. 2004], modal analysis [Shen et al. 2002] and
mesh-free particle systems [Müller et al. 2005]. Most of these
approaches focus on the accurate simulation of elasto-mechanical
properties which demand a costly processing, notwithstanding sev-
eral acceleration strategies such integration schemes for large time-
steps [Baraff and Witkin 1998] and shape matching in place of ac-
curate modal analysis [Müller et al. 2005].

Collision detection encompasses a whole research area by itself.
Approaches are usually divided into broad and narrow phase meth-
ods:

• The Broad phase aims at reducing the quadratic number of
potentially colliding pairs of objects to a more manageable
number. Several schemes using spatial data structures such
as Octrees, Sphere Trees or BSP-trees have been proposed
[Samet 2006]. The popular sweep and prune technique [Co-
hen et al. 1995] maintains a sorted list for each of the principal
axes, where the elements in the list are intervals obtained by
projecting the geometry of the object onto the axis.

• The goal of the Narrow phase is to detect pairs of objects
which indeed collide. Methods are usually classified into
four groups: Bounding volume (Axis Aligned Bounding

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 108

Box, Oriented Bounding Box, Bounding Sphere, discrete ori-
ented polytope, among other) hierarchies [Cohen et al. 1995;
Gottschalk et al. 1996; van den Bergen 1997; Bradshaw and
O’Sullivan 2004; James and Pai 2004], spatial subdivision
(grids) [Ganovelli et al. 2000], spatial subdivision hierarchies
(Octrees, k-d Trees, BSP-Tree, among other) [Samet 2006;
Luque et al. 2005] and image-space techniques [Shinya and
Forgue 1991; Knott and Pai 2003; Heidelberger et al. 2004].

Among these, the preferred narrow phase methods for detecting the
collision of rigid bodies tend to be those based on bounding volume
hierarchies. Unfortunately, they are not very suitable for handling
deformable objects, since the cost for updating the hierarchies can-
not be amortized with the pre-processing of fixed shapes. On the
other hand, spatial subdivision schemes lend themselves more eas-
ily to this task. In particular, we chose to employ the spatial hash-
ing method from Teschner [Teschner et al. 2003], which supports
efficient updating.

Collision response consists of updating properties such as shape,
position and velocity of objects involved in collisions. A com-
mon approach is to compute penalty forces for penetrating object
vertices as a function of their penetration depth, i.e., the minimum
translation for separating them [van den Bergen 1999]. In this work
we use Heidelberger’s consistent penetration method [Heidelberger
et al. 2004], which computes the penetration depth for all collided
vertices. Later, that information is used for separating the objects.

3 Preprocessing

Firstly, a spatial hash data structure must be defined. In essence, the
idea consists of using a grid to subdivide the space where collisions
are expected to occur into cells of equal size. Similarly, each mov-
ing body is subdivided into tetrahedra. The method then detects
collisions by keeping track of voxels (cells) intersected by tetrahe-
dra associated with different objects. Rather than using a 3D array
of cells, however, a more memory efficient scheme consists of map-
ping grid cells to a much smaller array using a hash function. Thus,
the data structure is dependent on the following parameters:

Hash table size. Its optimal size is related with the number of
primitives in the scene, and must be a high prime number in
order to minimize address collisions in the hash table.

Grid cell width. Clearly, this should be of the same size order as
the objects’ tetrahedra. Thus, a reasonable choice is to employ
the tetrahedra’s average edge length.

Hash function. Maps a grid cell to an arbitrary hash table address.
An efficient function should be able to achieve a good distri-
bution. In our prototype, following function is used:

h = hash(i, j, k) = (i ci ⊕ j cj ⊕ k ck) modn, (1)

where ⊕ stands for bitwise exclusive-or operation, i, j, k are
grid coordinates, ci, cj and ck are high prime numbers and n
is the hash table size.

Additionally, the minimum bounding sphere for each object is pre-
computed. These are used in the broad phase collision detection
(see Section 4.1). In order to accomodate the stretching of de-
formable objects, an error margin is added to the sphere radius
which is dependent on the object’s stiffness constant α (see Section
7). In particular, for a deformable object with stiffness αwhose rest
shape has a bounding sphere of radius r, we consider a sphere of
radius 2r

1+α
.

4 Collision detection

In this work, we are mainly interested in simulating a relatively
small number of objects (a few tens), although each object may be
arbitrarily complex. This has guided the choice of collision detec-
tion schemes detailed below.

4.1 Broad phase

The goal of this phase is to select regions on the grid where col-
lisions may have taken place. Therefore, a simple verification be-
tween each pair of objects is done, considering only their bounding
spheres. For each pair of objects A and B, collision potentially
occurs if the distance between their centers is less than the sum of
their radii, i.e.,

|c1 − c2| < r1 + r2. (2)

For each pair of objects, the vertices involved in the region of poten-
tial collision (v ⊂ A∩B) are collected in order to be later checked
for collision during the narrow phase. For this purpose, it suffices
to verify if a vertex v ∈ A is inside the bounding sphere of B and
vice-versa (see Figure 1).

An important difference between our method and Teschner et al.’s
approach is that rather than updating the grid with the new positions
of all tetrahedra, only those associated with objects potentially in-
volved in collisions are considered. Thus, a tetrahedron tA associ-
ated with object A, whose bounding sphere collides with that of B,
will be updated in the grid only if it also intersects B’s bounding
sphere.

It should also be noted that timestamps, as discussed in [Teschner
et al. 2003] are also used in our prototype. The idea is to avoid
cleaning up the grid after each frame by labeling each grid cell with
a timestamp associated with the moment it was last updated. Thus,
a collision with primitives inside a given grid cell is considered only
if it was updated in the current iteration.

Figure 1: Interference check during broad phase collects poten-
tially colliding vertices inside intersecting bounding spheres (top);
narrow phase will be restricted to grid cells intersecting a region of
potential collision (bottom).

4.2 Narrow phase

Once potential collision regions are found, participating primitives
are submitted to an exact collision test. The test consists in using
the hash function to visit the cellC associated with each potentially
colliding vertex v. An exact intersection test is then conducted be-
tween v and each tetrahedron tC referenced in C, provided that v
is not one of the vertices of tC .

5 Collision response

In a nutshell, the collision response process starts by computing
the penetration depth of all collided vertices. Next, deformation

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 109

regions for all objects are computed. Finally, the objects are sep-
arated by approximately half of the penetration depth distances of
all colliding vertices using binary search.

5.1 Penetration depth

The penetration depth between intersecting objects is the minimum
translation necessary for separating them. Generally speaking, col-
lision response for a pair of colliding rigid bodies can be computed
based solely on this information. For deformable objects, however,
the penetration depth of all colliding vertices must be computed.
The use of tetrahedral meshes is very helpful in this task, since its
incidence information can be used to track the deformation region
and to compute the penalty forces, thus leading to a realistic colli-
sion response [Heidelberger et al. 2004].

The idea is to process the colliding vertices ranked by their pene-
tration depth. Firstly, colliding vertices closest to the surface are
evaluated. Later, this information is propagated to deeper collid-
ing vertices using the tetrahedral meshes’ incidence relations. As
a result, penetration depth d and direction ~r are estimated for all
relevant vertices.

Additionally, the process needs to find a contact triangle for each
border vertex (described below) v. This triangle is a face on the
penetrated object surface that intersects a ray with origin in v and
direction ~rv .

Classification of colliding vertices: if a colliding vertex has
one or more non-colliding incident vertices, it is called a border
vertex, otherwise, it is called an internal vertex (see Figure 2).

Figure 2: border (top) and internal (bottom) vertices.

Penetration depth of the border vertices: the penetration
depth of border vertices depends on the computation of contact
points and their normals. The underlying idea is to identify edges
that contain one non-colliding point and one colliding point. These
edges are called intersecting edges. Moreover, the exact intersec-
tion point of each edge with the surface of the penetrated object
must be computed. This can be done efficiently by visiting all grid
cells which intersect each edge and then testing all surface triangles
in them against the edge.

The triangle-edge intersection is done in two passes: first, the tri-
angle plane and the edge are tested for intersection. If successful,
the barycentric coordinates (t1, t2, t3) of the intersection point p is
computed. Then, p is inside the triangle if ti > 0 for i = 1, 2, 3.
Additionally, the surface normal ~n is linearly interpolated from the
three triangle vertex normals (~n1, ~n2, ~n3), i.e., ~n =

∑
ti~ni.

If more than one intersection point for a given edge is found, the
point closest to the colliding vertex is chosen. The chosen points
are called contact points. Finally, this data is used to compute the
border vertices’ penetration depth (see the Figure 3).

Figure 3: contact points with their normals on the intersected
faces.

For each border vertex v, its penetration depth d(v) and its pen-
etrating direction vector ~r(v) are computed as follows: for each
intersecting edge ei incident in v, a weight wi between the contact
point pi and v is given by:

w(pi, v) =
1

‖pi − v‖2
. (3)

Next, d(v) and ~r(v) are computed using the following equations:

d(v) =

∑k

i=1
w(pi, v)(pi − v) · ~ni∑k

i=1
w(pi, v)

, (4)

~r(v) =

∑k

i=1
w(pi, v)~ni∑k

i=1
w(pi, v)

, (5)

where k is the number of intersecting edges incident in v and pi
and ~ni represents the i-th contact point and normal to be evaluated,
respectively.

Penetration depth for internal vertices: After all border
vertices are processed, their penetration information is employed
for computing the penetration depth of associated internal vertices
ui. This is done by propagation, i.e., once the first layer of inter-
nal vertices are processed, edge-neighbor internal vertices are pro-
cessed in turn. Thus, the penetration depth computation is done
by levels, until the penetration depth information for all colliding
vertices is determined.

Given an internal vertex u, its penetration depth d(u) and penetra-
tion direction ~r(u) are computed using weights. First, for a non-
processed internal vertex u incident in an already processed vertex
vj , a weight is computed as

µ(u, vj) =
1

‖vj − u‖2
.

Next, d(u) and ~r(u) are computed by a weighted average of the
contributions of all incident processed vertices using the following
equations:

d(u) =

∑k

j=1
µ(u, vj)((vj − u) · ~r(vj) + d(vj))∑k

j=1
µ(u, vj)

, (6)

~r(u) =

∑k

j=1
µ(u, vj)~r(vj)∑k

j=1
µ(u, vj)

, (7)

where k is the number of processed vertices incident in u. Figure 4
illustrates the penetration directions of colliding vertices.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 110

Figure 4: penetration directions for colliding vertices.

5.2 Deformation region

After the computation of the penetration depth for all colliding ver-
tices, a separation process must be executed in order to reach a non-
overlapping state. To this end, a region of deformation defined by
colliding vertices is obtained. In addition to these vertices, the de-
formation region also includes vertices on colliding faces (contact
faces), which not necessarily are colliding vertices (xi, xj and xk in
Figure 5). Collisions with this configuration are called asymmetric
collisions.

Figure 5: treating asymmetric collisions.

The handling of asymmetric collisions in our approach deviates
from the technique proposed in [Spillmann and Teschner 2005].
Rather than using a scheme based on barycentric weights, we em-
ploy the simpler projection technique described in [Jakobsen 2001].
The idea consists in projecting the colliding vertices out of the ob-
stacle, moving them until they are intersection-free. For example,
in Figure 5, the displacement vector of xi is its penetration depth,
and the displacement vectors for the non-colliding vertices are

~sj =
α1

α2
1 + α2

2

(x′i − xi),

~sk =
α2

α2
1 + α2

2

(x′i − xi),

where xi is the colliding vertex, x′i is its projection on contact edge
xj-xk, ~sj and ~sk are the displacement vectors for xj and xk re-
spectively, and α1 and α2 represent the proportional displacement
factors for the vertices on the contact edge, subject to α1 +α2 = 1.
Notice that a contact edge in 2D corresponds to a contact triangle
in 3D, and constants αi are proportional areas. Namely, if the con-
tact triangle has vertices xk, xj and xl and x′i is the projection of
the colliding point onto that triangle, then, A = Area(xj , xk, xl),
α1 = Area(xk, xl, x

′
i)/A, α2 = Area(xj , xl, x

′
i)/A, and α3 =

Area(xj , xk, x
′
i)/A.

Once all displacement vectors for colliding vertices have been com-
puted, a contact surface is defined. Conceptually, the contact sur-
face should be equidistant from the colliding vertices, and thus an
initial estimate of its position is obtained by translating collided ver-
tices by half of their associated displacement vectors. This estimate
is then refined by means of a binary search scheme [Spillmann and
Teschner 2005]: if x1 is the initial estimate for a surface vertex, and
s is its associated displacement vector, then the ith estimate for that
vertex is given by

xi ← xi−1 ± 1

2(i+1)
s, (8)

where the direction of the movement is determined by the sign of
the pressure difference. In practice, three or four iterations are suf-
ficient to produce a contact surface with adequate accuracy.

6 Dynamics based on shape matching

In order to estimate the dynamic behavior of collided objects, a
shape matching technique [Müller et al. 2005] is used. A large part
of its appeal is that, being a meshless method, only a set of particles
(the object vertices) are considered. The idea is to match vertices
in their initial states x0

i with their positions in the current state xi,
i.e., the positions of the vertices as a result of deformation. The
matching consists of determining an affine 1 transformation matrix
using a least-squares approach. This transformation is a model for
a plausible deformation and provides a simple way for the object to
recover its original shape (see the Figure 6). Once the transforma-
tion is computed, goal positions gi are estimated for each vertex.
These are then used to estimate the new position and velocity of
each particle for the next time step.

(a) (b) (c)

Figure 6: (a) two colliding objects, (b) after a contact surface is
determined, and (c) deformed with shape matching.

The algorithm has two main components: (1) find the optimal rigid
transformation that approximates a new position and orientation for
the object (matching problem) and (2) move the vertices for the goal
positions applying a linear deformation model.

Considering the particles weights, the matching problem consists
of finding translation vectors t and t0 and rotation matrix R which
minimize: ∑

i

wi(R(x0
i − t0) + t− xi)2.

For simplicity, wi = mi is used, wheremi is the mass of particle i.
The optimal translation vectors between the centers of mass of the
initial position and the current position are given by

t0 = x0
cm =

∑
i
mix0

i∑
i
mi

, e t = xcm =

∑
i
mixi∑
i
mi

.

The optimal rotation R may be found by first determining a general
linear transformation matrix A. Notice that A not necessarily is
orthonormal. Considering the relative particle positions defined by

qi = x0
i − x0

cm and pi = xi − xcm,

the correspondence problem may be solved in the least-square
sense. Thus, the optimal linear transformation matrix A is found
minimizing the term: ∑

i

mi(Aqi − pi)
2.

By setting to zero all the first derivatives of this expression with
respect to the coefficients of A, we obtain

A = (
∑

mipiq
T
i)(

∑
miqiq

T
i)−1 = ApqAqq, (9)

1[Müller et al. 2005] also considers quadratic transformations.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 111

where Apq is a correlation matrix and Aqq is a symmetric matrix
that can contain only scale information but not orientation. There-
fore, for finding R, it is necessary to find the rotation component of
Apq . Following [Müller et al. 2005], we use a polar decomposition
method [Shoemake and Duff 1992] to obtain R = ApqS−1, where
symmetric matrix S =

√
ATpqApq . In order to obtain S−1, matrix

ATpqApq is diagonalized using from 5 to 10 Jacobi rotations [Sumali
1992].

Finally, all particles are moved to their goal positions computed as

gi = R(x0
i − x0

cm) + xcm,

and the process is repeated in every time step.

7 Integration

As in [Müller et al. 2005], for the integration we use a modified
Euler’s method, which includes an explicit part (velocity updating)
and an implicit part (position updating). The integration scheme is
given by

vi(t+ ∆t) = vi(t) + α
gi(t)− xi(t)

∆t
+

∆t

mi
fext(t), (10)

xi(t+ ∆t) = xi(t) + ∆tvi(t+ ∆t), (11)

where vi(t+∆t) is the velocity after the time step, vi(t) is the cur-
rent velocity, α ∈ [0, 1] is a parameter which controls the rigidity
of the object, gi(t) is the goal position for vertex xi(t), ∆t is the
time step, mi is the particle mass and fext(t) are the external forces
(gravity, wind, among others).

8 Results

A prototype implementation of the proposed system was developed
using the C++ language and the OpenGL and Glut libraries. For
performance reasons, Vertex Buffer Objects (VBOs) were used to
store object geometry.

Several experiments were conducted with this prototype in order
to evaluate the correctness and speed of the technique. These in-
volved simulations of collections of objects with different shapes.
All experiments were conducted in a PC running Linux (Fedora 8)
operational system and equipped with a Intel Core 2 Duo processor
running at 2.4Ghz, 1GB memory and an NVidia GeForce 8600 GS
graphics board.

The experiments aimed to gauge the system performance as a func-
tion of both the number and geometric complexity of the objects
involved in the simulation. Table 1 shows the object resolutions
(number of vertices, number of faces and number of tetrahedra). In

Table 1: objects with different resolutions.

Object surface total faces tetraedra
vertices vertices

bunny 436 510 868 1750
duck 424 519 846 1819

sphere 386 729 768 2560

all experiments, the rigidity coefficient α was set to 0.8, i.e., quasi-
rigid objects. Additionally, it was collected information about:
number of colliding primitives (vertices in potential collision, faces,
tetrahedra and vertices in real collision) processed at each time step,
and the percentage spent in each sub-process (broad phase collision
detection, narrow phase collision detection, penetration depth com-
putation and shape matching) in milliseconds.

A first experiment consists of the simulation of a scene with differ-
ent kinds of objects (see Figure 7). The scene contains 3 ducks, 2
bunnies and 3 spheres (see Table 1). This experiment demonstrates
that the prototype is able to handle objects with arbitrary geome-
try, provided that a 3D triangulation for them is known. From the
experiment, some information was extracted regarding the various

Figure 7: eight objects in contact: 3 ducks, 2 bunnies e 3 spheres.
The scene contains 2952 vertices and 9917 tetraedra that are ani-
mated at aprox. 32 fps.

stages of our algorithm. Figure 8 shows as a function of simulation
time the time in milliseconds spent in the four main sub-processes:
broad phase collision detection, narrow phase collision detection,
penetration depth computation and shape matching. Notice that the
collision detection, in both stages, spends much more time than the
other sub-processes. The penetration depth computation is almost
constant and the time spent on shape matching is negligible.

A better notion about the behavior of the collision detection algo-
rithms may be aprehended from Figure 9, which shows, for the
same experiment, the quantity of primitives in collision (vertices in
potential collision, faces, tetrahedra and vertices in real collision)
for each time-step. Notice that the broad phase filters out a sig-
nificative number of non colliding primitives and that, on average,
only about 10% of the potential colliding vertices are effectively
colliding vertices. Additionally, other three experiments were con-
ducted, involving a varying number of spheres. Figure 10, shows
simulations of scenes with 8, 18 and 27 spheres. The number of
primitives contained in each scene as well as the simulation frame
rates are tabulated in Table 2. A chart with the frame rate for each
time-step is shown in Figure 11.

Table 2: primitives for experiments with spheres.

Number of spheres vertices tetraedra average fps
8 5832 20480 62
18 19683 46080 41
27 19683 69120 22

(a) (b) (c)

Figure 10: experiments with 8 (a), 18 (b) e 27 (c) spheres.

9 Conclusions and future work

We have described a method for physically based animation of de-
formable objects which combines several techniques such as col-
lision detection using spatial hashing [Teschner et al. 2003] and
bounding spheres, collision response through the surface contact
computation that utilizes penetration depth computation by propa-
gation [Heidelberger et al. 2004], the computation of displacement
vectors [Heidelberger et al. 2004] and handling of asymmetric colli-
sions [Jakobsen 2001], binary search in order to separate the objects
[Spillmann and Teschner 2005], and a deformation and dynamics
model based on shape matching and an explicit-implicit Euler inte-
grator [Müller et al. 2005].

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 112

The original structure of the collision detection was extended in
order to use a broad phase mechanism, which detects regions on
potential collision avoiding to update the hash table unnecessarily.
The narrow phase is restricted to cell grids where potential collision
was detected. In addition, asymmetric collisions are handled by
projection [Jakobsen 2001].

The prototype system enables the simulation of scenes with plau-
sible physics behavior and containing objects with complex geom-
etry. Collision response is implemented in a robust manner and
handles stacked objects.

As future work, we plan to extend this prototype with quadratic
and plastic deformations. Both the broad and narrow phase colli-
sion detection can be improved using more efficient techniques. For
instance, the bounding sphere scheme and vertex/tetrahedron tests
can easily be implemented in GPU. Other aspects of the system
may be harder to port to GPU, but we intend to investigate recent
advances in this area such as the CUDA [NVIDIATM2007] technol-
ogy.

Acknowledgements

We would like to acknowlege the support of Brazilian agencies
CNPq (Conselho Nacional de Desenvolvimento Cientı́fico e Tecno-
logico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior).

References

BARAFF, D., AND WITKIN, A. 1998. Large steps in cloth simu-
lation. In SIGGRAPH ’98: Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques, ACM,
New York, NY, USA, 43–54.

BRADSHAW, G., AND O’SULLIVAN, C. 2004. Adaptive medial-
axis approximation for sphere-tree construction. ACM Trans.
Graph. 23, 1, 1–26.

COHEN, J. D., LIN, M. C., MANOCHA, D., AND PONAMGI, M.
1995. I-collide: an interactive and exact collision detection sys-
tem for large-scale environments. In SI3D ’95: Proceedings
of the 1995 symposium on Interactive 3D graphics, ACM, New
York, NY, USA, 189–ff.

GANOVELLI, F., DINGLIANA, J., AND O’SULLIVAN, C. 2000.
Buckettree: Improving collision detection between deformable
objects. In Spring Conference in Computer Graphics (SCCG).

GOTTSCHALK, S., LIN, M. C., AND MANOCHA, D. 1996. Obb-
tree: a hierarchical structure for rapid interference detection. In
SIGGRAPH ’96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 171–180.

HEIDELBERGER, B., TESCHNER, M., KEISER, R., AND
MÜLLER, M. 2004. Consistent penetration depth estimation for
deformable collision response. In Proceedings of Vision, Model-
ing, Visualization VMV’04, 157–164.

JAKOBSEN, T. 2001. Advanced character physics. In Proceedings,
Game Developer’s Conference 2001, GDC Press, SJ, USA.

JAMES, D. L., AND PAI, D. K. 2004. BD-Tree: Output-sensitive
collision detection for reduced deformable models. ACM Trans-
actions on Graphics (SIGGRAPH 2004) 23, 3 (Aug.).

KNOTT, D., AND PAI, D., 2003. Cinder: Collision and interference
detection in real–time using graphics hardware.

LUQUE, R. G., JO A. L. D. C., AND FREITAS, C. M. D. S. 2005.
Broad-phase collision detection using semi-adjusting bsp-trees.
In I3D ’05: Proceedings of the 2005 symposium on Interactive
3D graphics and games, ACM, New York, NY, USA, 179–186.

MÜLLER, M., DORSEY, J., MCMILLAN, L., JAGNOW, R., AND
CUTLER, B. 2002. Stable real-time deformations. In SCA ’02:

Proceedings of the 2002 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, ACM, New York, NY, USA,
49–54.

MÜLLER, M., KEISER, R., NEALEN, A., PAULY, M., GROSS,
M., AND ALEXA, M. 2004. Point based animation of elastic,
plastic and melting objects. In SCA ’04: Proceedings of the 2004
ACM SIGGRAPH/Eurographics symposium on Computer an-
imation, Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 141–151.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching. In Proceedings of SIGGRAPH’05, 471–478.

NVIDIATM, 2007. CUDA Environment – Compute Unified Device
Architecture. http://www.nvidia.com/object/cuda home.html.

PAULY, M., PAI, D., AND GUIBAS, L. 2004. Quasi-rigid objects
in contact. In SCA ’04: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
109–119.

SAMET, H. 2006. Foundations of Multidimensional and Met-
ric Data Structures (The Morgan Kaufmann Series in Computer
Graphics and Geometric Modeling). Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA.

SHEN, C., HAUSER, K. K., GATCHALIAN, C. M., AND
O’BRIEN, J. F. 2002. Modal analysis for real-time viscoelastic
deformation. In SIGGRAPH ’02: ACM SIGGRAPH 2002 con-
ference abstracts and applications, ACM, New York, NY, USA,
217–217.

SHINYA, M., AND FORGUE, M.-C. 1991. Interference detection
through rasterization. In The Journal of Visualization and Com-
puter Animation, vol. 2, 132–134.

SHOEMAKE, K., AND DUFF, T. 1992. Matrix animation and polar
decomposition. In Proceedings of the conference on Graphics
interface ’92, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 258–264.

SPILLMANN, J., AND TESCHNER, M. 2005. Contact surface com-
putation for coarsely sampled deformable objects. In Proceed-
ings of Vision, Modeling, Visualization VMV’05, 16–18.

SUMALI, H. 1992. A New Adaptive Array of Vibration Sensors.
PhD thesis, Mechanical Engineering Virginia Polytechnic Insti-
tute and State University, Virginia, USA.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models. In SIGGRAPH ’87: Pro-
ceedings of the 14th annual conference on Computer graphics
and interactive techniques, ACM, New York, NY, USA, 205–
214.

TESCHNER, M., HEIDELBERGER, B., MÜLLER, M., AND
POMERANETS, D. 2003. Optimized spatial hashing for colli-
sion detection of deformable objects. In Proceedings of Vision,
Modeling, Visualization VMV’03Proceedings of SPM 2005, 47–
54.

VAN DEN BERGEN, G. 1997. Efficient collision detection of com-
plex deformable models using AABB trees. J. Graph. Tools 2,
4, 1–13.

VAN DEN BERGEN, G. 1999. A fast and robust GJK implemen-
tation for collision detection of convex objects. Journal Graph.
Tools 4, 2, 7–25.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 113

Figure 8: spent time in milliseconds for each sub-process at each time-step.

Figure 9: quantity of primitives in collision for each time-step.

Figure 11: frame rate for each time-step for scenes with 8, 18 and 27 spheres.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 114

An Adaptative Game Loop Architecture with Automatic Distri bution of
Tasks between CPU and GPU

Mark Joselli
UFF,Medialab

Marcelo Zamith
UFF,Medialab

Esteban Clua
UFF,Medialab

Anselmo Montenegro
UFF,Medialab

Regina Leal-Toledo
UFF,IC

Aura Conci
UFF,Medialab

Paulo Pagliosa
UFMS,DCT

Luis Valente
PUC-Rio,VisionLab

Bruno Feijó
PUC-Rio,VisionLab

Abstract

This paper presents a new architecture to implement any gameloop
models for games and real-time applications that uses the GPU as
a Mathematics and Physics co-processor, working in parallel pro-
cessing mode with the CPU. The model applies concepts of auto-
matic task distribution. The architecture can apply a set ofheuris-
tics defined in Lua scripts to get acquainted about what is thebest
processor for handling a given task. The model applies the GPGPU
(General-Purpose Computation on GPUs) paradigm. The architec-
ture that this work proposes acquires knowledge about the hardware
by running tasks in each processor, and by studying their perfor-
mance over time, learning about what is the best processor for a
group of tasks.

Keywords:: Game loops, GPGPU, Task distribution

Author’s Contact:

{mjoselli, mzamith, esteban, anselmo, leal,aconci}@ic.uff.br
pagliosa@dct.ufms.br
{lvalente, bruno}@inf.puc-rio.br

1 Introduction

Real time systems, like games, are defined as solutions that have
time constraints to run their tasks. So, if for any reason thesys-
tem is not able to execute its work under some time threshold,it
will fail. In order to achieve such constraints game loops can be
implemented.

Computer games are multimedia applications that employ knowl-
edge of many different fields, such as Computer Graphics, Artificial
Intelligence, Physics, Network and others. More, computergames
are also interactive applications that exhibit three general classes of
tasks: data acquisition, data processing, and data presentation. Data
acquisition in games is related to gathering data from inputdevices
as keyboards, mice and joysticks. Data processing tasks consist
on applying game rules, responding to user commands, simulat-
ing Physics and Artificial Intelligence behaviors. Data presentation
tasks relate to providing feedback to the player about the current
game state, usually through images and audio.

Many computer games offer experiences where many actions seem
to happen at once. However, computers usually have limited re-
sources, so it is necessary to harvest the results of all processes in-
volved in a game and present them to the player. If the application
is not able to perform this work on time, the user may not receive
continuous feedback, and the interactivity that the game should pro-
vide will not be acceptable. Hence, one of the main requirements
of a game will not be fulfilled. This issue characterizes computer
games as a heavy real-time application.

A common parameter to measure computer game performance is
the number of frames per second (FPS) displayed on the screen.
A frame represents an image displayed on the screen. A common
accepted lower bound for interactive rates is 16 frames per second.
Usually, a frame rate from 50 to 60 FPS is considered optimal.

Nowadays, computers and new video game consoles (such as the
Xbox 360 and the Playstation 3) feature multicore processors. For
this reason, game loops that take advantage of these resources are
likely to become important in the near future. Therefore, paral-
lelizing game tasks with multiple threads is a natural step.In order

to take advantage of different hardware, a generic architecture for
game loops and a multi thread game loop with this architecture are
present.

The development of programmable GPUs (graphics processing
units), has enabled new possibilities for general purpose compu-
tation (GPGPU) which now can be used to process some of the
common tasks of the game loop, like data processing tasks. This
is good news for games due to the parallel architecture of thelat-
est GPUs, which have more processing power than CPUs. GPUs
perform better than CPUs when large amounts of data are involved,
but to take advantage of this power, it necessary to develop adif-
ferent approach than the traditional CPU sequential model.Hence,
due to architectural characteristics, the CPUs are more suitable for
processing small amounts of data while the GPUs are more suitable
for large amounts of data. In order to achieve better performance in
both cases (small and large amount of data), it is necessary to imple-
ment an automatic method to distribute tasks between the CPUand
the GPU. For this heuristics to work better with different hardware
architectures, they are implemented in a script language.

The main objective of this work is present a new game loop archi-
tecture that can be used to implement any game loop model and can
take advantage of automatic dynamic distribution of tasks between
the CPU and the GPU. This distribution is based on heuristicsthat
are defined in Lua [Lua] scripts. This work presents conceptsthat
could be applied also to other hardwares like the PlayStation 3 with
the Cell Processor [Hofstee 2005].

This paper is organized as follows. Section 2 presents GPGPUcon-
cepts. Section 3 presents related works in game loops and task dis-
tribution between CPU and GPU. Section 4 presents the generic
architecture for game loops. Section 5 presents the test case with
the test game loop and the test heuristics, and Section 6 presents the
results. Finally, Section 7 presents the conclusions.

2 GPGPU

Graphics Processors Units or simply GPUs are processors dedi-
cated to mathematical processing in the graphics pipeline.The evo-
lution of those processors allows it to be used for processing other
mathematical tasks.

The GPUs have been evolving constantly and in a faster way than
the CPUs, acquiring superior computation power. A nVidia 8800
ultra [NVIDIA 2006], for instance, can sustain a measured 384
GFLOPS’s against 35.3 GFLOPS’s for the 2.6 GHz dual core Intel
Xeon 5150 [NVIDIA 2008]. This fact is attributed to the parallel
SIMD architecture of the GPUs (the nVidia GeForce 9800 GX2, for
example, has 256 unified stream processors). Because of the GPUs’
parallel architecture, they are very good for processing applications
that require high arithmetic rates and data bandwidths.

Nvidia and AMD/ATI are implementing unified architectures in
their GPUs. Each architecture is associated with it a specific lan-
guage: Nvidia has developed CUDA (Compute Unified Architec-
ture) [nVidia 2007b] and AMD developed CAL (Compute Abstrac-
tion Layer) [AMD 2007]. One main advantage in the use of these
languages is that they allow the use of the GPU in a more flexible
way (both languages are based on the C language) without someof
the traditional shader languages limitations such as “scatter” mem-
ory operations, i.e. indexed write array operations, and others that
are not even implemented as integer data operands like bit-wise log-
ical operations AND, OR, XOR, NOT and bit-shifts [Owens et al.
2007]. Nevertheless, the disadvantage of these architectures is that

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 115

they are only available for the vendors of the software, i.e., CUDA
only works on Nvidia and CAL only works on AMD/ATI cards. In
order to have GPGPU programs that work on both GPUs it is nec-
essary to implement them in shader languages like GLSL (OpenGL
Shading Language), HLSL (High Level Shader Language) or CG
(C for Graphics) with all the vertex and pixel shader limitations and
idiosyncrasies.

In addition, Intel has recently presented a new architecture for
GPUs called Larrabee [Seiler et al. 2008]. It is made up of sev-
eral x86 processors in parallel which can be used to process both
graphics and non-graphics data. The advantage of this architecture
is that it does not need a special language, just plain C. Neverthe-
less, it will only be available in late 2009.

There are many areas that apply GPGPU: wheather forcast [Micha-
lakes and Vachharajani 2008], chemistry [Ufimtsev and MartÃnez
2008] and of course graphics. Games use GPGPU mainly in two
areas: Physics and AI.

PhysX [Ageia 2008] and Havok [Intel 2008] are examples of
physics engines which have used the GPU to accelerate their
physics loop (eight times of speedup in the case of Havok [Green
2007]). Also the book GPU Gems 3 [Nguyen 2007] presents a
full section dedicated for physics using the GPGPU. In the field of
AI it can be seen implementations of state machines [RudomÃn
et al. 2005] and flocking boids [Erra et al. 2004] using the GPUto
processes its data.

3 Related works

The game loop can be divided in three general classes of tasks:

• Data acquisition task is responsible for getting user com-
mands from the various input devices;

• Data processing tasks, also referred as the update stage, are
responsible for tasks that update the game state, for exam-
ple: character animation, Physics simulation, Artificial Intel-
ligence, game logic, and network data acquisition;

• Data presentation task is responsible for presenting the results
to the user. In games, this corresponds usually to rendering
graphics and playing audio.

The main objective of real-time game loop models in the literature
is to arrange the execution of those tasks, in order to simulate par-
allelism. The work by Valente et al [Valente et al. 2005] provides
a survey of real-time game loop models hat regards single-player
computer games. But it does not cover the use of GPGPU as an
update stage of the game loop.

The simplest implementation of a game loop with the GPGPU as
an update stage is executing it sequentially, as shown in figure 1.
Diverse GPGPU implementations use this game loop, as the CUDA
particles demo [nVidia 2007a].

Another game loop with GPGPU presented in the literature is the
multithread architecture with GPGPU stage uncoupled from the
main loop [Joselli et al. 2008a; Joselli et al. 2008b]. This architec-
ture is composed by two threads. One of them gathers user input,
executes rendering, and updates the game state. The other thread
runs the GPGPU. Figure 2 illustrates this game loop model.

The multithread uncoupled with a GPGPU stage [Zamith et al.
2007] is the other game loop with GPGPU available on the lit-
erature. This game loop consists of three threads: the first deals
with gathering user input and updating the game state. The second
thread is responsible for rendering the scene. The third oneruns the
GPGPU. Figure 3 illustrates this game loop.

The literature on task distribution between CPU and GPU is scarce.
The work by [Zamith et al. 2007] implements a semi-automatic
task scheduling distribution between CPU and GPU via a script file.
Joselli et al. [Joselli et al. 2008a; Joselli et al. 2008b] implements
some heuristics for automatic task distribution between CPU and
GPU, using a Physics engine that has some methods implemented
in both CPU and GPU.

R e a d I n p u t

G P G P U

R e n d e r

U p d a t e

Figure 1: Single coupled loop

R e a d I n p u t

R e n d e r

U p d a t e

G P G P U

Figure 2: Multithread architecture with GPGPU stage uncoupled
from the main loop

All of those game loops can be implemented in the adaptative game
loop architecture presented in the next section.

4 The Adaptative Game Loop Architec-
ture

This paper presents a new game loop architecture, named Adapta-
tive Game Loop Architecture. This architecture is able to:

• Implement the game loop by using a multi-threads or a single-
thread mode;

• Use coupled and uncoupled tasks;

• Use pixel shader or CUDA.

This architecture is based on the concept of tasks. A task corre-
sponds to some work that the application should execute, forexam-
ple: reading player input, rendering and update application objects.

In the proposed architecture, a task can be anything that theap-
plication should work towards processing. However, not alltasks
can be processed by all processors. Therefore, the application has
three groups of tasks. The first one consists of tasks that canbe
modeled only for running on the CPU, like reading player input,
file handling, and managing other tasks. The second group consists
of tasks that can only run in the GPU, like the presentation ofthe
scene. The third group can also be modeled for running on both
processors. These tasks are responsible for updating the state of
some objects that belongs to the application, like AI and Physics.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 116

R e a d I n p u t

R e n d e rU p d a t e

G P G P U

Figure 3: Multithread uncoupled with an GPGPU stage

The task concept is modeled as an abstract class that different
threads are able to load. Figure 4 illustrates the UML class dia-
gram for the Task and its subclasses.

The Task class is the virtual base class and has four subclasses: In-
put Task, Update Task, Presentation Task, and Automatic Update
Task. The first three are also abstract classes. The latter isa special
class whose work is to perform the automatic dynamic distribu-
tion between the CPU and the GPU. This distribution consistsof
choosing the processor that is going to run a task according to some
heuristic specified in a script file. Also a special class, theTask
Manager class, is responsible for creating and keeping all the tasks
of the game loop (discussed in Subsection 4.1).

The Input Task classes and subclasses handle user input related is-
sues. The Update Task classes and subclasses are responsible for
updating the game state. The CPU Update class should be used for
tasks that run on the CPU, and the GPU Update class corresponds
to tasks that run on the GPU. The Presentation Task and subclasses
are responsible for presenting information to the user, which can be
visual (Render Task) or sonic (Sound Task).

4.1 The Task Manager

The Task Manager (TM) is the core component of the proposed ar-
chitecture. It is responsible for instancing, managing, synchroniz-
ing, and finalizing task threads. Each thread is responsiblefor tasks
that run either on the CPU or on the GPU. In order to configure the
execution of the tasks, each task has control variables described as
follows:

• THREADID: an id of the thread that the task is going to use.
When the TM creates a new thread, it creates a THREADID
for the thread and it assigns the same id to every task that
executes in that thread;

• UNIQUEID: an unique id of the task. It is used to identify the
tasks;

• TASKTYPE: the task type. The following types are available:
input, update, presentation, and manage;

• DEPENDENCY: a list of the tasks (ids) that this task depends
on to execute.

With that information, the TM creates the task and configureshow
the task is going to execute. A task manager can also hold another
task manager, so to use it to manage some distinct group of tasks.
An example of this case is the automatic update tasks that Subsec-
tion 4.2 presents.

The Task Manager acts as a server and the tasks act as its clients,
as every time a task ends, it sends a message to the Task Manager.
The Task manager then checks which task it should execute in the
thread.

When the Task Manager uses a multi-thread game loop, it is neces-
sary to apply a parallel programming model to be able to identify
the shared and non-shared sections of the application, because they
should be treated differently. The independent sections compose
tasks that are processed in parallel, like the rendering task. The

shared sections, like the update tasks, need to be synchronized in
to guarantee mutual-exclusive access to shared data and to preserve
task execution ordering.

Although the threads run independently from each other, it is nec-
essary to ensure the execution order of some tasks that have pro-
cessing dependence. The architecture accomplishes this byusing
the DEPENDENCY variable list that the Task Manager checks to
know the task execution ordering.

The processing dependence of shared objects needs to use a syn-
chronization object, as applications that use many threadsdo. Multi
thread programming is a complex subject, because the tasks in
the application run alternately or simultaneously, but notlinearly.
Hence, synchronization objects are tools for handling taskdepen-
dence and execution ordering. This measure should also be care-
fully applied in order to avoid thread starvation and deadlocks. The
TM uses semaphores as the synchronization object.

4.2 The Automatic Update Task

The purpose of this class is to define which processor will runthe
task. The class may change the task’s processor during the applica-
tion execution, which characterizes a dynamic distribution.

One of the major features of this new architecture is to allowdy-
namic and automatic task allocation between the CPU and GPU,
in order to do that it uses the Automatic Update Task class. This
task can be configured in order to be executed in three modes: CPU
only, GPU only and in the automatic distribution between CPUand
GPU. In order to execute on the CPU a CPU implementation must
be provided, and in the GPU a GPU implementation must be pro-
vided, and in order to make use of the automatic distributionboth
implementation must be provided. The scheduling is by heuristic
in a script file. Also a configuration on how the heuristic is going
to behave is needed, and for that a script configuration file ispre-
sented in Subsection 4.2.1. The scripts files are implemented in
Lua [Ierusalimschy et al. 2006] (Subsection 4.2.2).

The Automatic Update Task acts like a server and its tasks as
clients. The role of the automatic update task is to execute aheuris-
tic to automatic determine in which processor the task will be ex-
ecuted. The Automatic update task executes the heuristic and de-
termines which client will execute the next task and will send a
message to the chosen client, allowing it to execute. Also, every
time the clients finish a task they send a message to the serverto let
it know it has finished. Figure 5 illustrate this process.

G P G P U

C P U

f i n i sh

s ta r t

f i n i sh

s ta r t

H e u r i s t i c

e x e c u t e

resu l t

A u t o m a t i c U p d a t e T a s k

Figure 5: The Automatic Update Task class and messages

4.2.1 The Configuration Script

The configuration script is used in order to configure how the auto-
matic update task will execute the heuristic.This script defines four
variables:

• INITFRAMES: used in order to set how many frames are used
by the heuristic to do the initial tests. These initial testsare
used in order that the user may want that the heuristic make
the initial tests different than the normal test;

• DISCARDFRAME: used in order to discards the first DIS-
CARDFRAME frame results, because the main thread can be
loading images or models and it can affect the tests;

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 117

M o u s e T a s k

T a s k

I n p u t T a s k

U p d a t e T a s k

P r e s e n t a t i o n T a s k

J o y s t i c k T a s k

K e y b o a r d T a s k

C P U T a s kG P U T a s k

R e n d e r T a s k S o u n d T a s k

T a s k M a n a g e r
1

+ n

1

A u t o m a t i c U p d a t e T a s k
1

1

1

1

Figure 4: Multithread uncoupled with an GPGPU stage

• LOOPFRAMES: it is used to set on how frequency the heuris-
tic will be executed. If this value is set to -1 the heuristic will
be executed only once;

• EXECUTEFRAMES: it is used to set how many frames are
needed before the decision on changing the processor will ex-
ecute the next tasks.

An example of the configuration scrip file can be seen in script1.

Script 1 Configuration Script
INITFRAMES = 20
DISCARDFRAME = 5
LOOPFRAMES = 50
EXECUTEFRAMES = 5

So the automatic update task begins executing after the DISCARD-
FRAME are executed, then it execute INITFRAMES frames in
the CPU and the next INITFRAMES in the GPU then it decides
where the next LOOPFRAMES frames will be executed. If the
LOOPFRAMES is greater then -1, it executes EXECUTEFRAMES
frames in the CPU and it executes EXECUTEFRAMES frames in
the GPU then it decides where the next LOOPFRAMES frames will
be executed and keep repeating until the application is aborted.

4.2.2 The Heuristic Script

The heuristic script is used in order to distribute automatically the
tasks between the CPU and the GPU. This script defines three func-
tions:

• reset(): reset all the variables that the script uses in order to
decide which processor will execute the task. This function
is called after the LOOPFRAMES frames are executed. The
variable that are normally used by the heuristic are:

– CPUTime: this is the sum of all the elapsed times that
the task has been processed in the CPU;

– GPUTime: this is the sum of all the elapsed times that
the task has been processed in the GPU;

– bestCPUFPS: the best frame rate achieved by the CPU;

– bestGPUFPS: the best frame rate achieved by the GPU;

• setVariable(elapsedTime, processor): in this function iswhere
all the variables that are used by the heuristic are set. This

function is called after the EXECUTEFRAMES frames in
each processor. This function can be seen on script 2.

Script 2 setVariable Script
function setVariable(elapsedTime, processor)

FPS = 1 / elapsedTime
if (processor == CPU) then

CPUtime = CPUtime + elapsedTime
if (FPS > bestCPUFPS) then

bestCPUFPS = FPS
end

else
GPUtime = GPUtime + elapsedTime
if (FPS > bestGPUFPS) then
bestGPUFPS = FPS

end
end

end

• main (): This is the function that executes the heuristic and
decides which processor will execute the task. This function
is called just before the LOOPFRAMES frames are executed.
A script with this function implemented with the decision of
always executing in the GPU can be seen on script 3.

Script 3 Main Script
function main()

return GPU;
end

5 Test Case

The test case corresponds to the n-bodies sample [Nyland et al.
2007] from the GPU Gems 3 [Nguyen 2007]. The authors had
implemented this example only to validate the model of game loop
proposed in this work, because this problem works with intense
mathematics processing.

The n-bodies demo is an approximation of the evolution of a sys-
tem of bodies in which every body interacts with every other body.
It also applies to different simulations like protein folding, turbu-
lent fluids, global illumination and astrophysics. In this case the
n-bodies is a simulation of astrophysics in which each body repre-

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 118

sents a galaxy or an individual star, and each body attracts or repeals
each other with gravitational forces.

This sample was implemented in both CPU and GPU. The GPU
version uses CUDA. It is important to remark that even thought the
demo uses CUDA, the game loop implementation could use CAL
or shader languages (GLSL, HLSL or CG) without major modifi-
cations in the framework layer. Figure 6 illustrates a set offrames
from the simulation.

Figure 6: N-bodies sample

The authors did not emphasize the n-bodies problem, becauseit is
not the aim of this work. The n-bodies is used such as example only
for validate the method proposed.

5.1 The Tested Heuristic

The demo uses a very simple heuristic. It checks which processor
was the fastest one in running the task and then selects this proces-
sor to run the next frames. Script 4 lists the heuristic.

Script 4 Tested Heuristic
function main()

if (CPUtime < GPUtime) then
mode = CPU;

else
mode = GPU;

end
end

The heuristic is configured in script, and any kind of heuristics can
be implemented, but the heuristics developed by the authorscan
work in two different ways:

• The first, that is called initial, is configured in order to execute
20 frames in the CPU and 20 frames in the GPU and then it
decides for the fastest processor.

• The second, that is called looped, is configured to loop in the
following state: execute 5 frames in the CPU and 5 frames in
the GPU and decide to for the fasted processor to execute the
next 200 frames.

5.2 The Tested Game Loop

To test the architecture, the demo implemented a game loop with
an input task and a render task in the main loop, and an automatic
update task with CPU/GPU in another thread (uncoupled). Figure
7 illustrates this game loop.

6 Results

The tests were done base on the fast n-bodies simulation with
CUDA, such as described before. There are two groups of tests.

R e a d I n p u t

R e n d e r

U p d a t e

G P G P U C P U

A u t o m a t i c
U p d a t e

T a s k

Figure 7: The Multi thread loop with an automatic update task
uncoupled from the main loop.

The first group uses the initial heuristic where the fastest processor
is selected at the beginning of the task execution. The second group
uses the other heuristic (looped), that is, the heuristic isinvoked for
each cycle of the frames. The CPU tests were made with an Intel
quad-core 2.4 GHz and the GPU tests were made with three differ-
ent GPUs a nVidia Geforce 8800 GTS, a nVidia Geforce 8400 GS
and a nVidia 8200M G.

For both groups, the example was executing the application and the
work of heuristic to choice the processor. Table 1 illustrate the per-
formance of the application and the processing for both processors.
The initial number of bodies is 4 and it is increased until 8192 bod-
ies. Figure 8 shows a comparison between the CPU and the nVidia
8800 GTS GPU when there are few number of bodies.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

M
ill

is
ec

on
ds

Bodies

INTEL CORE 2 QUAD 2.40Ghz
8800 GTS

Figure 8: Comparison between the CPU and the GPU

Although the GPU is faster than CPU, until 25 bodies, approxi-
mately, the CPU is better and the heuristic choices it, afterthe GPU
is already chosen. So, the CPU is faster with less bodies and the
GPU, in this example, is more efficient with higher number of bod-
ies. Figure 9 shows the comparison between the evolution of the
tested GPUs.

7 Conclusion

Multicore hardware architectures are a tendency, and both the CPU
and the GPU have developed great evolution in this aspect. Quad-
code processors are present in the latest CPU architecture and uni-
fied architecture is presented in the latest GPUs. This tendency is
not only in increasing the processing power but also increasing the
number of cores available. With that the parallel processing, in this
architectures, is a reality. With this hardware evolution the games
will get much more sophisticated and multicore game loops with
the use of the GPU will get more common.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 119

Table 1: Elapsed time of processors in 100 iterations measured in milliseconds

bodies CPU elapsed time 8800 GTS elapsed time 8400 GS elapsed time 8200M G elapsed time processor
4 0.404 7.792 4.251 4.666 CPU
8 1.010 9.170 4.417 5.105 CPU
16 3.279 9.265 4.756 5.116 CPU
32 12.243 10.600 5.700 10.343 GPU
64 48.001 11.250 10.931 26.496 GPU
128 190.745 15.182 30.658 89.628 GPU
256 773.152 29.244 107.664 318.036 GPU
512 3124.517 75.188 410.865 1186.663 GPU
1024 12155.210 282.648 1619.403 4584.704 GPU
2048 48627.184 989.581 6526.119 18097.682 GPU
4096 195216.563 3835.552 25815.580 71998.977 GPU

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000

M
ill

is
ec

on
ds

Bodies

8800 GTS
8400 GS
8200 GS

Figure 9: Comparison between the GPUs

References

AGEIA, 2008. Physx. Avalible at:http://www.ageia.com.
20/02/2008.

AMD, 2007. Amd stream computing. Avali-
ble at: http://ati.amd.com/technology/
streamcomputing/firestream-sdk-whitepaper
.pdf. 20/02/2008.

ERRA, U., CHIARA , R. D., SCARANO, V., AND TATAFIORE, M.
2004. Massive simulation using gpu of a distributed behavioral
model of a flock with obstacle avoidance.Vision, Modeling, and
Visualization, 233–240.

GREEN, S., 2007. Gpgpu physics. Siggraph07 GPGPU Tutorial.

HOFSTEE, H. P. 2005. Power efficient processor architecture and
the cell processor.IEEE Proceedings of the 11th International
Symposium on High-Performance Architecture.

IERUSALIMSCHY, R., DE FIGUEIREDO, L. H., AND CELES, W.
2006.Lua 5.1 Reference Manual. Lua.org.

INTEL, 2008. Havok. Avalible at:http://www.havok.com.
20/02/2008.

JOSELLI, M., ZAMITH , M., VALENTE, L., CLUA , E. W. G.,
MONTENEGRO, A., CONCI, A., FEIJÓ, B., DORNELLAS, M.,
LEAL , R., AND POZZER, C. 2008. Automatic dynamic task
distribution between cpu and gpu for real-time systems.IEEE
Proceedings of the 11th International Conference on Computa-
tional Science and Engineering, 48–55.

JOSELLI, M., CLUA , E., MONTENEGRO, A., CONCI, A., AND
PAGLIOSA, P. 2008. A new physics engine with automatic pro-
cess distribution between cpu-gpu.Sandbox 08: Proceedings of
the 2008 ACM SIGGRAPH symposium on Video games, 149–
156.

LUA. The programming language lua. DisponÃvel em:
http://www.lua.org/manual/. 20/12/2007.

M ICHALAKES , J.,AND VACHHARAJANI , M. 2008. Gpu acceler-
ation of numerical weather prediction.IEEE International Sym-
posium on Parallel and Distributed Processing, 1–7.

NGUYEN, H. 2007. GPU Gems 3 - Programming Techniques
for High-performance Graphics and General-Purpose Compu-
tation. Addison-Wesley.

NVIDIA. 2006. Geforce 8800 gpu architecture overview. tb-
02787-001v0.9. Technical report, NVIDIA.

NV IDIA , 2007. Cuda particles. Avalible at:
http://developer.download.nvidia.com/
compute/cuda/1 1/Website/projects/
particles/doc/particles.pdf. 20/02/2008.

NV IDIA , 2007. Nvidia cuda compute unified device ar-
chitecture documentation version 1.1. Avalible at:
http://developer.nvidia.com/object/cuda.html.
20/12/2007.

NVIDIA. 2008. Nvidia - cuda compute unified device architecture.
Programming guide, NVIDIA.

NYLAND , L., HARRIS, M., AND PRINS, J. 2007. Fast n-body
simulation with cuda.GPU Gems 3 Chapter 31, 677–695.

OWENS, J. D., LEUBKE, D., GOVINDARAJU, N., HARRIS, M.,
KRÃGER, J., LEFOHN, A. E., AND PURCELL, T. J. 2007.
A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26(1), 80–113.

RUDOMÃN, T., MILL ÃN, E., AND HERNÃNDEZ, B. 2005. Frag-
ment shaders for agent animation using finite state machines.
Simulation Modelling Practice and Theory 13(8), 741–751.

SEILER, L., CARMEAN , D., SPRANGLE, E., FORSYTH, T.,
ABRASH, M., DUBEY, P., JUNKINS, S., LAKE , A., SUGER-
MAN , J., CAVIN , R., ESPASA, R., GROCHOWSKI, E., JUAN ,
T., AND HANRAHAN , P. 2008. Larrabee: A many-core x86 ar-
chitecture for visual computing.ACM Transactions on Graphics
27, 3.

UFIMTSEV, I. S., AND MARTÃNEZ, T. J. 2008. Quantum chem-
istry on graphical processing units. 1. strategies for two-electron
integral evaluation.Journal Chemistry Theory Computation 4
(2), 222 – 231.

VALENTE, L., CONCI, A., AND FEIJÓ, B. 2005. Real time game
loop models for single-player computer games. InProceedings
of the IV Brazilian Symposium on Computer Games and Digital
Entertainment, 89–99.

ZAMITH , M., CLUA , E., PAGLIOSA, P., CONCI, A., MONTENE-
GRO, A., AND VALENTE, L. 2007. The gpu used as a math
co-processor in real time applications.Proceedings of the VI
Brazilian Symposium on Computer Games and Digital Enter-
tainment, 37–43.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 120

Using Game Engines in Digital Manufacturing through Immersive and
Collaborative Visualization Systems

Silvia da Costa Botelho
Nelson Duarte Filho

Jonata Tyska Carvalho
Pedro de Botelho Marcos
Renan de Queiroz Maffei
Rodrigo Remor Oliveira
Rodrigo Ruas Oliveira

Vinicius Alves Hax
Universidade Federal do Rio Grande

Abstract

This paper proposes a methodology for immersive multiprojection
visualization of manufacturing processes. It admits sceneries with
dynamic components and allows collaborative interaction among
geographically distributed users. The proposal has several stages to
convert the complex industrial project into a model suitable for vi-
sualization and interaction. The Quake III Arena engine is used
as rendering core system, which is a free and open-source soft-
ware. The method can be applied to CAD projects, models and
simulations used in industry. The proposed ideas are then validated
through the study of a real case associated with Shipbuilding and
Offshore Industries.

Keywords:: Digital Manufacturing, Shipbuilding, Virtual Reality,
CAVEs, Game Engines

Author’s Contact:

{silviacb, dmtnldf}@furg.br
{jonatatysca, pedrobmarcos, rqmaffei,
rodrigo.remor, rodropel, viniciushax}@gmail.com

1 INTRODUCTION

Digital manufacturing is an initiative to define every aspect of the
design-to-manufacture process digitally. An open data management
platform is the ideal basis of Digital Manufacturing. This platform
can support multiple disciplines, including product design, analy-
sis, manufacturing, data sharing and communication, etc. It relies
on advanced technologies such as CAD, CAE, real time 3D simu-
lations, CAM, PDM, CAPP, etc.

Large and high-end engineering projects such as automotive,
aerospace and shipbuilding are already engineered almost entirely
digital. Their complexity demand assembly simulations using
mockups to test the several stages of the process. As physical mock-
ups have a very complex and high cost design, digital 3D mockups
are good solutions. In practice however, this digital design is not
as simple as it might first seem. In such a process a large number
of concurrently working design teams are involved, resulting in the
development of typically thousands of different parts, each mod-
eled with the highest possible accuracy. For instance, in the case
of the Boeing 777 airplane project, more than 230 geographically
dispersed groups had to be coordinated and more than 350 millions
of individual polygons from the graphical model of CAD datasets
must be processed in order to obtain a 3D projection of the whole
model.

Eminent problems in large-scale manufacturing arise from the po-
tential overlaps of assembly parts and the difficulty in properly fit-
ting all individual components together in a final product. In those
contexts, Virtual Reality (VR) techniques can provide an interactive
high-quality visualization solution for evaluation of the full CAD
design and the whole manufacturing process [Dietrich et al. 2005].

Virtual Reality techniques make possible 3D visualization of indus-
trial sceneries, offering a realistic and interactive interface for dif-

ferent production stages and processes, aiming to anticipate prob-
lems like overlaps of assembly parts, obstacles collisions, risky sit-
uations, etc. These techniques include several levels of interactivity
and immersive technologies.

CAVE devices [Cruz-Neira et al. 1992], for instance, are room-size
VR display systems. In these systems the generated images are dis-
tributed among computers and multiprojected onto several walls.
Each individual projection contains a part of the total scenery, ob-
tained from a process of simultaneous rendering. This way, each
wall acts as a window to the virtual world. The use of such con-
figuration makes possible, among others, to increase the immersion
and interactivity degrees associated with the sceneries. Some semi-
immersive desktop-based VR systems exist but an obvious limi-
tation of them is that designers are susceptible to environmental
disturbances, diminishing their true feeling of the scene. As a re-
sult, they cannot be fully immersed in the virtual environment to
study and improve the product design efficiently [Choi and Cheung
2006].

If in the past decades the benefits of VR and its integration with
digital manufacturing systems were focused in the static product
design (visualization of the CAD project of the product), nowadays
the state-of-art is to focus on the modeling and simulation of dy-
namical manufacturing plants as a whole process. The life-cycle
of the product, the ergonomic of the workers, the localization and
performance of the machines, the assembly steps have became to
be simulated and visualized in immersive CAVEs.

Besides, such VR techniques and technologies, associated with re-
cent efficient simulation and communication systems, have become
a new paradigm for integrating different levels of production pro-
cesses that are temporal and geographically distributed. The large
engineering industries have physical parts produced by separated
key players, each with their own sets of standards and terminology.
So, one of the biggest obstacles in the widespread implementation
of digital manufacturing is the weak interoperability and collabo-
ration between various systems in product design, manufacturing
engineering, and production floor departments. Breaking down the
walls between these departments and maintaining the crucial digital
continuity of the product life-cycle will greatly foster digital man-
ufacturing, and therefore help manufacturers improve efficiency of
processes and quality of products [Wald et al. 2005].

Thus, due to the distributed nature of recent high-end engineer-
ing projects, the possibility of virtual, interactive and collaborative
immersive visualization of dynamic manufacturing plants have be-
come an important issue which can determine a company/consortia
success [Stephens et al. 2006] [Bigler et al. 2006]. The use of this
new paradigm can reduce cost, complexity and time associated with
the process. For instance, large industrial conglomerates such as au-
tomobile (Volkswagen, Ford and General Motors), aerospace (Air-
bus, Embraer) and the shipbuilding/offshore industries are integrat-
ing VR concepts in their manufacturing processes [Kreitler 1995].

There are some attempts to create complete computational models
of manufacturing plants, in what is considered the new generation
of digital manufacturing tools: the Digital Mock-Up (DMU) sys-
tems. QUEST/DELMIA [Systemes 2008], PROMODEL [Benson
1996], ARENA [Hammann and Markovitch 1995] are typical ex-

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 121

amples of these systems. They allow to design the 3D sceneries of
industrial plants but they cannot cope with the collaborative issues
and complexity of dynamic immersive visualization of the compo-
nents operations.

In the literature, there are related works that treat the immersive
visualization issues in Digital Manufacturing using Ray Tracing
systems [Bigler et al. 2006]. However they process only static
sceneries and at high computational cost. For instance, [Dietrich
et al. 2005] proposes a visualization system using an Altix NU-
MAflex architecture that provides a low-latency, high-bandwidth
inter-connect between the distinct nodes, gaining peak transfer rates
of up to 6.4 GByte per second. [Wald et al. 2005] treats complex
CAD design also using a very hard computational infrastructure.

In this work we propose a low cost solution for immersive collabo-
rative visualization of manufacturing plants. The proposal suggests
integration of different successful tools produced for specific ar-
eas of computer graphics: engines for interactive games, computer
aided design packages, graphic editors, etc. Our proposal treats
sceneries with dynamic components and allows collaborative inter-
action among geographically distributed players. Such methodol-
ogy was implemented and validated through a case study associated
with shipbuilding and offshore industries.

The paper is structured in five sections. Next section addresses the
main challenges associated with immersive visualization of indus-
trial processes as well as a group of existing solutions for its indi-
vidual treatment. Section 3 details our integrated framework to the
3D manufacturing plant visualization, through aspects of model-
ing, conversion, visualization and interactivity stages. Then section
4 describes a group of experiments that were accomplished to vali-
date the proposal. Finally, section 5 presents the conclusions drawn
from the entire project.

2 VISUALIZATION OF PLANTS

The visualization process of dynamic manufacturing plants using
VR resources includes a group of challenges and issues. From the
conception of the virtual plant model and its simulation, to its actual
use in collaborative immersive visualization, we enumerate the fol-
lowing main stages: i. Modeling; ii. Conversion (simplification);
iii. Visualization; and iv. Interactivity.

Modeling: Such stage refers to the 3D plant digital model cre-
ation, through modeling all production process dynamics (work-
shops, workers, tools, equipments and their interaction). The fol-
lowing aspects are involved:

• Study and development of modeling techniques and simula-
tion of production processes: such subject is target of study
in different engineering areas. Plants simulation can be im-
plemented through the use of commercial DMU tools that
enable different visual quality levels. For instance, the de-
veloped models can be visualized as simple 2D structures or
like complex dynamic sceneries with three-dimensional fea-
tures and interactivity, in CAVE devices. The manufactur-
ing plants models can incorporate very detailed CAD files,
as result of mechanical projects of the processed products, as
well as schemes of machines functioning and human behav-
ior simulation (workers) of the assembly lines. The generated
simulations can show 3D dynamics of the different process
components;

• 3D Description Format: supposing that the immersive scenery
will be obtained from DMU/CAD tools, many commercial
DMU systems just allow the exportation of 3D sceneries in
simple video formats as avi and mpeg. Others systems ex-
port in virtual environment description languages as VRML
(Virtual Reality Modeling Language) [VRML 2008], how-
ever, these exported files are frequently very complex and
non-optimized. So, due to the extensive set of exportation
formats released by the different tools, and the peculiar needs
for VR, the best options to provide an immersive distributed
visualization of plants is still a challenge.

Conversion (simplification): Such stage includes issues related to

simplification of the 3D models generated in the modeling stage.
Basically the following points must be treated:

• Definition of the attributes of the virtual model and the en-
tities to be supplied to visualization API. Definition of vir-
tual sceneries: to have a virtual 3D scenery, the geometric
CAD design needs to be completed with information describ-
ing the appearance of objects (color, reflection characteristics,
textures), the lighting environment, possible animations, in-
teractions, sound, as well as behavior and functionality. Such
definition can be done offline or applied during real time vi-
sualization;

• Reduction of the virtual model complexity. This issue is rele-
vant in almost all VR applications, however it assumes larger
importance on Digital Manufacturing. In this context, the
DMU must be committed with the necessaries VR optimiza-
tions. The variety of formats and the large number of geo-
metric structures can make prohibitive the rendering scenery
(as mentioned in section 1, in the case of the Boeing 777 air-
plane program, where more than 350 millions of individual
polygons must be processed).

Visualization: Aiming a more realistic immersion, it is a good
choice to adopt an engaging n walls multiprojection. Traditional
techniques for multiprojection treatment make use of specialized
systems that need complex hardware architectures. Some specific
questions in multiprojection visualization should be studied:

• Keeping consistence of the projected entities states, their at-
tributes and dynamic behaviors among the projections on the
n walls;

• Synchronizing virtual clocks (logical timers) of the different
physical system components, to aim the coherence of the dy-
namic sceneries visualization and its relationship with the dis-
played frame rate;

• Increasing the system performance related with the number of
entities versus the number of projection walls.

Interactivity: The visualization processes should support different
interactivity degrees. For instance:

• In manufacturing plants sceneries, the collisions treatment,
the use of different devices for sensory perception of environ-
ment features (mouses, keyboards, joysticks, glasses, gloves,
trackers, etc) are important factors that should be foreseen;

• A method of enabling the plurality of geographically dis-
tributed users to collaboratively view and interact have to be
offered. Due to a large number of key players associated
with modern manufacturing processes, methods and appa-
ratus for virtual interactive sceneries, by multiple remotely-
located users, are necessary.

Nowadays, there aren’t any DMU tool able to treat all the stages and
aspects mentioned above, nor a methodology that implement the
modeling, conversion, etc, supplying the dynamic characteristics of
the industrial processes to a collaborative visual system. However,
many are the studies and techniques associated with each individ-
ual subject (modeling, conversion, etc). Several tools allow the de-
sign and exportation of static CAD plants models in formats that
make possible the use of specialized systems to conversion CAD-
VR. WalkInside [VRContext 2008] is one of these systems. There
are also visual immersive systems developed for CAD models vi-
sualization as ENVIRON [Corseuil et al. 2004]. This system, when
associated with VR tools, allows the CAD models visualization in
VR environments.

Another possibility related to virtual environments is the use of
game engines. There are game-development toolkits that provide
means to create custom content and mission scenarios which facili-
tate idea generation and concept exploration with a short turnaround
time [Fong 2006]. Some examples of these systems are Unreal
Tournament [EpicGames 2004] and Quake [Quake 1997]. The
former have partial open code and the last is a free and open-
source software. Both provide graphics with high detail levels and

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 122

have high performance and robustness, supporting distributed geo-
graphic visualization. A modification of the Quake III engine to-
gether with the FreeVR [Sherman 2008] library have been used in
the case study presented in section 4. Among the advantages of us-
ing the Quake III engine and the FreeVR library is they open-source
licenses multi-platform capabilities.

3 A METHODOLOGY FOR IMMERSIVE VI-
SUALIZATION

Based on the aspects mentioned on section 2, a methodology that
enables a collaborative visualization of industrial processes was
built. It takes, as input, 3D models obtained from commercial DMU
tools, more precisely in applications evolving high complexity de-
sign and manufacture, such as the case for ships and offshore plat-
forms construction [Kim et al. 2003]. Figure 1 shows an overview
of our proposal.

Modeling
DMU tool

CAVE Engine
Rendering

(Visualization)

File
Translation

Conversion
and

Reduction

CAD
Models

Quake3
MD3

Model

Simplified
VRML

Complex
VRML

Figure 1: Methodology for collaborative visualization of industrial
processes

Starting from CAD models, techniques of complexity reduction
and conversion must be applied to obtain virtual sceneries, with
their necessaries components and attributes. It is proposed to vi-
sualize such sceneries in a multiprojection immersive environment,
through an adaptation of the game engine Quake III Arena. Such
engine can provide the necessary structure for attributes definition,
rendering and multiprojection, as well as the needed interactive re-
sources. The details of each one of the stages shown on the figure
is described as follows.

Modeling: It is supposed that some DMU tool is being used to
model the manufacturing process. Such tool may be able to export
different CAD formats with animated entities, aiming to study the
life-cycle, ergonomic aspects, among others, of the modeled ob-
jects.

Conversion: A dynamic model of the plant is obtained from the
complete CAD project. This model can be described in a file, using
different formats: DWG, VRML, ASE, DGN, etc. Due to the lack
of commitment between the DMU tools and the visualization stage,
such file have frequently excessive geometric information. Thus, it
is needed a meshes complexity reduction tool to compose each el-
ement with the just necessary information. After trials with several
alternative tools, like DeepExploration [Exploration 2008], 3DStu-
dioMax [3DStudioMax 2008], OkinoPoliTrans [PolyTrans 2008]
and VizUp [VizUp 2008], VizUp and 3DStudioMax was chosen.

The VizUp system can be used to reduce the number of existing
polygons, in VRML files format, according to the wished visualiza-
tion quality, in a manual way. The VRML file needs to be loaded in
VizUp System and the user must choose an acceptable maximum
rate of reduction of the VRML file that avoids the lack of reality of
the model. This rate depends of each model.

After reduction, this VRML file needs an optimization and compat-
ibilization with 3DStudioMax. DMU tools generate some no neces-
sary informations for the immersive visualization system that need
to be removed. It is important to emphasize that the 3DStudioMax
just supports animated VRML in Interpolated mode. If VRML file
is in Event mode a conversion must be done. Another point is that
the VRML file generated by DMU treats each face of one object
like a unique object. For example, the six faces of a cube are six
different objects instead one unique object with six faces. Then, it
is necessary to aggregate this faces in one unique object to optimize
the VRML file.

Translation: Once the VRML is compatible and optimized, we
need to set up the textures. The format used by Quake III Arena
to describe objects and animations is the MD3. This format does
not support color in objects, only textures, so it is necessary to rec-
ognize the colors of each object in the VRML file, create an image
(bitmap) for each color and apply the texture in each object with
their respective colors. In this way, VRML file has textures with
the same colors of the objects, what does not change anything in
his appearence, just makes possible a correct conversion to MD3 in
the next step.

In the last step of conversion, 3DStudioMax is used to import and
convert the already treated VRML file generated by DMU into a
MD3 file. In this point the model can be simulated in the CAVE
Quake. This conversion may take several minutes depending on the
size and number of frames on the model.

Visualization: The stage of visualization and interactivity is ac-
complished by a game engine. We have used the Quake III game
engine [Rajlich 2008] to solve the rendering, multiprojection and
interactivity aspects. It is composed by some part of the game core,
multiprojection code from FreeVR [Sherman 2008] and GtkRadi-
ant [GtkRadiant 2008] sceneries editor, as shown at figure 2.

GtkRadiant
scenery editor

Cave Quake

Virtual Scenery

Game Code

FreeVR
+

Rendering
Engine

Figure 2: Modular structure of a Game Engine

The Quake Game Engine represents the virtual scenery using bi-
nary space partitioning (also known as BSP tree) structure for the
surrounding ambient and MD3 structure for representing the mod-
els within this ambient. Each model may have its general attributes,
which are passed as flags inside the MD3 structure, and its particu-
lar attributes, which are passed in each reference to MD3 structure,
in the BSP. This allows easy customization. All the game rendering
process is done using the cross-plataform graphical API OpenGL.
The engine chooses what should be drawn, by looking in the BSP
structure, and sends it to OpenGL. The collision detection is also
done by the game engine.

The multiprojection visualization code is all done by FreeVR, an
open-source virtual reality interface/integration library. It has been
designed to work with a wide variety of input and output hardware,
with many device interfaces such as gloves and head-mounted dis-
play (HMD). The library allows n-walls multiprojection and the
adjustment of each projection wall, in accordance with the CAVE

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 123

morphology. The necessary modifications to create projections out
of the axis are read as parameters from a configuration file.

GtkRadiant is the most used Quake scenery editor. It allows to ap-
ply and modify the outputs of Quake, such as illumination, texture
and interactivity of components/objects. This editor can import files
in some formats such as static models ASE and MAP and animated
models in MD3.

4 CASE STUDY

The proposed methodology was validated in a case study on Ship-
building and Offshore Industry, as described below.

As tipical large industrial conglomerates, the Shipbuilding and Off-
shore Industries use DMU technologies. DELMIA, CATIA, EN-
OVIA, QUEST and PROCESS ENGINEER are important toolsets
for Product Life-cycle Management (PLM). For instance, DELMIA
[Systemes 2008] is widely used in aerospace and shipbuilding in-
dustries and allows to optimize the factory layout; to determine
and validate assembly sequences and ergonomics aspects; and to
make possible global analysis and 3D simulation. QUEST presents
a large set of resourses that includes analysis and simulation of re-
sourses and process flow; layout analysis; etc. However, the 3D
sceneries created by all these systems cannot be directly visualized
in a multiprojection way.

Thus, starting from CAD plants of ships and plataforms, as well
as from digital model of a shipyard, in this case generated on
DELMIA and QUEST [Systemes 2008], bellow we show the per-
formance of the engineering solution proposed.

Adopting the stages presented in section 3, it is pointed out the
details used in the case study.

Modeling Stage. In the modeling stage, the different CAD projects
were integrated in a 3D virtual scenery. We have tested three differ-
ent complexities sceneries, called Model1, Model2 and Model3,
with the characteristics showed in table 1.

Model Vertexes Triangles Storage (Kb)
Model1 81,720 53,796 11,033
Model2 62,372 55,794 6,958
Model3 76,972 61,266 21,991

Table 1: Complexity of the models

Conversion Stage. Starting from the VRML exported sceneries
it is achieved the models complexity reduction, in order to reach a
good visual quality and to control the number of polygons. For this,
as above, it is used Vizup. Different percentages of reduction were
applied. Table 2 shows the reduced models of Model1.

With a reduction rate of up to 50 percent it was still possible to
identify the model, but with loss of details. The ideal reduction rate
for Model1 was around 44 percent.

Reduction (%) Vertexes Triangles Storage (Kb)
50 60,202 26,898 10,254
48 61,277 27,973 10,305
46 62,349 29,049 10,354
44 63,425 30,125 10,402

Table 2: Complexity of the reduced models of Model1

The Model2 and the Model3 had presented the best parameters
shown in table 3, after apropriated reduction.

From the tables we can conclude that the reduction is really efficient
for complex models with large amount of information. In models
where the complexity is smaller it is not possible to apply high re-
duction rates. Due to simplicity already existing in small models,
high reduction rates produce loss of quality at visualization process.

Once the models are converted into a reduced VRML file, some of
their components attributes are manipulated through 3DStudioMax.
The animated components are separated from the static components

and the texture characteristics should be individually observed in
order to verify the quality acquired from CAD models, and then
possibly improved.

Visualization Stage. After modeling and conversion, the obtained
scenery can be visualized in a multiprojection way. The method-
ology proposed allows projections among n screens. It was used a
V-CAVE with two walls (see figure 3) to validate the proposal. Also
different sceneries description formats, other than VRML, may be
used as input of the system, reassuring its portability. The multi-
projection system implemented by CaveQuake was shown efficient
and simple. Just some adjustments must be done in the configu-
ration parameters so that the correct projections in a V-CAVE can
be obtained. Rendering rates were measured with the three models
and all of they were around 100 fps.

In order to verify scalability of the proposal, the rendering rates
were tested with four walls of projection. One more graphic card
with two outputs was used and the rates of rendering remained at
the same level.

Testing related to geographic distribution have been released, con-
sidering it is a feature of Quake duly established.

Some other issues were tested. For example, the CaveQuake obsta-
cles treatment, that was showed adequate.

A picture of the V-CAVE used for the experiments can be observed
in the figure 4.

Model Reduction(%) Vertexes Triangles Storage (Kb)
Model2 49 46,739 28,461 6,197
Model3 58 53,882 25,731 20,954

Table 3: Complexity of the reduced models of Model2 and Model3

Projection screen

Pr
o
je

ct
io

n
 s

cr
e
e
n

Better visualization
point

PC

Projector 1

Projector 2

Figure 3: CAVE Layout (V-CAVE)

5 CONCLUSION

Digital manufacturing technologies are being used in many indus-
trial production process. It is specially adopted on modeling and
simulation of the manufacturing processes in large industrial con-
glomerates. Although the visualization of CAD projects is already
a practice in these contexts, the use of advanced 3D immersive in-
terfaces using VR resources is still a challenge.

In this work we have proposed a methodology to support collabo-
rative multiprojection visualization of manufacturing processes.

It was proposed to start with dynamic plants obtained from scenery
models supplied by DMU tools. After identifying the limitations,
restrictions and needs associated with the visualization problem, a
group of procedures that enables the projections in n walls, with
immersive features and VR resources, integrating different existing
tools, was proposed.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 124

Figure 4: Multiprojection visualization of scenery in V-CAVE.

The engineering solution was validated in an actual application as-
sociated with the naval and offshore industry. Sceneries related to
the plants of shipyards, ships and platforms were modeled, con-
verted and visualized in centralized and collaborative environments.

The accomplished conversions and the use of Quake III game en-
gine were proved efficient, concerning the scalability, heterogene-
ity, portability, rendering and multiprojection issues.

The complexity reduction along the conversions allowed the use of
VR resources in real time visualization.

The proposed methodology can be applied directly in the plant by
naval technicians with no need for specialized programming knowl-
edge.

The solution using Quake III game engine is a significant low cost
implementation solution.

As future perspectives, it is necessary to improve and expand the
automation level associated with some stages of the methodology,
such as the convertion and translation stages.

As a future work, it is necessary to obtain solutions for supporting a
better interoperability between models (ontology), perhaps in phase
with STEP standard [ISO10303 1994].

Finally, it must be improved some interactivity aspects as inclusion
of mixed reality resources to Quake, enabling the visualization of
either workers or machines, in real or virtual way, and their interac-
tion.

ACKNOWLEDGMENTS

This work is sponsored by Petrobras and FINEP.

References

3DSTUDIOMAX, 2008. http://usa.autodesk.com/adsk/.

BENSON, D. 1996. Simulation modeling and optimization using
promodel. In Proceedings of the 28th conference on Winter sim-
ulation, IEEE Computer Society, Washington, DC, USA, 447–
452.

BIERBAUM, A., JUST, C., HARTLING, P., MEINERT, K., BAKER,
A., AND CRUZ-NEIRA, C. 2001. Vr juggler: A virtual platform
for virtual reality application development. In VR ’01: Proceed-
ings of the Virtual Reality 2001 Conference (VR’01), IEEE Com-
puter Society, Washington, DC, USA, 89.

BIGLER, J., STEPHENS, A., AND PARKER, S. 2006. Design for
parallel interactive ray tracing systems. Tech. Rep. Technical
Report number UUSCI-2006-027, SCI Institute, University of
Utah, Salt Lake City, USA.

CHOI, S. H., AND CHEUNG, H. H. 2006. A cave-based multima-
terial virtual prototyping system,. Computer-Aided Design and
Applications 3, 557–566.

CORSEUIL, E., RAPOSO, A., SILVA, R., PINTO, M., WAGNER,
G., AND GATTASS, M. 2004. Environ - visualization of cad
models in a virtual reality environment. In In Eurographics Sym-
posium on Virtual Environments (EG-VE), 79–82.

CRUZ-NEIRA, C., SANDIN, D. J., DEFANTI, T. A., KENYON,
R. V., AND HART, J. C. 1992. The cave automatic virtual
environment. Commun. ACM 35, 6, 64–72.

DIETRICH, A., WALD, I., AND SLUSALLEK, P. 2005. Large-
scale cad model visualization on a scalable shared-memory ar-
chitecture. In Proceedings of Vision, Modeling, and Visualiza-
tion, Akademische Verlagsgesellschaft Aka, Erlangen, Germany,
303–310.

EPICGAMES, 2004. Unreal tournament,
http://www.unrealtournament.com.

EXPLORATION, D., 2008. Right hemisphere - vi-
sual product communication and collaboration,
http://www.righthemisphere.com/products/dexp/.

FONG, G. 2006. Adapting cots games for military experimentation.
Simulation and Gaming 37, 4, 452–465.

GTKRADIANT, 2008. Gtkradiant, http://www.qeradiant.com/cgi-
bin/trac.cgi.

HAMMANN, J. E., AND MARKOVITCH, N. A. 1995. Introduc-
tion to arena. In Proceedings of the 27th conference on Win-
ter simulation, IEEE Computer Society, Washington, DC, USA,
519–523.

ISO10303, 1994. Standard for the exchange of product model
data. http://www.steptools.com/library/standard/.

KIM, H., LEE, J.-G., LEE, S.-S., AND PARK, J. 2003. A
simulation-based shipbuilding system for evaluation of validity
in design and manufacturing. Systems, Man and Cybernetics,
2003. IEEE International Conference on 1 (Oct.), 522–529.

KREITLER, M. 1995. Virtual environments for design and anal-
ysis of production facilities. IFIP WG 5.7 Working Conference
on Managing Concurrence Manufacturing to Improve Industrial
Performance, Washington-USA.

POLYTRANS, O., 2008. Polytrans, http://www.okino.com.

QUAKE, 1997. Id software, http://www.idssoftware.com.

RAJLICH, P., 2008. Cave quake iii arena,
http://www.visbox.com/cq3a/.

SHERMAN, B., 2008. Freevr: Virtual reality integration library,
http://www.freevr.org/.

STEPHENS, A., BOULOS, S., BIGLER, J., WALD, I., AND
PARKER, S. G. 2006. An application of scalable massive model
interaction using shared memory systems. In Eurographics Sym-
posium on Parallel Graphics and Visualization, 19–26.

SYSTEMES, D., 2008. Delmia digital manufacturing e production,
http://www.3ds.com/products/delmia.

VIZUP, 2008. Vizup technology, http://www.vizup.com.

VRCONTEXT, 2008. Walkinside,
http://www.vrcontext.com/walkinside/.

VRML, 2008. Virtual reality modeling language,
http://www.web3d.org/x3d/vrml/.

WALD, I., BENTHIN, C., EFREMOV, A., DAHMEN, T.,
GÜNTHER, J., DIETRICH, A., HAVRAN, V., SLUSALLEK, P.,
AND SEIDEL, H.-P. 2005. A ray tracing based virtual reality
framework for industrial design. Tech. Rep. Technical Report
number UUSCI-2005-009, SCI Institute, University of Utah,
Salt Lake City, USA.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 125

Parallel Lazy Amplification: Real-Time Procedural Modeling and
Rendering of Multi-Terabyte Scenes on a Single PC

Carlúcio S. Cordeiro
Luiz Chaimowicz

Universidade Federal de Minas Gerais

Figure 1: Some images of our massive procedural world. Although quite simple, the entire scene has about 8 terabytes.

Abstract

In this paper, we propose a new procedural modeling paradigm
called Parallel Lazy Amplification. This paradigm may be under-
stood as a combination between two traditional techniques of pro-
cedural modeling: data amplification and lazy evaluation. Data
amplification consists in pre-synthesizing the whole geometry be-
fore viewing. Alternatively, in the lazy evaluation paradigm, the
geometry is generated only when it is needed. The central idea of
the paradigm that we propose is to pre-synthesize the geometry that
will be potentially seen in the near future and keep it on a cache. A
visibility prefetching algorithm determines which models should be
generated and which will be discarded. The generation of models is
done in parallel with the visualization, without interrupting the sys-
tem. We implemented a prototype of this paradigm and some initial
experiments with a procedural scene of about 8 terabytes showed
the feasibility of this new paradigm, especially when performed on
multi-core architectures.

Keywords: procedural modeling, geometry management, real-
time rendering, parallel computing.

Author’s Contact:

carlucio@gmail.com
chaimo@dcc.ufmg.br

1 Introduction

Procedural modeling is an research field in Computer Graphics that
includes a number of alternatives to traditional geometric modeling.
In this approach, the geometry is specified by a set of parameters
and a procedure (algorithm) that creates a model from these de-
scriptions. Some of the main motivations in this area have been the
challenge of representing algorithmically the complexity of the ob-
jects in the real world both in terms of their form and their behavior.
As examples of objects in that class we can mention terrains, vege-
tation, gases, liquids, fire, architectural buildings, cities and planets
[Ebert et al. 2002].

The use of procedural modeling can greatly reduce the modeling
time of massive and complex scenes. The use of these techniques
is becoming increasingly common mainly in the entertainment in-
dustry. For example, procedural modeling techniques have been
applied successfully in the movie industry [White 2006].

In computer games, procedural techniques were largely explored in
the past. By that time, memory limitations imposed severe restric-
tions on storage and the use of procedural techniques was a creative
way to solve these problems. Some examples includes the game

Elite, originally published for the former BBC Micro in 1984, and
The Sentinel, a game published for the Commodore 64 in 1986.

With the modernization and the increase of available memory on
computers and video-game consoles, the use of these techniques
have been somewhat neglected by the game industry and have not
been much used in the top games in the past years. Recently, with
the great level of details that the games are presenting today, pro-
cedural techniques are becoming more popular again. If before
the restriction was the hardware, now the limitation is the grow-
ing demand for artists. The relationship of artists by programmer is
growing with each new generation of games. Currently, the game
studios employ two to three artists per programmer. Thus, procedu-
ral modeling help reducing the need for artists generating scenarios
automatically.

Another inspiration for this work is the Demoscene [Tasajärvi
et al. 2004; Demoscene.info], a digital art subculture that produces
audio-visual applications in real time, called Demos. This culture
has emerged between users of old platforms, such as Apple II, Com-
modore 64, ZX Spectrum and Commodore Amiga. The Demos are
applications whose executable code is generally composed of only
a few kilobytes. The most common categories are 4 Kb and 64
Kb. They usually do not use any kind of external file, as models,
pictures, music and sound. All resources are compressed or syn-
thesized. The Demos are undoubtedly a form of digital art amazing
and unique.

Procedural modeling brings at least two major challenges for re-
search in computer graphics. The first challenge is to create proce-
dures and algorithms that synthesize complex and realistic objects
and textures. The second challenge is to manage the large amounts
of data that are generated by procedural models. This second chal-
lenge is relatively less studied and is the main focus of this paper.

In a home PC today, a single procedural model of a terrain, a tree,
or a building is easily generated and rendered in real-time. But to
generate and visualize a massive procedural model in real-time, as
a huge forest, a large urban center, or even an entire planet, more
elaborate techniques and tools are required. In these scenarios, the
amount of geometry can easily extrapolate the available main mem-
ory.

Basically, there are two main techniques for data generation: data
amplification and lazy evaluation (these paradigms will be detailed
in the section 3.3). Data amplification consists in pre-synthesizing
the whole geometry before viewing while lazy evaluation paradigm
generates the models only when they are needed. Lazy evaluation
works well for offline rendering. However, to generate all the ge-
ometry of each frame in real-time becomes practically impossible.
In the other hand, data amplification pre-generates all the geometry
and is feasible to be displayed in real-time. But it applies only to
models that fit in the main memory.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 126

In this paper, we propose a paradigm that combine data amplifica-
tion and lazy evaluation. The main idea is to generate the geometry
on demand but, differently from lazy evaluation, when the geome-
try is generated, it will be kept in a cache to be used in subsequent
frames. As with data amplification, we have a pre-processing time
for building the cache before the beginning of visualization. During
the visualization, the system determines which models or parts of it
will be seen in the near future and which are already out of context.
The models that have low priority of been viewed are discarded,
and those who are potentially in the field of view are generated in
parallel with the visualization, without interrupting user interaction
with the system. We called this new paradigm Parallel Lazy Ampli-
fication.

The rest of this paper is organized as follows. In Section 2, we dis-
cuss some of the main works related to this paper. In Section 3,
we do a quick review of basic concepts that are used in the text.
The Parallel Lazy Amplification paradigm proposed in this paper is
presented in Section 4. Section 5 gives an overview of the graphics
engine implemented for the experiments. In section 6, we present
and discuss the experimental results obtained. Finally, our conclu-
sions and future work are show in Section 7.

2 Related Work

Procedural techniques have been used throughout the computer
graphics history. Many researchers have developed their own pro-
cedures to simulate materials, objects and natural phenomena. One
of the first procedural techniques used in the graphics community
were fractals. Musgrave et al. [1989] describes a model for the
synthesis of eroded terrains based on fractals. Later, he described
procedural models of a whole planet [Musgrave 1999]. This work
was the basis for MojoWorld software[MojoWorld] that was origi-
nally created by Ken Musgrave.

Another procedural modeling technique is called L-Systems, which
was originally proposed by Lindenmayer [1968] to model the devel-
opment of filamentous bodies in a work of theoretical biology. As
will be explained later, L-Systems are quite similar to formal gram-
mars used in compilers. The pioneer work in the use of L-Systems
in computer graphics is Prusinkiewicz [1986]. The use of this tech-
nique is very powerful for the procedural modeling of plants and
vegetation, as described in Prusinkiewicz and Lindenmayer [1990]
and Deussen et al. [1998]. Inspired by the work of Prusinkiewicz,
some authors developed an extension of L-Systems for procedu-
ral modeling of cities and buildings called CGA shape [Parish and
Müller 2001; Müller et al. 2006; Müller et al. 2007]. Like the L-
Systems, these techniques are similar to a formal grammar.

Another extension was proposed in [Lluch et al. 2003] to generate
procedural models of plants and trees with multi-resolution infor-
mation embedded in the model. This representation is more ap-
propriate and does not fail in preserving the visual structure of the
model, as normally occur with the use of a geometry simplification
algorithm.

In an attempt to integrate the characteristics of different procedural
modeling systems, Gangster and Klein [2007] presents a new kind
of visual language in a single modeling environment. The system
shows results of procedural models consisting of buildings, plants
and terrains, without the need of external tools.

In the area of representation and management of procedural geom-
etry, Hart [2002] shows how the scene graphs can be used for that
purpose. The work presents the paradigms data amplification and
lazy evaluation. It also described the Procedural Geometric Instanc-
ing technique, which follows the lazy-evaluation paradigm.

Researchers have studied the problem of rendering complex mod-
els at interactive frame rates for many years. Clark [1976] pro-
posed many of the techniques for rendering complex models used
today, including the use of hierarchical spatial data structures, level-
of-detail (LOD) management, hierarchical view-frustum and oc-
clusion culling, and working-set management (geometry caching).
Garlick et al. [1990] presented the idea of exploiting multiproces-
sor graphics workstations to overlap visibility computations with
rendering.

Figure 2: Example of a scene graph: below is a description of a
hierarchical scene and above we have the same scene rendered.

Correa [2004] introduced a system for interactive viewing of large
datasets. The system uses new techniques for out-of-core visualiza-
tion of models larger than main memory. In a pre-processing phase,
a hierarchical decomposition of the model is built using a octree, the
coefficients used to test visibility are calculated, and levels of detail
are determined. In run time, multiple threads are used to override
calculations of visibility, managing cache and rendering.

Out-of-core visualization techniques could be used with data am-
plification to avoid the size limitations of the main memory. But
with this approach the model should be fully generated on disk and
pre-processed before viewing. In addition to the generation and
pre-processing time, this method would demand extra storage space
in disc, which can become a problem for massive multi-terabyte
scenes. Pre-generate all the geometry is also less flexible, because
the whole model would be completely static. As mentioned, the
approach proposed in this paper try to overcome these problems
combining Lazy Evaluation and Data Amplification.

3 Basic Concepts

3.1 Scene Graphs

Scene graphs are data structures that are much discussed and re-
searched in computer graphics field. Basically, a scene graph is a
spatially consistent data structure, which is used for the representa-
tion of three-dimensional virtual environments in computer graph-
ics applications, including procedural modeling. Examples of these
structures include bounding volume hierarchies, octrees and grids.
Dollner and Hinrichs [2000] present a detailed discussion of scene
graphs.

A scene graph is a directed acyclic graph. Each node has a set of at-
tributes that may or may not influence its children nodes. The nodes
are organized in a hierarchical fashion corresponding semantically
and spatially to the modeling scene.

All scene graph nodes have an attribute called bounding volume.
This attribute is a simple volume, usually a box or a sphere, which
includes the geometry of all of its children nodes. The bounding
volume is used for fast computations of approximate intersection
tests of the node with other objects. Intersection tests are mainly
used to determine visibility and collision. Figure 2 [OpenSG] il-
lustrates the scene graph concepts.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 127

3.2 Bounding Volumes

The bounding volumes for procedural models can be static or dy-
namic. A static bounding volume involves all possible geometries
synthesized by the procedural model. In other words, a dynamic
bouding volume is designed to fit tightly each particular instance of
the procedural model. Dynamic bounding volumes are more effi-
cient than static bounding volumes, but they are much more diffi-
cult to plan. Dynamic bounding volumes need to be computed at
instantiation time.

All procedural models should provide a method for bounding vol-
ume estimation from its parameters. Depending on the procedural
model, the bounding volume computation can be very simple or
very hard. Heuristics to determine the bounding volume should
be developed when computing the optimal bounding volume is not
feasible.

3.3 Procedural Modeling Paradigms

Virtually all interactive graphics systems follow the same pattern of
rendering pipeline, with three conceptual stages: application, ge-
ometry, and rasterization. The user articulates a conceptual model
to the modeler. The modeler interprets the articulation and converts
it into an intermediate representation suitable for rendering by the
renderer.

The synthesis of procedural models follows the same data flow. But
the way the intermediate representation is generated can follow two
different paradigms: data amplification and lazy evaluation [Hart
2002].

3.3.1 Data Amplification

Models that follow the data amplification paradigm synthesize
some sort of intermediary geometric representation. This interme-
diary representation is generally a description consisting of trian-
gles, polygons or other primitives. Smith [1984] coined the term
data amplification to explain how procedural models transform a
small amount of data in models with rich details and described by
a large amounts of geometry.

The intermediate representation of a complex scene can become
very large. For example, a very simple procedural model of a tree,
described by only a few floating-point numbers, when evaluated
produces a few thousand triangles. A huge forest can easily extrap-
olates main memory limitations. Data amplification causes data ex-
plosion due to the fact that the procedural model is converted into
a geometric representation to be rendered. Figure 3 [Hart 2002]
illustrates the data amplification paradigm.

Figure 3: Diagram that shows the data amplification paradigm.

3.3.2 Lazy Evaluation

Lazy evaluation avoids the intermediate representation problems
that we have with data amplification. The geometry synthesis pro-
cedure is performed only when necessary. Procedural models de-
mand a large processing time, then to generate all the geometry
each frame in real-time applications is practically impossible. Lazy
evaluation keeps a dialogue between the Renderer and the Modeler,
as illustrated in Figure 4 [Hart 2002].

Scene graphs also support lazy evaluation for procedural models.
For example, the system can generate a bounding volume for a
procedural model and perform a test to determine if the geome-
try contained therein is necessary to render the scene. If the test is
negative, the system does not generates the procedural model. The

heuristic here is to determine the bounding volume without actually
performing the procedure for the model generation.

Figure 4: Diagram that shows the lazy evaluation paradigm.

3.4 Visibility Prefetching Algorithms

In the proposed paradigm, visibility prefetching algorithms will be
used to determine which models, or parts of them should be gener-
ated on demand. Visibility prefetching algorithms can be based on
the viewpoint of the observer and the bounding volumes [Corrêa
et al. 2003]. In out-of-core rendering, the system uses the algorithm
to determine the geometry most likely to be seen in the near future,
which are read from disk and kept in a cache.

One difference between a out-of-core visualization system and pro-
cedural approach, is that in out-of-core visualization we have the
whole model a priori. In a pre-processing stage the model is di-
vided in a top-down fashion. In the procedural modeling, the model
is generated at runtime. Then the partitioning can be built bottom-
up in the model generation.

4 Parallel Lazy Amplification

The main idea of the Parallel Lazy Amplification proposed in this
paper is to combine the paradigms of data amplification and lazy
evaluation. During the visualization process, the system estimates
a set of potentially visible models that will be seen in the near fu-
ture. Similar to lazy evaluation, the geometry is generated on de-
mand and also in parallel with the visualization. But not only the
visible geometry is generated. As with data amplification, parts of
the scene are pre-generated and maintained in a cache of geometry
to be used in the following frames.

Figure 5 illustrates the Parallel Lazy Amplification paradigm using
the same symbolic notation of Hart [2002]. When the Renderer
needs of a certain model, it makes a request to the Cache. To try
to ensure that the geometry will be available when requested, the
Cache uses a visibility prefetching algorithm. When the algorithm
determines that a procedural model should be present in the Cache,
it makes a request to the Synthesis Manager. The Synthesis Man-
ager task is to manage and load-balancing the Modelers, which are
responsible for the generation of models. So far, the prototype im-
plemented uses only one Modeler and the Synthesis Manager uses a
First-In First-Out (FIFO) policy. When more Modelers are present,
FIFO may not the ideal algorithm because it can generate load un-
balance. For example, supose a particular situation when we have
10 models to generate and two modelers. If the fisrt and sixth mod-
els takes 0.4 seconds to generate each model, and the other eigth
models takes 0.1 seconds each, one good strategy is one modeler
generate the fisrt and sixth models and the second modeler generate
the other eigth models. In Section 6, we will discuss a strategy for
a better distribution of processing between the Modelers.

The visibility prefetching algorithm used in our approach is the
Prioritized-Layered Projection (PLP) [Klosowski and Silva 2000].
PLP is a visibility test algorithm that needs very little processing.
The PLP can be understood as the traditional hierarchical frustum
culling algorithm, used to discard models outside the field of view.
In the frustum culling algorithm, the scene graph is traversed in a
depth first order, from the root node to the leaves. If a node is out-
side the field of view, the node and all its children are discarded.
In the PLP, the leaf nodes are kept in a priority queue called front.
When a node in the front is visited, it is added to a set of visible
nodes. Then, the node is removed from the front and all its neigh-
bors that have not yet been visited are added to the front. PLP
requires that each node of the scene graph refers not only to their
children but also all to its neighbors.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 128

Figure 5: Diagram that shows the parallel lazy amplification paradigm.

The key point in the PLP implementation is the heuristic that deter-
mines priorities for each node. Klosowski and Silva [2000] presents
several heuristics to compute the initial solidity of a node and ac-
cumulates it in a certain direction. The solidity of a node is an
estimate of how much he occludes an object behind himself. The
heuristic that we use was proposed by Correa et al. [2002]. This is
a very simple heuristic to determine priorities for nodes. The node
containing the camera receives priority -1, its neighbours receive
priority -2, the neighbours of neighbours receive priority -3, and so
on.

5 Implementation Details

To implement and test the paradigm described in this paper we de-
veloped a game engine (PSYGEN) that supports different procedu-
ral models. This section presents an overview of this engine and
the models that have been implemented. It is important to clarify
that it is not the objective of this paper to discuss the architecture
of a game engine as the PSYGEN. We will only show some details
related to procedural modeling employed by the system.

5.1 PSYGEN

PSYGEN (Procedural Synthesis Graphics Engine) is a graphics
engine that allows the implementation and visualization of differ-
ent procedural modeling algorithms and implements various tech-
niques for real-time rendering. It is composed of several modules
that abstracts and facilitates the implementation of procedural mod-
eling algorithms. Figure 6 shows a UML diagram with the organi-
zation of the prototype that we implemented.

• Renderer: the renderer provides an abstract interface that en-
capsulates hardware calls and the graphics API. At the present
time, PSYGEN has only an implementation of a renderer us-
ing OpenGL.

• Cache: is responsible for memory managing of the system,
maintaining a collection of models and objects potentially
seen by the observer. The cache determines which models
should be generated, based on PLP algorithm. The cache
should also discard geometry with low priority.

• SynthesisManager: is responsible for the generation of mod-
els. SynthesisManager runs in parallel with the renderer, al-
lowing the generation of models without interrupting the in-
teractive visualization. In the implemented prototype, the
Synthesis Manager also plays the role of Modeler. This Man-
ager was implemented using pthreads.

• SceneNode: the main structure of the system of data visu-
alization of PSYGEN is a scene graph. SceneNode abstract
class is the base of all of scene graph nodes. A SceneNode

Figure 6: UML diagram of the main classes involved in the PSY-
GEN’s procedural modeling system.

can reference zero or more Shapes, which share the same ren-
der state encapsulated by SceneNode.

• ProceduralModel: provides an abstract interface to procedu-
ral models supported by the system. Some examples of pro-
cedural models in PSYGEN implemented so far include trees,
terrains and rocks.

• Shape: all models and geometry of the system derives from
abstract class Shape, for example, the classes TriMesh and
Heightfield. These are concrete classes that implement the
methods of Shape.

5.2 Procedural Models

In this section we presented the three procedural models in PSY-
GEN implemented so far (rock, terrain and tree) and briefly discuss
the asymptotic growth of the algorithms for model generation. Fig-
ure 7 shows an image of PSYGEN with the three procedural models
implemented.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 129

Figure 7: A view of our simple procedural world. This image shows
the three procedural models that we implemented: trees, rocks and
terrains.

5.2.1 Rock

The procedural model of a rock implemented in PSYGEN is a
variation of a classic technique know as midpoint displacement or
plasma fractal. The difference is that the rock algorithm starts with
a tetrahedron and the classic algorithm is done on a plane. Each
triangle in the tetrahedron is divided into four new triangles, so that
new points are the average points of initial edges of the triangle.
After the subdivision, the new corners are disturbed in the direction
of the surface normal at the point in question. The parameters of
the rock procedural model are:

• Seed: Seed to the pseudo-random number generator.

• Subdivisions: Number of divisions in which the original
mesh will be divided.

• Radius: Average radius of the rock.

• Amplitude: Disturbance factor in the radius of each iteration.

• Decay: Decay factor of the amplitude of each iteration.

The parameter that dominates the generation time is the number of
subdivisions. If n is the number of subdivisions and c is a constant
that depends on the processor used, the time complexity of rock
model is given by:

T (n) = c n 4n−1 (1)

5.2.2 Terrain

Terrain is probably the most popular procedural model in literature.
The PSYGEN terrain procedural model is an implementation of the
Ridged Multifractal Algorithm described in Ebert et al. [2002]. The
Ridged Multifractal parameters are:

• Seed: Seed to the pseudo-random number generator.

• Heighmap Size: Size of terrain block.

• Height: Determine the largest possible fractal dimension.

• Lacunarity: Gap between successive frequencies.

• Octaves: Number of frequencies in the multifractal..

• Offset: Factor that determines the multifractal characteristic.

The parameters that influence the generation time are the heightmap
size and the octaves. If n is the heightmap size and m is the octaves,
the time complexity of terrain generation algorithm is given by:

T (n, m) = c m n2 (2)

As the octaves does not change for a particular terrain, we can also
describe the time complexity in a simplified form:

T (n) = c n2 (3)

As the terrain is virtually infinite, it should be built in blocks. We
use block sizes of 64 and 9 octaves in our prototype.

5.2.3 Tree

Procedural models of trees are usually implemented using L-
Systems [Prusinkiewicz and Lindenmayer 1990]. L-Systems are
quite similar to formal grammars used in compilers. From an initial
symbol of a particular L-System, the model is derived by a number
of iterations. The derivation tree (data structure) represents struc-
turally the model (object tree). The parameters of L-System that we
implemented are:

• Seed: Seed to the pseudo-random number generator.

• Iterations: Number of iterations that will determine the tree
height.

• Branches: Average number of ramifications. The algorithm
select a random value between branches-2 and branches+2.

• Size: Size of the first branch.

• Radius: Radius of the first branch (trunk).

If n is the number of iterations and m is the average number of
branches by iteration, the time complexity of tree generation algo-
rithm is given by:

T (n, m) = c mn (4)

6 Experimental Results

We performed a set of initial tests and experiments for an prelimi-
nary analysis of the proposed paradigm and the impact of the gener-
ation of models in parallel with the visualization. To do this we de-
fined a procedural world made of a large terrain divided into blocks.
Each block has width 64 vertices, totaling 7,938 triangles per ter-
rain block. For each block, 23 trees were distributed with 3 to 5
iterations and 2 to 4 branches by iteration, and also 40 rocks with 2
subdivisions. Whereas each tree has on average 5,000 triangles and
each rock is accurate 64 triangles, each block has about 125,000 tri-
angles. The total size of the world was set to 512x512 blocks. That
totals approximately 32,768,000,000 triangles throughout the vir-
tual world. As each triangle has information as its vertices, normal
vectors, coordinates of texture and other values (about 256 bytes),
the estimated total size of the world procedural hold about 8 ter-
abytes, if it were entirely generated. That means even to limitations
of secondary memory (disk) if we deemed current reality of home
PCs.

To the first battery of tests, we established a path through which
the camera flies in the virtual world. During the camera walk, a
log was generated with the measurements of the framerate for each
frame along the walk. The experiments were performed on two
different computer configurations:

1. AMD Athlon 64 3400+ processor, 1 GB of RAM and a ATI
Radeon X800 XT Platinum Edition GPU running Ubuntu
Linux 8.04.

2. Intel Core 2 Duo T8300 2.4 GHz, 2 GB of RAM and a
NVIDIA GeForce 8600 GT GPU running Mac OS X 10.5.3.

Figure 8(a) shows the results for the first configuration. The result
clearly shows that when the generation takes place in parallel with
visualization, the framerate drops sharply from about 25 frames per
second to less than 15. Though not interrupting the process of in-
teractive visualization, we can clearly see the performance drop.

The same experiment was performed in a dual-core processor (con-
figuration 2). Figure 8(b) shows the results of this second experi-
ment. We can see that when the generation occurs in a multicore
processor, the framerate does not drop as in a single core processor.
To confirm this assertion, we carried out a third experiment with a

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 130

configuration similar to the second test. However, this time one of
processor cores was off and the test was conducted with only one
core asset. The results are shown in Figure 8(c).

The results of this first battery of tests confirms our hypothesis that
when the parallel generation is done in multicore architectures, we
do not have major impacts on the framerate of the system.

A second battery of tests was performed to confirm the complex-
ity analysis presented at the Section 5.2. For this we measured the
generation time of each model for a given set of parameters. These
data were used to carry out a curve fitting with their respective com-
plexity functions of each model. The experiments were performed
using the first computer configuration. Figure 9 shows the results.

Analyzing the results, we observed that the time complexity of gen-
eration algorithms reflects well the generation time. Thus, the sys-
tem can calculate the constants for each complexity function in the
startup. Once constants are computed, the complexity function pro-
vides a reasonable estimate of the generation time for a given pro-
cedural model. The generation time is a essetial information to have
a better load balancing, as we have shown in Section 4.

7 Conclusions and Future Work

This article proposed a new procedural modeling paradigm called
Parallel Lazy Amplification. In a comparative analysis of parallel
lazy amplification with lazy evaluation and data amplification, we
can see that parallel lazy amplification can manage large amounts
of data that can not be hold by data amplification. We also noticed
that lazy evaluation generates all the procedural models whenever
they are seen and has no memory management. In a simple situa-
tion where the camera is spinning around its axis would do the same
models are generated and discarded in a cycle. As the generation
of procedural models may require great processing time, this can
cause models not shown correctly, models popping in screen and
other problems that makes the use of lazy evaluation in real-time
impracticable. we believed that we showed the feasibility of the
proposed paradigm for the generation and display of massive pro-
cedural models in real-time, testing with a very simple procedural
world, but that hold terabytes of data if it were entirely generated.
The tests also showed that the paradigm is suitable for multicore ar-
chitectures. Tests done in a dual-core processor showed a minimal
impact on the framerate.

The generation time of each procedural model was also analyzed.
We showed that the asymptotic growth of algorithms for procedural
models provide a good estimate of the generation time. With this
estimative we can do a better schedule of models to be generated
by available processors and can get a better load balancing of the
system.

In a future work, we planned to use the asymptotic growth to de-
termine a good schedule policy for the Synthesis Manager. Other
future work includes an implementation with more than one Mod-
eler running on different threads, enabling the generation of more
than one model in parallel. We also plan a parallel distributed mem-
ory version of PSYGEN to run on visualization clusters. A multi-
thread version is more suited to the reality of home PCs. Dual-core
and quad-core processors are already common today. However, We
intended to analyze the efficiency and scalability of the system in
more than four CPUs, as well as the impact of parallelism in proce-
dural generation. In this scenario, the distributed memory version
will be more appropriate, allowing the execution of the system in
a visualization cluster with 32 CPUs, for example. Other features
planned to be implemented in the future include:

• Level-of-Detail (LoD) Management: As procedural mod-
els are multiresolution in nature, the system can generate the
model with various levels of detail.

• Geometry Shaders: The latest GPU generations has a new
type of shader called geometry shader. Unlike the vertex
shaders and pixel shaders, geometry shaders can create new
vertex during its evaluation. This new feature allows the gen-
eration of geometry directly into the GPU, allowing a more
compact intermediate representation of the model.

• Mixing traditional models with procedural models: We
also have plan to develop tools and editors to integrate tradi-
tional models along procedural models, providing more con-
trol to the user in the desired points in the procedural world.

Acknowledgements

We would like to thank Wagner T. Corrêa, for all comments and
suggestions.

References

CLARK, J. H. 1976. Hierarchical geometric models for visible
surface algorithms. Commun. ACM 19, 10, 547–554.

CORRÊA, W. T., KLOSOWSKI, J. T., AND SILVA, C. T. 2002.
Fast and simple occlusion culling. In Game Programming Gems
3. Charles River Media, 353–358.

CORRÊA, W. T., KLOSOWSKI, J. T., AND SILVA, C. T. 2003.
Visibility-based prefetching for interactive out-of-core render-
ing. In Proceedings of PVG 2003 (6th IEEE Symposium on Par-
allel and Large-Data Visualization and Graphics), 1–8.

CORRÊA, W. T. 2004. New techniques for out-of-core visualization
of large datasets. PhD thesis, Princeton, NJ, USA.

DEMOSCENE.INFO. A webportal providing information on the de-
moscene. http://www.demoscene.info/.

DEUSSEN, O., HANRAHAN, P., LINTERMANN, B., MĚCH, R.,
PHARR, M., AND PRUSINKIEWICZ, P. 1998. Realistic model-
ing and rendering of plant ecosystems. In SIGGRAPH ’98: Pro-
ceedings of the 25th annual conference on Computer graphics
and interactive techniques, ACM, New York, NY, USA, 275–
286.

DÖLLNER, J., AND HINRICHS, K. H. 2000. A generalized
scene graph. In Proceedings of Vision, Modeling and Visual-
ization 2000, IOS Press, Amsterdam, H. N. H.-P. S. B. Girod,
G. Greiner, Ed., 247–254.

EBERT, D. S., MUSGRAVE, K. F., PEACHEY, D., PERLIN, K.,
AND WORLEY, S. 2002. Texturing & Modeling: A Procedural
Approach, third ed. Morgan Kaufmann, December.

GANSTER, B., AND KLEIN, R. 2007. An integrated framework
for procedural modeling. In Spring Conference on Computer
Graphics 2007 (SCCG 2007), Comenius University, Bratislava,
M. Sbert, Ed., 150–157.

GARLICK, B., BAUM, D., AND WINGET, J. 1990. Interac-
tive viewing of large geometric databases using multiprocessor
graphics workstations. In Siggraph Course: Parallel Algorithms
and Architectures for 3D Image Generation.

HART, J. C. 2002. Procedural synthesis of geometry. In Texturing
& Modeling: A Procedural Approach, third ed. Morgan Kauf-
mann.

KLOSOWSKI, J. T., AND SILVA, C. T. 2000. The prioritized-
layered projection algorithm for visible set estimation. IEEE
Transactions on Visualization and Computer Graphics 6, 2, 108–
123.

LINDENMAYER, A. 1968. Mathematical models for cellular in-
teraction in development, parts i and ii. Journal of Theoretical
Biology 18, 3.

LLUCH, J., CAMAHORT, E., AND VIVÓ, R. 2003. Procedural
multiresolution for plant and tree rendering. In AFRIGRAPH
’03: Proceedings of the 2nd international conference on Com-
puter graphics, virtual Reality, visualisation and interaction in
Africa, ACM, New York, NY, USA, 31–38.

MOJOWORLD. Mojoworld 3. http://www.pandromeda.com/.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND
GOOL, L. V. 2006. Procedural modeling of buildings. 614–
623.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 131

(a) AMD Athlon 64. (b) Intel Core 2 Duo with two active cores. (c) Intel Core 2 Duo with only one active core.

Figure 8: Using a multi-core processor to improve frame rates. We measured the frame rates during a 27 seconds walkthrough of the
procedural world under three configurations: (a) using a single-core CPU; (b) using a dual-core CPU; (c) using the same dual-core machine
used in (b), but with one of the cores off.

(a) Rock (b) Terrain (c) Tree

Figure 9: Asymptotic growth for the three procedural models analysed.

MÜLLER, P., ZENG, G., WONKA, P., AND GOOL, L. V. 2007.
Image-based procedural modeling of facades.

MUSGRAVE, F. K., KOLB, C. E., AND MACE, R. S. 1989.
The synthesis and rendering of eroded fractal terrains. In SIG-
GRAPH ’89: Proceedings of the 16th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 41–50.

MUSGRAVE, K. 1999. Building worlds in cyberspace. In CGI
’99: Proceedings of the International Conference on Computer
Graphics, IEEE Computer Society, Washington, DC, USA, 164.

OPENSG. Open scene graph. http://www.opensg.org/.

PARISH, Y. I. H., AND MÜLLER, P. 2001. Procedural modeling
of cities. In Proceedings of ACM SIGGRAPH 2001, ACM Press,
New York, NY, USA, E. Fiume, Ed., 301–308.

PRUSINKIEWICZ, P., AND LINDENMAYER, A. 1990. The algo-
rithmic beauty of plants. Springer-Verlag New York, Inc., New
York, NY, USA.

PRUSINKIEWICZ, P. 1986. Applications of l-systems to computer
imagery. In Graph-Grammars and Their Application to Com-
puter Science, Springer, H. Ehrig, M. Nagl, G. Rozenberg, and
A. Rosenfeld, Eds., vol. 291 of Lecture Notes in Computer Sci-
ence, 534–548.

SMITH, A. R. 1984. Plants, fractals, and formal languages. SIG-
GRAPH Comput. Graph. 18, 3, 1–10.

TASAJÄRVI, L., STAMNES, B., AND SCHUSTIN, M. 2004. De-
moscene: the Art of Real-Time. Even Lake Studios.

WHITE, C. 2006. King kong: the building of 1933 new york city. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Sketches, ACM, New
York, NY, USA, 96.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 132

Posicionamento de Câmeras através de
Previsão das Simulações Físicas

Daniel Pires Erick Passos Esteban Clua Anselmo Montenegro

Universidade Federal Fluminense, Instituto de Computação, Brasil

Figura 1: Replay gerado através das técnica de reconhecimento de ações e previsão física.

Resumo

Nos ambientes virtuais 3D, a liberdade para o
posicionamento de câmeras vêm permitindo que as
aplicações utilizem técnicas de filmagem semelhantes
às usadas nas apresentações cinematográficas. Porém,
com a existência de interatividade nesses ambientes,
não existe uma sequência predeterminada de
acontecimentos que permita o posicionamento
dinâmico ideal. Faz-se necessária então a utilização de
técnicas de reconhecimento e previsão de ações para se
posicionar a câmera de forma satisfatória. Este trabalho
apresenta uma solução para o posicionamento
automático de câmeras baseada em técnicas de
reconhecimento e previsão de ações no ambiente
virtual interativo com base no estado da simulação
física.

Palavras-chave: câmeras virtuais, previsão de ações,
cinematografia

Contato:
{dpires, epassos, esteban, anselmo}@ic.uff.br

1. Introdução

Com o advento da tecnologia para geração de gráficos
3D, o conceito de uma câmera virtual tem sido
indispensável, estando initimamente ligado a outros
como objeto e ambiente 3D. Um objeto 3D existe em
um ambiente 3D e é preciso mostrá-lo ao mundo
exterior através de uma câmera virtual.

Câmeras virtuais possuem algumas propriedades
próprias que as diferem das câmeras do mundo real. A
princípio elas são desprovidas de atributos físicos
como massa e volume, e podem ser posicionadas e
orientadas livremente pelo ambiente 3D, podendo
inclusive atravessar outros objetos. Além disso,

câmeras virtuais possuem um limite de visualização
bem definido, que dirá ao processador quais objetos,
ou polígonos serão exibidos.

Ao se manipular uma câmera virtual sem se
considerar propriedades físicas, obtem-se uma
apresentação de uma cena 3D um tanto quanto irreal e
estilizada. Com o objetivo de aproximar a simulação da
realidade, desenvolvedores e designers passaram a
modelar câmeras virtuais com atributos físicos,
permitindo assim que esta possuísse uma aceleração
quando se movimenta e levando em consideração
colisões com outros objetos da cena.

Na cinematografia atual, a câmera é um dos
principais elementos capazes de realçar o que se quer
mostrar, além de introduzir subjetividade à cena
dependendo do ângulo de visualização, do que está
sendo focado e do tempo de tomada da cena [Martin
1985]. Com o passar do tempo, os desenvolvedores de
ambientes (jogos) 3D se inspiraram nas produções
cinematográficas para adicionar mais efeitos e emoção
às suas produções [Hawkins 2005]. Termos como
zoom e pan foram incorporados à interface de
movimentação da câmera virtual. De fato, a
programação de uma câmera virtual vem se tornando
cada vez mais parecida com os comandos que um
operador de câmera do mundo real receberia, com
instruções de mais alto nível. A experiência da
indústria do cinema explica e justifica o uso de cada
tipo de tomada de câmera, constituindo assim uma
linguagem própria, que também é aproveitada na
produção de apresentações e jogos 3D.

No entanto, em aplicações 3D interativas, uma boa
utilização de uma câmera virtual é bastante dificultada
devido à imprevisibilidade dos acontecimentos. Em
aplicações com seqüências pré-definidas, já se sabe
exatamente o que vai acontecer com os elementos da
cena, e isso torna possível o posicionamento e

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 133

mailto:@ic.uff.br

orientação ideais da câmera, de acordo com os
resultados desejados. Porém, quando não se sabe
previamente as transformações que podem acontecer
com os objetos do ambiente 3D, é necessário se utilizar
técnicas alternativas para a manipulação da câmera. É
preciso, principalmente, reconhecer as ações e
identificar os objetos relevantes para que a cena seja
transmitida de forma apropriada, ainda se considerando
a probabilidade da ocorrência de algum outro evento.
Após o reconhecimento das ações no ambiente
interativo, o sistema precisa ainda escolher qual é a
mais relevante a cada instante, exibindo-a de forma
conveniente com a emoção esperada. Para isso é
preciso escolher uma boa posição de câmera, definir o
que será focado e determinar o tempo da tomada.

Tendo escolhido uma ação para ser filmada, uma
estratégia para posicionar a câmera, de baixo custo
computacional, é se basear na simulação física,
prevendo o que irá acontecer nos próximos momentos
dentro do ambiente virtual. Para exemplificar o uso da
técnica foi desenvolvido um jogo, onde o usuário tem a
sua visão de jogo, e após sua jogada é exibido um
replay de toda a ação, o que também representaria a
visão de um telespectador.

Neste trabalho, primeiramente serão discutidos os

trabalhos da comunidade científica relacionados ao
problema. Em seguida serão apresentados alguns
conceitos relevantes da área de cinematografia,
seguidos pela estrutura de câmeras virtuais na
plataforma XNA (www.xna.com). Finalmente será
abordado o problema, as soluções propostas e
resultados obtidos, explicando todas as particularidades
do jogo produzido como exemplo.

2. Trabalhos Relacionados

Desde o surgimento da cinematografia, diversos
autores vêm estudando novas técnicas para deixar as
produções mais atraentes para o telespectador, e as
escolas de cinematografia também se multiplicaram.
Hoje existem boas publicações sobre as técnicas
cinematográficas, como o trabalho de Martin [1985],
além de websites especializados, como o Mnemocine
[2008]. Mais recentemente, as mesmas técnicas vêm
sendo amplamente usadas em jogos, para aumentar a
imersão do jogador no ambiente 3D. Além disso,
começou-se a pensar na possibilidade de se exibir uma
partida de um jogo 3D exatamente como nas
transmissões esportivas. O trabalho de Drucker [1994]
analisou a viabilidade dessa aplicação das técnicas
cinematográficas.

Existem diversos trabalhos que visam facilitar o
problema de posicionar a câmera no ambiente virtual.
Alguns deles utilizam uma DSL (Domain-Specific
Language – Linguagem Específica de Domínio). São
extremamente úteis por posicionar a câmera através de
comandos de bem mais alto nível do que as linguagens
de programação convencionais, porém têm a

desvantagem de deixar o posicionamento das câmeras
predefinido, apenas ativam uma camera ou outra
dependendo dos eventos que ocorrem no ambiente. Os
trabalhos de He et al. [1996] e Amerson & Kime
[2000] se baseiam no uso de DSLs para
posicionamento dinâmico de câmeras.

Outros trabalhos, como os de Drucker [1994] e
Hermann & Celes [2005], posicionam a câmera de
forma mais dinâmica, sem a intervenção do usuário.
Têm um alto apelo pela automatização de tarefas, mas
oferecem um resultado cinematográfico mais pobre se
comparado ao uso de DSLs. O sistema de Hermann e
Celes [2005] ainda divide o trabalho de posicionar a
câmera em módulos roteirista, diretor e cinegrafista.
Porém, no XNA, o módulo cinegrafista proposto por
eles se confunde com o próprio mecanismo de geração
de imagens no XNA. Com isso, o módulo diretor pode
dar a sua saída de dados diretamente para o shader da
aplicação. Este trabalho apresenta uma aplicação capaz
de reconhecer as ações do ambiente e posicionar a
câmera de tal forma que sejam considerados os eventos
do ambiente virtual e a previsão dos próximos
acontecimentos, através de cálculos físicos e o
aproveitamento de informações passadas pela engine
do jogo.

3. Cinematografia

Cinematografia é uma ciência que vem se
desenvolvendo há muitas décadas, e criou com o tempo
o que chamamos de linguagem cinematográfica. Essa
linguagem define um conjunto de regras para transmitir
ao espectador uma certa emoção, dependendo da
organização das tomadas. Isso inclui posicionamento
da câmera, iluminação, tempo dos cortes e
seqüenciamento das cenas. Por exemplo, em uma
filmagem de um diálogo, os posicionamentos e
transições de câmera dizem que tipo de emoção se quer
transmitir. No caso, a câmera um pouco inclinada
(movimento conhecido como roll) pode enfatizar uma
desorientação do personagem ou um mistério na
narrativa [Hawkins 2005].

Devido à popularidade do cinema e ao
desenvolvimento da linguagem cinematográfica, hoje
as pessoas acham essa forma de comunicação muito
natural. Quando aplicada de forma incorreta, porém,
pode deixar o telespectador confuso. Às vezes a
intenção do diretor em um certo momento pode ser
mesmo instaurar a confusão, mas caso contrário, pode
trazer uma interpretação errada da cena ou da produção
como um todo. O objetivo da cinematografia é deixar
as ações mais coerentes ao telespectador, tornando sua
experiência mais agradável.

Posicionar uma câmera real no ponto em que o
diretor gostaria pode envolver o uso de braços
mecânicos, trilhos e outros equipamentos
especializados [Martin 1985]. Dependendo do tempo e
do orçamento, pode acontecer que o diretor use uma

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 134

http://www.xna.com

posição diferente da ideal. Felizmente esse tipo de
problema não existe em ambientes 3D, mas mesmo
assim algumas questões devem ser consideradas.
Dentro de um ambiente 3D é possível posicionar e
mover a câmera livremente. Mas vale lembrar que em
ambientes virtuais de tempo real um planejamento das
cenas e dos acontecimentos pode ser impossível, e isso
pode acarretar alguns problemas. A existência de um
obstáculo entre a câmera e o alvo pode representar um
problema difícil de detectar e de prevenir. Toda a
computação consumida para enquadrar o objeto na
tomada pode ter sido em vão se existirem obstáculos
que bloqueiam a visão. Deixar os obstáculos invisíveis
pode ser uma solução, mas pode se tornar uma
armadilha, pois afeta a consistência espacial da cena;
deve ser usado com cautela. Outro problema que pode
surgir é em relação à movimentação da câmera. Se ela
passa por dentro de objetos, torna o ambiente irreal, e
conseqüentemente incoerente para o telespectador.

Nos games a cinematografia pode ser usada da
mesma forma que no cinema para as apresentações e
passagens pré-definidas. Mas para o ambiente de jogo
é preciso fazer algumas adaptações devido à sua
natureza mais dinâmica e para não prejudicar a
jogabilidade. Hoje em dia os posicionamentos de
câmera, definindo como será a visão do jogador, são
uma importante questão de usabilidade a ser
considerada. Dependendo do grau de interatividade, os
conceitos cinematográficos podem ser suprimidos ou
adaptados em um certo grau. Por exemplo, nas
primeiras versões do game Resident Evil
(www.residentevil.com), a câmera era fixa mas
colocada em pontos que já traziam alguma expectativa
de ação ou dificuldade. Em outros jogos, como God of
War (www.godofwar.com), a experiência
cinematográfica se dá através da movimentação da
câmera seguindo uma trajetória pré-definida
dependendo da localização do personagem principal no
cenário. Mas em jogos como Super Mario 64
(www.nintendods.com/sm64ds/), maximizou-se a
interatividade e a cinematografia foi um pouco
sacrificada. Neste jogo é possível controlar a câmera
livremente, além do personagem. A Figura 2 mostra os
jogos citados.

Figura 2: Cinematografia em jogos. (a) Resident Evil.

(b) God of War. (c) Super Mario 64

Outra aplicação com alto apelo cinematográfico é a
exibição dos acontecimentos do jogo para uma platéia,
em tempo-real. Neste caso, os conceitos da
cinematografia podem ser aplicados em totalidade,
visando mostar a ação da forma mais atraente possível.
Nota-se que as imagens geradas para o telespectador
são bem diferentes das exibidas para o jogador; com
essas imagens o jogo se torna impossível. As questões
que aparecem são o reconhecimento de ações, a
escolha da melhor ação e a exibição.

4. Câmeras Virtuais

A plataforma XNA, lançada pela Microsoft há
aproximadamente 2 anos, se tornou muito popular no
meio acadêmico para produção de jogos para Windows
e X-box 360, e a cada dia ganha mais adeptos ao redor
do mundo. Com o crescimento, surgiram diversos
websites especializados na ferramenta, oferecendo
desde tutoriais a classes e bibliotecas prontas. Existem
hoje diversos trabalhos demonstrando diversas técnicas
para implementação de câmeras em XNA. Entre eles
destacam-se Riemers [2008] e Fegelein [2008], por
explicar todos os fundamentos matemáticos em se
tratando de manipulação de câmeras em ambientes 3D.
Também surgiram muito bons livros sobre a
ferramenta, tais como a publicação de Nitschke [2007].

Como o público-alvo do XNA são estudantes e
curiosos, sua própria documentação é repleta de
exemplos e ainda conta com explicações sobre os
fundamentos de processamento gráfico e técnicas de
programação.

Utilizando-se a ferramenta XNA, para renderizar
uma cena é preciso uma coleção de objetos 3D que
compõem a cena e um shader que é o responsável por
desenhá-la. Este shader toma uma configuração de
câmera como parâmetro. Normalmente, para desenhar
a cena corretamente, todo objeto 3D deve ser passado
ao shader usando a mesma configuração de câmera.
Uma câmera é composta por 2 elementos principais: as
matrizes 4x4 conhecidas como view e projection.
Ambas são processadas pelo shader na GPU. A matriz
view estabelece a orientação da câmera; ela contém
informações como sua posição, definida por um ponto
no espaço, o alvo, que é o ponto para onde a câmera
aponta, e o vetor que representa a orientação vertical
da câmera. A matriz projection estabelece como a
câmera projeta sua visão para a tela; e contém
informações como a abertura focal, a relação entre
altura e largura da janela de exibição, e os limites (a
distância) do que a câmera pode enxergar, conhecidos
como nearplane e farplane. Será efetivamente exibido
na tela tudo o que estiver dentro do volume definido
pela matriz projection, conforme a Figura 3.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 135

http://www.residentevil.com
http://www.godofwar.com
http://www.nintendods.com/sm64ds/

Figura 3: Frustum de visão

É possível adicionar outros atributos à câmera

transformando-a em uma classe. Para que a câmera
tenha propriedades físicas, basta adicionar membros
como velocidade, massa e aceleração como atributos
da classe. Também podem-se adicionar propriedades e
métodos que facilitem seu uso, assim a manipulação de
camera será mais eficiente e versátil [Fegelein 2008].

O XNA fornece um método muito útil para a
manipulação de câmeras, Vector3.Transform(). Ele
permite que um vetor seja facilmente rotacionado no
espaço de acordo com o quatérnio ou matriz(de
rotação) passada como parâmetro. Com este método a
implementação de câmeras em primeira pessoa ou de
câmeras que tentam manter uma distância fixa dos seus
alvos é facilitada. O uso de quatérnios é recomendado
quando é preciso armazenar rotações relativas ao
objeto; são muito mais eficientes que armazenar
rotações alinhadas com os eixos cartesianos [Riemers
2008]. Também são muito úteis para implementar
movimentos relativos da câmera, tais como yaw, pitch
e roll. Esses movimentos são originários da aviação
mas que são muito usados em cinematografia. A Figura
4 ilustra o significado de cada um desses movimentos.

Figura 4: Yaw, pitch e roll

Para usar a câmera durante a programação do jogo,

depois de todos os cálculos da lógica da classe câmera,
é preciso informar ao shader as matrizes view e
projection. O XNA fornece formas para agilizar o
cálculo das matrizes view e projection, com os
métodos Matrix.CreateLookAt() e
Matrix.CreatePerspectiveFieldOfView(),
respectivamente. Com isso, o programador só precisa
se preocupar em em passar os parâmetros necessários.

5. O Jogo, o Ambiente e Física

Para ilustrar o uso da técnica de posicionamento de
câmeras aproveitando resultados da simulação física do
ambiente, foi produzido um jogo em XNA chamado
Crystal Arena. Este jogo consiste em controlar uma
espaçonave que desliza pelo solo, coletando cristais
azuis e evitando cristais vermelhos. O jogador tem uma
vista do terreno relativamente ampla, permitindo
visualizar os objetos que estão na frente da nave. A
câmera acompanha o movimento desta, mantendo uma
distância fixa. A nave tende a se mover continuamente
para a frente, e pode ser rotacionada em 90 graus para
a esquerda ou 90 graus para a direita, seguindo as
divisões contidas no solo, que é quadriculado. Quando
a nave colide com uma bola branca, ela passa a se
movimentar na direção contrária. A Figura 5 mostra a
tela de jogo.

Figura 5: O jogo Crystal Arena

Uma fase de jogo é representada por uma matriz

32x32 contendo todos os elementos (cristais azuis,
cristais vermelhos, tesouros e bolas brancas) nas
interseções das linhas do cenário. O conteúdo da matriz
vai sendo atualizado à medida que o jogo avança, ela
representa o que existe no momento. Por exemplo, se
um tesouro é coletado, o valor naquela posição da
matriz muda para indicar que agora contém um espaço
vazio.

O jogador também pode fazer uso de uma jogada
especial, que consiste em, enquanto coletando cristais
azuis que vão se tornando vermelhos, circundar um
grupo de cristais azuis com cristais vermelhos,
conforme a Figura 6. Ao concluir esta manobra, todos
os cristais neste conjunto se transformam em tesouros.
Neste momento a matriz que representa a fase também
é atualizada, localizando as posições da matriz que
representam aquele grupo de cristais, e mudando seus
valores para que representem agora tesouros.

Quando o jogador perde uma vida ou passa de fase,

existe a opção de visualizar o replay de sua jogada.
Neste ponto a câmera pára de seguir a nave e entra no
modo cinematográfico, onde os resultados da previsão
física no ambiente são aproveitados para posicionar a
câmera. A nave volta à posição inicial e a simulação

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 136

recomeça, mas desta vez sem a intervenção do usuário
para movimentar a nave.

Figura 6: Transformação de cristais em tesouros

Devido à simplificação nos movimentos, a nave só

pode colidir com objetos de frente ou de costas, sempre
perpendicularmente, mas isso não inviabiliza os
cálculos físicos e a técnica utilizada. Um jogador
telespectador receberia as mesmas imagens que
aquelas produzidas no replay. Porém, em um replay, os
próximos estados do teclado, dos objetos ou do
ambiente são conhecidos. Este fato não deve ser
considerado nos algoritmos, para não prejudicar o
caráter de previsão.

5.1 Reconhecendo Ações

Reconhecer as ações significa determinar corretamente
o que está ocorrendo no ambiente virtual no momento.
Em um jogo, ações mais objetivas ou pontuais fazem
parte da própria engine do jogo ou fazem parte das
propriedades ou máquina de estados de alguma classe.
Neste caso, saber que uma ação ocorreu torna-se uma
tarefa trivial. No jogo desenvolvido, os eventos que
fazem parte da sua lógica são:

• Início da fase
• Nave se move para a frente ou para trás
• Curva à direita ou à esquerda
• Impacto com bola branca
• Impacto com cristal azul, que se torna vermelho
• Impacto com cristal vermelho, que destrói a nave
• Coleta de tesouro
• Conclusão de jogada especial
• Abrir a saída quando acabam os cristais azuis
• Alcançar a saída da fase
• Tempo esgotado

Às vezes uma modelagem de todas as ações pode
ser muito difícil, devido à subjetividade de alguns
eventos. Computacionalmente esses tipos de eventos
são mais difíceis de reconhecer por causa da
necessidade de uma interpretação dos acontecimentos
ao longo do tempo. Para o domínio do jogo produzido,
são ações interessantes:

• Nave começa a cercar cristais azuis para jogada

especial
• Fazer manobras complicadas em espaços

apertados
• Se aproximar da saída
• Chegar perto das extremidades da fase

• Nave se move em linha reta

Para reconhecer esses eventos pode ser desejável a
utilização de um agente que fique monitorando as
ações da nave e o estado da matriz da fase ao longo do
tempo, e que avise ao sistema caso o padrão de
movimento da nave e os objetos em volta formem um
padrão que se assemelhe com os eventos desejados.
Por exemplo, quando a nave fizer uma curva depois de
tocar 2 cristais azuis nas extremidades de uma área
prenchida por outros cristais azuis, então muito
provavelmente trata-se de uma jogada especial. Se o
jogador falha ao coletar os cristais necessários para a
jogada especial, apenas o evento subjetivo “tentativa
de jogada especial” será registrado; não existirá,
porém, a ocorrência do evento de jogo “conclusão de
jogada especial”.

5.2 Previsão da Simulação Física

A previsão é usada para descobrir o que vai acontecer
nos próximos intantes. Como no ambiente virtual um
certo objeto pode estar sujeito a várias coisas, a
previsão ajuda a determinar a probabilidade com que
um dado acontecimento pode ocorrer ou como um
dado acontecimento pode se concluir.

A previsão dos acontecimentos do ambiente virtual
ajuda no reconhecimento de ações subjetivas, e é
especialmente útil para posicionamento automático de
câmeras. Por exemplo, em um ambiente virtual onde
uma motocicleta salta por uma rampa, é possível,
através de cálculos de física, descobrir onde e como ela
vai cair, tomando assim as devidas providências para
mostrar o fato da melhor forma possível. Logicamente,
por meio da previsão, seria possível executar outros
processos tais como fazer o piloto sair da motocicleta
caso o salto se mostre desastroso. Previsão física
também é útil para fins de melhoria da inteligência
artificial. Por exemplo, na lógica de um lutador
inteligente, que calcula seu próximo ataque de acordo
com o tempo restante para que seu inimigo aterrisse
depois de um salto.

Para prever o que pode acontecer no ambiente
virtual podem-se usar vários artifícios, tais como
cálculos de física ou outros cálculos, às vezes
agilizados pelas próprias estruturas de dados usadas no
sistema. Sempre é preciso considerar o que o objeto
tende a fazer (como gravidade e outras velocidades) e
os objetos que estão em volta, além de considerar
como o usuário ou outros componentes podem intervir
na cena. No jogo produzido, como a nave tende sempre
a ir para a frente, a probabilidade de colisão à frente se
torna maior conforme o tempo passa, já que sempre
existirá algo à frente para colidir. Com isso o sistema
estará cada vez mais preparado para filmar a colisão,
que pode eventualmente não acontecer, devido à
intervenção do usuário. Também, para a jogada
especial, é muito provável que o jogador consiga
concluí-la se já coletou mais de ¾ dos cristais

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 137

necessários para tal; a câmera estará preparada para
filmar a jogada bem-sucedida.

5.3 Posicionando a Câmera

A partir das ações que foram reconhecidas e pelas
inferências obtidas pela manipulação física, é possível
posicionar a câmera e fazê-la se comportar segundo os
ensinamentos de cinematografia. Todos os dados
obtidos nas etapas anteriores serão processados por um
agente diretor, que possui seu próprio estilo de
filmagem. Como resultado o agente diretor altera
diretamente as propriedades da classe câmera, que
passa ao shader da aplicação a visualização a ser
renderizada. A Figura 7 mostra um esquema de
funcionamento.

Figura 7: Processo de posicionamento de câmera

Como mostrado na Figura 7, o posicionamento de

câmera é resultado de todas as etapas anteriores. A
engine de jogo informa os eventos relativos à lógica do
jogo ou as propriedades e máquinas de estados dos
objetos. Com base nessas informações, é possível que
eventos subjetivos sejam reconhecidos, e que próximos
eventos sejam previstos. Então o agente diretor pode
posicionar a câmera de acordo com a linguagem
cinematográfica utilizada, pois ele já tem acesso a
todas as informações que ele necessita. Também existe
um fator de aleatoriedade na escolha da posição da
câmera, para que o processo não se torne totalmente
determinístico. Dadas de uma a cinco posições
aceitáveis, uma é escolhida. Com isso o replay pode
ser visto diversas vezes, cada uma com uma
configuração de câmera diferente. Após isso, a cena é
renderizada, e a partir daí o processo se repete até que
aconteça outro evento ou o agente diretor entenda que
agora existe uma melhor posição de câmera.
Finalmente, como o usuário tem o controle de parte do
ambiente virtual (o personagem que ele controla),
outros eventos podem ocorrer devido à sua
intervenção.

Segundo Hawkins [2005], as principais questões que
devem ser consideradas ao posicionar a câmera no
ambiente virtual são:

• Enquadramento: Com o uso da plataforma XNA,
é possível definir o alvo da câmera como sendo o
centro da nave, por exemplo, para fazer a câmera
segui-la automaticamente, independente da
posição da câmera. Da mesma forma, pode-se
programar a câmera para focar em qualquer ponto
ou objeto do cenário. No entanto, enquadrar o
objeto de forma que ele fique muito grande ou
muito pequeno na cena tem seu impacto para o
telespectador. Métodos tradicionais consistem em
calcular a razão entre a área da tela e a área da
projeção da bounding box ou bounding sphere do
objeto focado. No ambiente virtual produzido,
como os tamanhos de todos os objetos já são
conhecidos, para simplificar os cálculos basta
afastar ou aproximar a câmera em fatores já
conhecidos.

• Oclusão: Em ambientes virtuais, pode ser muito

difícil detectar quando um objeto está bloqueando
a visão. Métodos tradicionais compreendem
lançar raios até o alvo da câmera e avaliar se os
raios interceptam algum outro objeto que está
entre a câmera e o alvo. No jogo produzido,
porém, sabe-se que não existe nenhum objeto
acima de certa altura, e como o espaço foi todo
discretizado, é possível, consultando-se a matriz
da fase, saber se em uma posição (x, z) do cenário
existe algum objeto. Como solução pode-se
mover a câmera para um outro local, ou deixar
todos os objetos que atrapalham a visão
invisíveis. Essa segunda opção pode ser perigosa
pois leva à inconsistência espacial.

• Consistência espacial: Existem algumas regras

cinematográficas para manter a consistência
espacial, isto é, não deixar o telespectador ficar
confuso quanto ao posicionamento dos
componentes da cena em função de um mal
posicionamento de câmera. A Figura 8 mostra um
exemplo.

A linha tracejada na Figura 8 é conhecida como

linha de ação. Para que a cena fique consistente, é
desejável que todas as tomadas de câmera fiquem do
mesmo lado do espaço definido pela linha de ação
[Hawkins 2005]. A violação desta regra (Figura 8.b) dá
a impressão que os personagens trocam de lugar
durante a conversa, e pode deixar o telespectador
confuso. Para o jogo produzido, para manter a
consistência espacial, a câmera tende a ser posicionada
de tal forma que sua componente Z no espaço fique
sempre entre a componente Z da nave e zero, que é a
componente Z do ponto de início da fase. Isto é, a
posição Z da câmera é sempre maior que a da nave.
Também, não existem cortes ou movimentos de
câmera enquanto a nave está fazendo uma curva,
colidindo com uma bola branca, ou está muito próximo
da saída da fase (o único momento que a componente
Z da câmera pode ser maior que a da nave). Se a

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 138

câmera está se movendo nesse momento, ela pára
imediatamente.

Figura 8: (a) Cena com consistência espacial

(b) Cena inconsistente.

Usando conceitos da linguagem cinematográfica,

segundo Martin [1985], também existem outras
restrições para dar mais dramacidade à ação, aplicadas
ao contexto do jogo:

• Se a nave está muito próxima de uma região onde

é possível executar a jogada especial, a câmera
tende a ir para um ponto em que pode enquadrar
todos os cristais do grupo e mostrar sua
transformação.

• Se o usuário erra a jogada especial, a situação
pode se tornar perigosa, e a câmera deve se
aproximar.

• Se a nave está numa situação segura (evento
reconhecido quando existem poucos cristais ou
bolas brancas próximas da nave), a câmera fica
mais longe e mostra todo o cenário.

• Quando existem muitos obstáculos em espacos
apertados, existe muito perigo de colisão. Neste
caso a câmera fica sempre perto da nave, e o
tempo da tomada é bastante curto.

• Quando a nave está rodeada de muitos cristais
vermelhos, existe muito perigo. Neste caso a
câmera fica sempre perto da nave, e o tempo da
tomada é bastante curto. Pode-se executar então o
movimento de sutilmente inclinar a câmera
(movimento de roll) para enfatizar o perigo
[Hawkins 2005].

Exceto o fato de a saída se abrir, nenhum outro

evento acontece muito longe do objetivo principal da

ação, que é a nave em movimento. Portanto, em quase
todas as tomadas a nave passará na frente da câmera
em algum momento, mas isso não significa que o alvo
será sempre fixo na nave. Principalmente nas situações
de perigo, a câmera pode ter como alvo uma bola
branca em que existe alta probabilidade de colisão.
Neste momento, provavelmente a nave irá passar,
colidindo ou desviando a tempo.

Outro fator que deve ser considerado é o tempo das
tomadas. Hoje em dia, o tempo em que uma tomada
dura, para cenas de ação e/ou reflexo é de 2 segundos
[Hawkins 2005]. Isso ajuda a criar no telespectador a
mesma sensação de tensão vivida pelo protagonista ou
jogador. Quanto mais confortável for a situação da
nave e quanto mais afastada estiver a câmera do solo,
mais longa será a tomada, indicando tranqüilidade.

5.4 Resultados

No jogo produzido, o replay é construído por meio de
uma estrutura de dados que armazena todos os
comandos do jogador ao longo do tempo. Existe uma
variável responsável por contar o tempo de jogo
restante ao jogador, que é atualizada a cada frame.
Uma entrada do jogador é armazenada juntamente com
o número de game-loops passados desde o início da
fase. Esta abordagem é mais robusta do que armazenar
o tempo passado em milissegundos, pois o replay pode
se tornar defasado em função da execução de outros
processos no sistema, como a própria técnica para
geração do replay.

Para não comprometer a intenção da previsão,
apenas a posição atual da lista de comandos deve ser
observada, simulando uma situação de jogo em tempo-
real. Elementos que representam as próximas entradas
do jogador não serão considerados. Para o
reconhecimento de ações, não considera-se os
comandos anteriores, mas sim os eventos anteriores,
tais como virar, colidir etc. Para isso, durante o replay,
uma outra estrutura de dados é utilizada. Ela armazena
os últimos 20 eventos da fase, juntamente com a
posição da nave naquele momento. A partir daí o
programa faz suas previsões e posiciona a câmera.
Com a adição dessas variáveis, o consumo de memória
aumenta em média 5 Kb, o que representa uma
porcentagem muito pequena do consumo do jogo
inteiro.

A diferença de desempenho entre o jogo e o replay
está relacionada com os processos que são executados
a mais para posicionar a câmera corretamente. O único
processo que não está presente na hora do replay é a
exibição dos painéis informativos (HUD – Head Up
Display), o que representa aproximadamente 10% de
todo o trabalho de renderização. A entrada de dados é
substituída pela leitura da lista de comandos, que é
mais custosa para o sistema. A Figura 7 mostra um
ciclo completo do game-loop, que é executado no
momento do replay. Durante a interação com o
jogador, as etapas de reconhecimento de ação, previsão

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 139

física e posicionamento da câmera não estão presentes.
Todas essas etapas podem representar um acréscimo de
até 50% no processamento da aplicação como um todo.
A diferença foi medida através do frame rate do jogo
em execução.

Outro fato observado foi que, durante o estado em
que o jogador pode controlar a nave, existe um
processamento muito maior quando a nave colide com
um cristal azul, pois é preciso testar se a jogada
especial foi concluída. Em caso positivo, ainda existe o
trabalho de transformar os ítens da matriz da fase.
Porém, durante o replay, a colisão com um cristal azul
não aumenta tanto o trabalho de processamento, pois já
existem muitos outros processos acontecendo nesse
momento. O gargalo de processamento se transforma
da renderização durante o jogo, para a lógica de
posicionar a câmera dinamicamente durante o replay.

6. Conclusões

Este trabalho mostrou uma solução para
posicionamento de câmeras, a partir de informações
passadas pela engine de jogo, usando as técnicas de
reconhecimento de ações e previsão física dentro do
ambiente virtual, além de conceitos de cinematografia.
Foi mostrado como funciona a plataforma XNA, com a
qual o jogo para exemplo foi construído, e algumas
técnicas cinematográficas que foram seguidas.

Todas as adaptações no ambiente virtual e na
dinâmica do jogo foram mostradas de forma que a
técnica pudesse ser aplicada corretamente e de forma
otimizada. Outro fator fundamental para o sucesso da
técnica foi a adição de um fator de aleatoriedade, que
evita o determinismo e deixa o resultado final mais
interessante para o telespectador.

De acordo com as experiências tomadas e
resultados alcançados, conclui-se que a utilização da
técnica é viável, tanto para a geração de replays,
quanto para a transmissão em tempo-real para um
grupo de telespectadores, como explicado em [Drucker
2005].

Referências Bibliográficas

AMERSON, D. E KIME, S., 2000. Real-time Cinematic Camera

Control for Interactive Narratives.

DRUCKER, S., 1994. Intelligent Camera Control for

Graphical Environments. Tese de Doutorado,
Massachusetts Institute of Technology.

ERLEBEN, K., 2002. Module Based Design for Rigid Body

Simulators.

FEGELEIN, 2008. Microsoft XNA Framework; Creating a

Freelook Camera [online]. Disponível em:
http://www.fegelein.com/?p=18 [Acessado em 8 de
agosto de 2008].

HAWKINS, B., 2005. Real-Time Cinematography for Games.
Editora Charles River Media, 2005.

HE, L. ET AL., 1996. The Virtual Cinematographer: A

Paradigm for Automatic Real-Time Camera Control and
Directing.

HERMANN, R. E CELES, W., 2005. Posicionamento Automático

de Câmeras em Ambientes Virtuais Dinâmicos.

MARCHAND, É. E COURTY, N., 2002. Controlling a Camera in

a Virtual Environment.

MARTIN, M., 1985. A Linguagem Cinematográfica. Editora

Brasiliense, 1985.

MNEMOCINE, 2008. Linguagem e técnica cinematográfica

[online]. Disponível em: http://www.mnemocine.com.br
[Acessado em 8 de agosto de 2008].

NITSCHKE, B., 2007. Professional XNA Game Programming

for Xbox 360 and Windows. Editora Wrox, 2007.

PINHANEZ, C., 1999. Representation and Recognition of

Action in Interactive Spaces. Tese de Doutorado,
Massachusetts Institute of Technology.

RIEMERS, 2008. Quaternion Camera [online]. Disponível em:

http://www.riemers.net/eng/Tutorials/XNA/Csharp/Serie
s2/Quaternions.php [Acessado em 8 de agosto de 2008].

SEUGLING, A. E RÖLIN, M., 2006. Evaluation of Physics

Engines and Implementation of a Physics Module in a 3D
Authoring Tool. Tese de Mestrado, Umea University.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 140

http://www.fegelein.com/?p=18
http://www.mnemocine.com.br
http://www.riemers.net/eng/Tutorials/XNA/Csharp/Serie

�������	�
�����
���	��	���������������
�������
��������
�

Eder L. Trindade Ricardo P. Martins Ferreira Eduardo P. C. Fantini Hugo B. de Paula

Pontifícia Universidade Católica de Minas Gerais

�
�	��

Restrições de tempo de resposta e de recursos
computacionais oferecem um desafio para o emprego
de técnicas sofisticadas de Inteligência Artificial nos
jogos. Neste artigo estudamos como aprimorar os
algoritmos de busca em tempo real encontrados na
literatura. Em especial, investigamos como permitir
que vários agentes se desloquem simultaneamente no
ambiente de um jogo. Também foi feito um estudo de
caso em um jogo real, o �������	
��
�� para avaliar o
comportamento desses algoritmos em jogos digitais.

���������	
����: Inteligência Artificial, Agentes,
���������������, ������
��
�, RTA*, �����

	������������������:
eder.lucio.trindade@gmail.com
{poley,hugo}@pucminas.br
eduardofantini@gmail.com

��������������

Os jogos digitais são ambientes propícios para a
aplicação de técnicas de inteligência artificial (IA). Por
um lado, estes ambientes limitados, onde as regras
costumam ser bem definidas, servem como
laboratórios para testes [Waveren, 2001]. Por outro
lado, a IA ainda tem muito a contribuir para o
desenvolvimento dos jogos. Restrições de tempo de
resposta e de recursos computacionais oferecem um
desafio para o emprego de técnicas sofisticadas de IA
em jogos digitais.

O planejamento de trajetória é um dos problemas
presentes nos jogos onde técnicas de inteligência
artificial são usadas com sucesso. Em muitas situações
os movimentos de um agente/personagem não podem
ser tratados como deslocamentos simples controlados
pelo jogador. Nestes casos, é útil o emprego de
algoritmos para o mapeamento do ambiente em um
grafo e de algoritmos de busca de caminhos entre a
posição atual no grafo e a posição desejada do agente
no jogo [Nonnenmacher et al, 2007].

A maioria dos jogos digitais resolve o problema de
busca de caminhos com soluções baseadas no
algoritmo A* [Millington, 2006]. O algoritmo A* é um
algoritmo informado de busca ótima, ������
�. Nos
algoritmos de busca ������
�� [Russell and Norvig,
2004], a fase do planejamento – mapeamento do
ambiente e busca no grafo – antecede a fase da
execução, quando o agente se desloca pelo caminho
escolhido. Os algoritmos de busca ������
��nem sempre
são capazes de atender as necessidades de tempo de

resposta em um jogo. Quando um personagem fica
imóvel aguardando o cálculo de uma trajetória, a
cadência do jogo pode ficar prejudicada. Assim, uma
decisão rápida para o próximo movimento, mesmo que
não ótima, em algumas situações é mais importante do
que esperar o cálculo do melhor movimento. Estas
dificuldades ficam evidentes quando é necessário
calcular simultaneamente a trajetória de diversos
personagens.

Entre as soluções adotadas na literatura para lidar com
os requisitos de tempo de resposta para o problema de
encontrar caminhos, os algoritmos de busca �
���
�,
conhecidos como algoritmos de busca em tempo real
são freqüentemente adotados [Russell and Norvig,
2004]. Apesar de não tratarmos características
relacionadas a tempo, adotamos o termo “tempo real”
por ser o termo utilizado na literatura. Os algoritmos
de busca em tempo real são algoritmos onde as fases
de planejamento e de execução são alternadas. O
agente planeja e executa alternadamente os
movimentos até alcançar o objetivo. Embora não sejam
ótimos, se algumas condições forem atendidas, como
condições de conexidade do grafo, eles conseguem
orientar o agente até o objetivo, mesmo quando o grafo
sofre alterações durante o deslocamento do agente.
Este comportamento é relevante em jogos digitais
porque, muitas vezes, o ambiente é dinâmico.

Neste artigo estudamos como aprimorar os algoritmos
de busca em tempo real encontrados na literatura. Em
especial, investigamos como permitir que vários
agentes se desloquem simultaneamente no ambiente de
um jogo. Realizamos um estudo comparativo entre
algoritmos de busca em tempo real presentes na
literatura e nossas adaptações. Também foi feito um
estudo de caso em um jogo real, o �������	
��
�� para
avaliar o comportamento de alguns algoritmos de
busca em tempo real. O ������� 	
��
�� é� um� jogo
digital do tipo MMORPG (��������������������	
��
��
���������
������) em terceira pessoa [Origin, 2008],
o qual possibilita a interação do jogador com um
complexo ambiente virtual. Os resultados obtidos nos
experimentos quantitativos e qualitativos realizados
indicam a eficácia do uso de algoritmos de busca em
tempo real em jogos digitais.

O restante do artigo é organizado da seguinte forma. A
próxima seção apresenta alguns dos principais
algoritmos de busca em tempo real. A Seção 3
apresenta as adaptações propostas e na Seção 4 são
apresentados os resultados computacionais e as
alterações feitas no emulador do ������� 	
��
�, o
�
�	. Na última seção são apresentadas algumas
conclusões e oportunidades para trabalhos futuros.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 141

����������	�
�����
���	��	�������
- ��������
�����������
�

Os algoritmos de busca em tempo real propõem uma
solução de compromisso entre a qualidade da decisão
de qual é o próximo estado que um agente deve visitar
e o tempo para calcular esta decisão [Koenig, 2006].
Existem vários artigos que sugerem a implementação
de algoritmos de busca em tempo real em jogos digitais
[Koenig, 2006][Koenig, 2007][Sun, 2008]. Entretanto,
estes artigos não apresentam nenhuma implementação
em um ambiente de jogo real.

A busca em tempo real foi motivada primeiramente
pela robótica sensível a tempo [Koenig, 1999] e em
seguida por jogos digitais, abrangendo os jogos de RTS
(������������������), de FPS (�����������
��������) e de
RPG (����������
�� �����). Em todos eles o tempo
desempenha um papel fundamental, uma vez que
vários agentes fazem buscas de caminhos
simultaneamente e é exigido do jogo um tempo de
resposta muito rápido para garantir o ��������
[Bulitko et al., 2007]. Encontrar caminhos em jogos é
computacionalmente muito caro. No jogo RTS “�������
 �������!!”, por exemplo, o ������
��
� consome entre
60 e 70% do tempo de simulação [Pottinger, 2000].

O problema de encontrar caminhos em grafos é
representado da seguinte forma: considere um Grafo
�"#�� $ onde # representa um conjunto de vértices,
representa um conjunto de arestas, ! representa o
vértice inicial e 	 representa o conjunto de vértices
finais. Um caminho é um subconjunto conexo do grafo
�. O problema consiste em determinar um caminho de
! para�	.

Nas subseções seguintes descrevemos dois algoritmos
de busca em tempo real clássicos, %���
�
������&����
�'�e o ����&�����'�[Korf 1990]. �
�
������������������	�� ������� �

O algoritmo LRTA* [Korf 1990] (%����
������&����
�') é um algoritmo de busca informada e em tempo
real. Ele não é ótimo, ou seja, não garante que será
encontrado o melhor caminho entre o nó inicial e o nó
objetivo. O algoritmo possui conhecimento da
localização do vértice objetivo e utiliza esta
informação para eleger a próxima posição do agente.
No contexto onde realizamos os experimentos
utilizamos a distância ��
�����
 como medida
heurística da distância até o objetivo.

O LRTA* inicia com um agente localizado no vértice
inicial. No passo seguinte, o agente se desloca para o
vizinho mais promissor de acordo com a função de
custo. A busca termina quando o agente encontra um
vértice objetivo. A cada iteração o agente atualiza a
estimativa da distância até o objetivo melhorando a
informação sobre o grafo. Na fase de planejamento o
agente calcula para os nós vizinhos a função de custo

Figura 1: Execução do LRTA*

Figura 2: Pseudocódigo do LRTA*

(")��*$�+��"*$�,�-")��*$ onde * é um vértice vizinho,) é
o vértice corrente, �"*$ representa o valor atual da
heurística de * até o objetivo 	 e -")��*$ é o custo da
aresta do vértice corrente) até *. O agente atualiza a
heurística do vértice corrente com o menor valor de
(")��*$ e move-se para ele. O processo então reinicia.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 142

A Figura 1 ilustra um exemplo de execução do
LRTA*. O nó inicial é o vértice A e o nó objetivo é o
vértice D. O algoritmo calcula a heurística de cada
vértice, consideremos o seguinte estado corrente:
�"�$�+�./���"0$�+�12���"-$�+2����"3$�+�/4
�
����������	�� ������ �
�
O Algoritmo RTA* [Korf 1990] (����&�����') é um
algoritmo de busca por qualquer caminho e em tempo
real semelhante ao LRTA*. A diferença entre o
LRTA* e o RTA* é que o RTA* atualiza a heurística
do vértice corrente com o segundo melhor valor de
(")�� *$ mantendo uma informação mais precisa do
grafo. A Figura 3 apresenta o pseudocódigo do RTA*.

Figura 3: Pseudocódigo do RTA*

!��"�����#
������
��
���
��������	�
�

Neste trabalho estudamos algoritmos de busca em
tempo real e propomos novos algoritmos adotando
duas estratégias:

• Investigamos o efeito nos algoritmos da falta
de informação sobre o ambiente de busca.
Propomos uma variação no algoritmo RTA*
melhorando o aprendizado do agente sobre o
ambiente;

• Estudamos diversos agentes no processo de
busca. Propomos um algoritmo baseado em
sistemas multiagentes onde agentes
compartilham informação, o que pode agilizar
o processo de busca.

Figura 4: Execução do RTA*

A seguir apresentamos dois algoritmos o ����&�����'�
������ onde melhoramos o aprendizado do algoritmo
����&�����' e o ���������&�����', onde mais de
um agente cooperam para agilizar o processo de busca.
�
!���������	�� �$��
�%���� $�

O ����&���� �'� ���� (RTA*P) é uma variação do
algoritmo ����&�����', onde a novidade é acrescentar
mais informação ao algoritmo. No RTA* o algoritmo
analisa todos os vizinhos do vértice corrente para
escolher o vértice mais promissor e atualizar a
heurística do vértice corrente com o segundo melhor
valor de custo. Contudo esse algoritmo descarta as
informações previamente calculadas sobre os outros
vizinhos. O algoritmo RTAP armazena também qual é
o vizinho do segundo melhor valor de custo e qual é o
valor do terceiro melhor custo. Caso o agente retorne a
um vértice já expandido o agente desloca-se para o
vértice de segundo melhor custo e atualiza o valor da
heurística do vértice corrente com o terceiro melhor
custo, sem a necessidade de realizar nova análise dos
vizinhos.

O RTA*P ilustra o comportamento do agente quando
aumentamos seu aprendizado sobre o ambiente.
Comparamos o RTA*P e o RTA* em diversas
situações explorando ambientes com e sem
informação. O RTA*P inicia com um agente
localizado no vértice inicial, no passo seguinte o agente
se desloca para o vizinho mais promissor. A busca
encerra quando o agente encontra um vértice objetivo.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 143

Figura 5: Execução do RTA*P

A cada iteração o agente atualiza a estimativa
heurística do vértice. Na fase de planejamento o agente
calcula para todos seus vizinhos a função de custo
(")��*$�+��"*$�,�-")��*$ onde) é o vértice corrente, * é
um vértice vizinho de), �"*$ representa o valor da
heurística da distância de * até 	 e -")��*$ é o custo da
aresta do vértice corrente) até o vizinho *. O algoritmo
também armazena qual o vértice �")$ possui o segundo
menor valor da função de custo e o valor do terceiro
menor valor da função de custo, �")$. Se o vértice)
ainda não foi visitado o agente atualiza a heurística do
vértice corrente com o segundo menor valor de (")��*$
e move-se para o vizinho de menor (")��*$. Se o vértice
* já foi visitado o agente não calcula a função de custo
para os vizinhos de * e caminha para o vértice �"*$
atualizando a heurística �"*$� +� �"*$. A Figura 5
apresenta um exemplo de execução do RTA*P. A
Figura 6 apresenta o algoritmo RTA*P.

Figura 6: Pseudocódigo do RTA*P

!�!����&�������	�� ������� �
�
O ���� &���� �'� (RRTA*) é um algoritmo de busca
informada em tempo real baseado em sistemas
multiagentes [Yokoo and Ishida, 1999] [Wooldridge,
2002]. O RRTA* é formado por dois ou mais agentes
que dividem informação para encontrar um caminho
entre dois nós. Vamos discutir neste artigo o caso com
apenas dois agentes. Chamamos o primeiro agente de
A e o segundo agente de B. O agente A é o agente
responsável por encontrar um caminho entre o nó
inicial e o nó final passando pelo nó origem de B. O
agente B tem o objetivo de encontrar um caminho entre
um nó qualquer do grafo que é seu nó inicial e o nó
objetivo. O nó de origem de B deve pertencer ao
caminho de A. Assim, o agente B antecipa o
conhecimento sobre o grafo para A. Neste artigo
vamos utilizar como estratégia para a escolha da
posição inicial de B o ponto médio da semi-reta entre o
nó inicial e o nó objetivo.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 144

O RRTA* é formado por duas esferas de decisão: uma
esfera tática onde o algoritmo coordena os agentes e
uma esfera operacional onde os agentes executam a
busca.

Na esfera tática o agente A começa a busca no nó
inicial. O algoritmo elege um vértice para B iniciar a
busca, neste caso, o ponto médio da semi-reta entre o
nó inicial e nó objetivo. O agente B tem a função de
encontrar o nó objetivo e A, a priori, tem o objetivo de
encontrar o vértice por onde B iniciou a busca. Quando
o agente A encontrar o nó por onde B partiu ou algum
vértice que foi caminho de B o agente A passa a
procurar o nó objetivo. A busca termina quando o
agente A encontra o nó objetivo.

Figura 7: Estratégia de posicionamento dos agentes - RRTA*
- Ponto Médio – Dois Agentes

�
Figura 8: Execução do RRTA*

Na esfera operacional, ambos agentes utilizam o
algoritmo RTA* para realizar a busca. O agente B
realiza a busca a procura do nó objetivo marcando os
nós por onde passou, o agente B marca no nó visitado
qual é o próximo nó que ele irá visitar. O Agente A
realiza a busca e quando encontra um nó visitado por B
segue as marcações deixadas por B sem fazer qualquer
verificação, assim o agente A utiliza do conhecimento
do grafo adquirido na busca de B. A Figura 7 ilustra a
definição das posições inicias dos agentes.

Nos exemplos adotados neste trabalho o algoritmo
traça uma semi-reta entre o nó inicial e o nó objetivo.

O algoritmo calcula o ponto médio desta semi-reta. As
coordenadas do ponto médio são definidas pela
equação: onde 5 representa a

ordenada do ponto médio, 61 a ordenada do nó inicial e
6. a ordenada do nó objetivo, 7 representa a abscissa
do ponto médio, �1 representa a abscissa do nó inicial e
�. representa a abscissa do nó objetivo.

Figura 9: Pseudocódigo do RRTA*

A estratégia para posicionamento dos agentes depende
muito do tipo do grafo. Apresentamos um critério mais
didático, contudo outros critérios podem ser adotados.
A Figura 9 apresenta o pseudocódigo do algoritmo
RRTA*, o procedimento RTA* além de executar uma
iteração da busca RTA* marca os nós por onde B
passou e o agente A quando encontra um nó visitado
pelo agente B segue a marcação sem analisar os
vizinhos. O primeiro passo do algoritmo é posicionar
os agentes, o agente A é posicionado no nó inicial e o
agente B é posicionado no nó escolhido. O algoritmo
atribui ao agente A a função de encontrar o nó por
onde B iniciou a busca e ao agente B a função de
encontrar o nó objetivo. No segundo passo os agentes
executam a busca utilizando o algoritmo RTA*, o
agente B durante a busca deixa marcas que depois
poderão ser seguidas pelo agente A.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 145

Quando o agente A encontra o ponto por onde B
iniciou a busca ele passa a procurar o nó objetivo. O
agente B termina sua busca quando encontra o nó
objetivo, quando encontra com o agente A ou quando o
agente A encontra o nó objetivo. Quando o agente A
encontra as marcas deixadas pelo agente B ele passa a
segui-las, assim o agente A aproveita o conhecimento
do grafo adquirido por B durante sua busca. A busca
termina quando o agente A encontra o nó objetivo. A
Figura 8 apresenta a execução do RRTA*.

Realizamos experimentos como o RRTA* apenas em
grafos conexos, a estratégia de posicionamento dos
agentes utilizando o ponto médio deve ser usada em
somente em grafos conexos.

'��()���	���
�*�	����������
�

Foram realizados dois grupos de experimentos. O
primeiro grupo trata de um estudo comparativo entre
os diferentes algoritmos propostos na literatura e os
novos algoritmos propostos neste trabalho em um
ambiente estruturado. São ambientes típicos para testes
de algoritmos de busca [Koenig, 2006][Koenig,
2007][Sun, 2008]. O segundo grupo trata de
experimentos qualitativos onde algoritmos de busca
�
���
� são aplicados em um jogo MMORPG - o
�������	
��
� � para avaliar seus comportamentos em
um ambiente de jogo real.

Os ambientes estruturados são labirintos representados
em grafos 4-conexos gerados aleatoriamente de
tamanho entre 100 a 1.000.000 vértices. São labirintos
quadrados de tamanhos entre 10 x 10 a 1000 x 1000.
Escolhemos o jogo eletrônico ������� 	
��
� por sua
grande popularidade e por possuir um emulador de
servidor – o �
�	�– de código aberto o qual permite
alterações nos algoritmos de busca. Os experimentos
foram realizados em uma máquina com processador
!
���� -���� .�3�� 2.2 Ghz, 2 GB de Memória RAM,
sistema operacional 8�
��9� XP ���������
�� 2002
�������� ���* 2. Utilizamos como compilador o
0����
��-,,�0������ 6.0.

'��� ()���	���
� +���������,�
� 	�
���-�
���
���
����������
�

Para comparar o desempenho dos algoritmos
consideramos o número médio de vértices expandidos
e o tempo médio de execução de cada algoritmo.
Consideramos como vértices expandidos os vértices
por onde os agentes passaram e o tempo de execução
de um algoritmo representa o tempo em milissegundos
gasto para atingir o objetivo. Estes dados são as médias
das execuções do mesmo algoritmo no mesmo grafo.
Para cada grafo executamos repetidamente o mesmo
algoritmo. Limitamos o tempo total de execução do
algoritmo e, por isso, os grafos maiores foram menos
executados.

Para a realização dos experimentos foram
desenvolvidos dois geradores de grafos: gerador de
grafos aleatórios (GCA), e gerador de grafos conexos
(GCC). O tamanho do grafo corresponde ao produto do
número de colunas pelo número de linhas do grafo. Por
exemplo, um grafo de tamanho igual 1/4/// vértices
possui 1// colunas e 1// linhas.

Definimos como vértices obstáculos os vértices que
possuem grau zero. Os geradores recebem como
parâmetros os vértices iniciais e finais, o tamanho, o
percentual do número de arestas ou o percentual de
vértices obstáculos, o grau médio do grafo e o tipo do
grafo. O tipo do grafo é definido pelas distâncias entre
nós vizinhos que podem ser constantes ou aleatórias.

Tabela 1: Número de execuções dos experimentos
quantitativos em grafos baseados em labirintos

O gerador de grafos aleatórios (GCA) garante a
geração de grafos com pelo menos um caminho entre o
vértice inicial e o vértice final, mas não garante que o
grafo seja conexo. Por este motivo, nos grafos gerados
pelo o GCA não é possível garantir o funcionamento
correto do algoritmo RRTA* utilizando a estratégia de
posicionamento pelo ponto médio. No GCA o
percentual de vértices obstáculos define a densidade do
grafo, uma vez que o obstáculo possui grau zero e
conseqüentemente o número de arestas é menor. A

O Gerador de grafos conexos (GCC) garante a
existência de caminhos entre quaisquer vértices do
grafo, ou seja, todos os vértices estão interligados.
Este algoritmo contempla a geração de grafos de
tamanhos e densidades diferentes. Os grafos são no
máximo 4-conexos, ou seja, cada vértice possui no
máximo quatro vizinhos. Os pesos das arestas
representam as distâncias entre os vértices que podem
ser uniformes ou aleatórias. No GCC a quantidade de
arestas define a densidade do grafo, consideramos um
grafo com 100% de densidade quando todos os vértices
possuírem grau igual a quatro.

Os experimentos foram separados em dois subgrupos
distintos, o primeiro são experimentos executados nos

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 146

grafos gerados pelo GCA e o segundo nos grafos
gerados pelo GCC.

Utilizamos como heurística a distância de ��
�����
 e
para cada subgrupo estudamos o comportamento dos
algoritmos em grafos onde os pesos das arestas são
iguais, em grafos onde os pesos das arestas são
aleatórios ou em situações sem heurística. Para os
grafos gerados pelo GCA não estudamos o RRTA*
porque a estratégia de posicionamento através do ponto
médio não é adequada neste tipo de grafo.

A Tabela 1 apresenta o número de execuções dos
algoritmos RTA*, RTA*P e RRTA* nos experimentos
deste artigo, foram realizados 111600 execuções para o
Grupo I e 167400 execuções para o grupo II.

Figura 11: Gráfico da média do número de vértices
expandidos para grafos gerados pela GCA com pesos

variados entre 1 á 10

Figura 12: Gráfico da média do tempo de execução para
grafos gerados pela GCA com pesos variados entre 1 a 10

Foram gerados 200 grafos para cada configuração,
onde 100 têm peso uniforme nas arestas e 100 possuem
pesos aleatórios. Cada configuração é definida pelo
algoritmo que o criou: GCA, ou GCC; pelo seu número
de vértices: 100, 10.000, 1.000.000; e pelo percentual
de vértices obstáculos, no caso dos grafos gerados pelo
GCA ou pela percentual de arestas, para os grafos
gerados pelo GCC.

Os resultados são apresentados em gráficos de barras
onde as colunas estão ordenadas de acordo com a
legenda, não sendo necessário orientar-se pela cor.
�
�������� os experimentos do Grupo I foram realizados
em grafos com pelo menos um caminho entre o vértice
inicial e o vértice final (grafos gerados pelo GCA), mas
não necessariamente conexos. Cada vértice possui no
máximo quatro vizinhos, a quantidade de vértices
obstáculos define a densidade do grafo.

A Figura 11 compara o número de vértices expandidos
versus o percentual de vértices obstáculos nos grafos
do grupo I. O número de vértices expandidos aumenta
quando o percentual de vértices que são obstáculos
aumenta. O RTA* e o RTA*P empatam quando o
grafo não possui obstáculos. À medida que aumenta o
número de vértices que são obstáculos o RTA*
apresenta resultados melhores que o RTA*P. Esta
diferença é menor em grafos com pesos aleatórios.

A Figura 12 compara o tempo de execução (em
milissegundos) com o percentual de vértices obstáculos
nos grafos do grupo I. Os algoritmos gastaram mais
tempo para solucionar os problemas quando o grafo
possui 40% de vértices obstáculos. O RTA* e o
RTA*P apresentam comportamentos semelhantes. Não
há diferenças nos resultados entre os grafos com
arestas com pesos uniformes e os grafos com arestas
com pesos aleatórios.

������ ��: os experimentos do Grupo II foram
realizados em grafos conexos gerados pelo algoritmo
GCC. Cada vértice possui no máximo quatro vizinhos,
a quantidade de arestas define a densidade do grafo. As
figuras 13 e 14 comparam o número de vértices
expandidos versus o percentual de densidade nos
grafos do grupo II. Os gráficos não indicam uma
relação direta entre o número de vértices expandidos e
a densidade do grafo.

O RTA*P e o RTA* apresentam resultados
semelhantes. O RRTA* apresenta número de vértices
expandidos maior que o RTA*. Entretanto, se
dividirmos o número de vértices expandidos pelo
número de agentes temos uma média de vértices
expandidos menor que o RTA*. Sem utilizar
heurísticas, o RTA*P expande menos vértices que o
RTA*.

As figuras 15 e 16 comparam o tempo de execução
(em milissegundos) versus o percentual de vértices de
densidade nos grafos do grupo II. O RTA* e o RTAP
apresentaram desempenhos semelhantes. Não há
diferenças nos resultados dos grafos com arestas com
pesos uniformes e arestas com pesos aleatórios.
O RTA* gasta mais tempo para executar a busca
quando não utiliza heurística. O RTA*P é mais estável
e mais eficiente que o RTA* em todas as densidades.
Em grafos com pesos aleatórios a diferença entre o
RTA*P e o RTA* é menor, mesmo assim o RTA*P é
mais eficiente.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 147

Figura 13: Gráfico da média do número de vértices
expandidos para grafos gerados pela GCC com pesos

constantes

Figura 14: Gráfico da média do número de vértices
expandidos para grafos gerados pela GCC com pesos

constantes e sem a utilização de heurística

Figura 15: Gráfico da média do tempo de execução para
grafos gerados pela GCC com pesos constantes

Figura 16: Gráfico da média do tempo de execução para
grafos gerados pela GCC com pesos variados entre 1 a 10 e

sem a utilização de heurística

Existem vários emuladores de servidor para o �������
	
��
�: �	5, �	%, ��: e �
�	 [Wikipedia,
2008]. Escolhemos o �
�	 versão 2 RC2 pelo fato
do mesmo ser bastante utilizado. O �
�	� possui
código aberto e recria por meio da plataforma
Microsoft.NET o ambiente de um servidor para o
������� 	
��
�. No �
�	 é possível personalizar
grande parte das características funcionais do jogo e
manipular ;�-� (
�
� ������� ����������). O teste de
algoritmos de busca �
���
� implementados no �
�	
teve como objetivo avaliar qualitativamente, no fluxo
do jogo, a capacidade de um agente ;�- determinar
sua trajetória e executá-la.

O ������� 	
��
� apresenta situações onde o
deslocamento dos ;�-� é dirigido por algoritmo de
busca. Os movimentos de animais de estimação do
jogador, denominados ����� representam uma destas
situações. Os ���� são agentes ;�-� que se descolam
pelo mapa entre obstáculos em busca de um
determinado alvo, o qual pode ser um agressor, um
alvo de perseguição móvel ou o seu respectivo dono, o
jogador, Figura 17.

O algoritmo de busca utilizado pelo emulador��
�	
é o A*, com área de busca bastante limitada (38 x 38
quadrantes). O mapa completo do jogo possui 6144 x
4096 quadrantes, sendo que cada um possui até oito
vizinhos. A restrição na área de busca é motivada pelo
ônus no tempo de resposta e de recursos
computacionais.

Ao analisar os algoritmos de busca do �
�	, os
quais se comportam de forma equivalente aos
servidores oficiais de ������� 	
��
�, constatamos a
combinação de dois algoritmos O primeiro algoritmo é
executado quando não há obstáculos entre o ;�- e o
seu alvo. Este algoritmo é uma simples tentativa de
andar em linha reta na direção do alvo, intercalando
com movimentos aleatórios quando é necessário um
desvio simples. Nos casos onde essa tentativa não
obtém sucesso, um algoritmo A* é executado. Se um
obstáculo intransponível surge repentinamente na rota
do ;�-, a busca é cancelada e o primeiro algoritmo é
executado novamente.

Os algoritmos de busca �
���
� são capazes de
encontrar um caminho até o objetivo, se o mesmo
existir. O processamento dessa busca não ocasiona
lentidão perceptível no servidor. O A* também resolve
a busca em todo o mapa do jogo se ampliamos sua área
de busca. Contudo percebemos que as respostas do
jogo ficam criticamente lentas, principalmente quando
mais de vinte agentes executam a busca ������
�
simultaneamente.

A vantagem dos algoritmos ������
� em relação aos �
�
��
� é a ótima solução com o menor número de passos
entre dois pontos. Por esse motivo, a busca ������
� é
utilizada em grande parte dos jogos. Porém, quando o

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 148

jogo possui características de um sistema em tempo
real, como os ��	�� e &� (������������������) , a
busca ������
� compromete a sua cadência.

A utilização de busca ������
� consome maior tempo de
processamento para o primeiro passo do agente do que
a busca �
���
�. Na busca ������
�, toda a rota é
calculada antes do primeiro passo do agente, enquanto
que na busca �
���
� cada passo pode ser planejado e
executado logo em seguida. Pelo fato dos jogos digitais
em tempo real terem características dinâmicas, os alvos
também se movimentam e as rotas se modificam,
inutilizando grande parte do cálculo da busca ������
�, a
qual deve ser refeita.

O �
�	 utiliza algoritmo de busca ������
� com área
de busca bastante limitada em torno do agente (Figura
18a) e ignora os obstáculos dinâmicos do trajeto
calculado. Porém esses ajustes no algoritmo provocam
dois problemas de jogabilidade. O primeiro é a
impossibilidade de calcular uma rota quando há
obstáculos fixos seccionando a área de busca do
agente, Figura 18b. O segundo é a sobreposição de
agentes durante e após o caminhamento,
impossibilitando a seleção unitária dos mesmos para
demais atividades �
�����, Figura 18d.

Implementamos no �
�	 os algoritmos de busca �
�
��
� RTA* e LRTA* com o intuito de observar, na
perspectiva do jogador, o diferencial em relação ao uso
do A*.

Nos experimentos, diferentemente dos pseudocódigos
da literatura, não pré-calculamos as heurísticas de cada
vértice do mapa, pois no ������� 	
��
� cada ;�-
necessitaria calcular e armazenar 6144 x 4096 valores
heurísticos cada vez que uma nova busca fosse
iniciada. Então optamos por calcular as heurísticas
necessárias em tempo de execução e associamos a cada
agente uma árvore binária para armazenar apenas as
heurísticas atualizadas durante a busca. Essa árvore
começa vazia e à medida que o agente se desloca, as
atualizações heurísticas são inseridas na árvore.
Quando o agente alcança o seu objetivo ou quando o
alvo se desloca, a busca é dada como encerrada ou se
prepara para calcular outro trajeto. Nesse instante a
árvore binária é reiniciada.

Observamos que os algoritmos �
���
� resolvem os
problemas gerados pela utilização de busca ������
��
com área limitada. Os agentes são capazes de caminhar
até o seu alvo sempre que existir um caminho válido
em qualquer parte do mapa e os agentes jamais se
sobrepõem, Figura 18e. Essas soluções melhoram
consideravelmente a jogabilidade com os ����.

Um problema observado com os algoritmos �
���
�
ocorre quando há muitos obstáculos na vizinhança dos
;�-� formando uma área côncava. Nesse caso os
;�-� parecem, por um momento, estarem perdidos.
Este efeito acontece porque os movimentos dos ����
acompanham o planejamento do algoritmo. Apesar

dessa desvantagem, os agentes encontram seu objetivo,
Figura 18c. Este problema pode ser resolvido
calibrando o número de iterações que o agente deve
planejar a rota antes de se deslocar efetivamente no
ambiente do jogo.

Figura 17: Um jogador de e seus .

Figura 18: Comparações entre algoritmos (a, b, d) e
(c, e) em situações observadas no .

.��*��
�����#
�/����
�

Em jogos digitais existem situações onde é necessária a
utilização de algoritmos de busca. A maioria dos jogos
eletrônicos resolve o problema de busca com soluções
baseadas no algoritmo A*. Os algoritmos de busca ����
��
� consomem mais recursos que os algoritmos de

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 149

busca �
���
�. A utilização de algoritmos de busca �
�
��
� em jogos digitais economiza processamento e
memória viabilizando a busca simultânea de vários
agentes em ambientes mais complexos. Outra
vantagem é que os algoritmos de busca �
���
�
encontram a solução mesmo em ambientes dinâmicos
sem a necessidade de recalcular toda a trajetória.

O RRTA* (���� ����&�����') distribui a busca em
mais de um agente e é útil em situações onde a busca
possa ser dividida, em jogos digitais, com vários
jogadores podemos distribuir a busca e também utilizar
este algoritmo em situações de perseguição. Apesar do
RRTA* apresentar números que indicam que ele é
menos eficaz que o RTA*, ele encontra caminhos para
mais de um agente. Para conseguir o mesmo resultado,
o RTA* teria que executar uma busca para cada
agente.

Quando dispomos de heurísticas adequadas o RTA* é
mais eficiente que o RTA*P. Entretanto existem
situações em que não possuímos heurísticas, por
exemplo, em alguns jogos digitais não conhecemos a
posição do vértice objetivo. Para estas situações o
RTA*P é mais eficiente que o RTA*. O RTA*P é mais
estável que o RTA*, em grafos 4-conexos o número de
vértices expandidos e o tempo de execução do RTA*P
sofrem menos variação que os do RTA* quando
acrescentamos, retiramos ou apenas modificamos a
heurística. Quando o RTA* apresenta-se mais eficiente
que o RTA*P esta diferença não é grande, por isso a
utilização do RTA*P em jogos digitais é indicada.

O emulador �
�	� é um ambiente adequado para
teste de algoritmos de busca em jogos pois mostrou ser
suficientemente completo e flexível.

Aplicar algoritmos de busca �
���
� em jogos digitais é
motivado pelo fato desses experimentos nos levarem a
uma melhor observação do comportamento dos agentes
da inteligência artificial (IA) em situações diversas.
Tais observações são inspirações para novas idéias de
implementações. A percepção humana sobre a
inteligência de um agente de IA pode ser presumida
quando há uma imersão no universo de ação do
mesmo, essa especificidade é bastante comum nos
jogos. Os algoritmos �
���
� são eficientes nos jogos
possibilitando a busca em ambientes dinâmicos e
provendo a possibilidade de executar a busca para um
número maior de agentes.
�
.�����������
�/�����

Propusemos alguns algoritmos e estudamos o
comportamento de algoritmos de busca em tempo real
em jogos digitais. Contudo ainda é necessário avaliar
estes algoritmos em outros jogos e em contextos
diferentes.

A estratégia de posicionamento do RRTA* é
fundamental para sua eficiência, é necessário estudar
outras estratégias e validá-las no contexto de jogos

digitais além de explorar o potencial do RRTA* em
situações de perseguição.

É importante investigar o comportamento de outros
algoritmos de busca �
���
� em jogos eletrônicos e
estudar a complexidade e a completude dos algoritmos
propostos.

�-�0����
�

Bulitko, V, Sturtevant, N, Lu, J., & Yau, T. 2007.

Koenig, S. 2006.

Koenig, S. 1999.

Koenig,, S. , Likhachev, M., and Sun, X., 2007.

Korf, R. E. 1990.

Millington, I. 2006.

Nonnenmacher, V., Ferreira, S. and Osorio, F. 2007.

Origin – Ultima Online.

Pottinger, D. C. 2000.

Rabin, S. 1995.

Russel, S. and Norvig, P. 2004.

Sun, X., Koenig, G., and Yeoh, W.. 2008.

Van Waveren, J. M. P. 2001.

Wikipedia -

Wooldridge, M. 2002.

Yokoo, M.And Ishida, T. 1999.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 150

A Facial Animation Interactive Framework with Facial Expressions, Lip
Synchronization and Eye Behavior

Rossana B. Queiroz Marcelo Cohen Soraia R. Musse

Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
Av. Ipiranga, 6681, Porto Alegre, RS, Brazil, 90619-900

Figure 1: Example of characters performance in our prototype during an expressive talk.

Abstract

In this paper we describe our approach of generating convincing
and empathetic facial animation. Our goal is to develop a robust
facial animation platform that can be scalable, usable and easily ex-
tended, in order to allow integration of research on the area and also
the direct incorporation of the characters in interactive applications,
such as Embodied Conversational Agents and games. We have de-
veloped a framework capable of animating MPEG-4 parametrized
faces easily through high-level description of facial actions and be-
haviors. We also present a case study which integrates computer
vision techniques in order to provide interaction between the user
and a character, that interacts with different facial actions according
to detected events in the application.

Keywords:: Facial Animation, MPEG-4, Facial Expressions, Lip
Synchronization, Eye Behavior, Interactivity, Facial Animation De-
scription Language

Author’s Contact:

{rossana.queiroz, marcelo.cohen, soraia.musse}@pucrs.br

1 Introduction

Animated virtual human faces have been widely used in many ap-
plications, such as movies, games and Embodied Conversational
Agents (ECAs). In all of these applications, characters’ reactions
should help in user immersion as well as to provide a believable
interaction. Thus the facial behavior coherence is very important,
to increase the credibility of the character.

Recent research on facial animation has lead to models that explore
expressiveness, communication and interactivity. Many of these
research are focused on ECA development [de Rosis et al. 2003;
Smid et al. 2004; Cosi et al. 2007; Huang et al. 2008] and provide
us a range of studies that correlate human psycho-social behavior
and facial animation. Together with a facial animation platform de-
velopment, we find several studies about face parameterization and
scripting languages for assisted and automatic animation genera-
tion [Perlin 1997; Cassell et al. 2001; Rutledge 2001; Arafa and
Mamdani 2002; Byun and Badler 2002; Carolis et al. 2004; Not
et al. 2005; Arya and DiPaola 2007; Vilhjálmsson et al. 2007].
Those studies have provided ways to the higher-level description
of a character’s face actions. Most of these languages are based on
XML and try to describe face actions in different levels, such as
attributing values of some specific parameters, or specifying more
complex behaviors which implicate the animation of various facial
attributes in a synchronized way.

We observe that in some works focused on complex facial models,
such as the physically-based animation by [Sifakis et al. 2005], the

implementation of the facial animation platform is constrained to
a single character model where all tests are performed on. In fact,
if a facial animation prototype is focused only on its main research
subject, it becomes difficult the addition of new functionalities or its
use in other environments or applications. Concerning the project
of a facial animation platform, we can emphasize some require-
ments in order to obtain a robust and usable tool:

• A consistent set of face animation parameters, which allows
us to get a satisfactory control of face attributes in different
faces;

• Minimal need of animator manual work, such as preparing a
set of animation keyframes to be interpolated;

• Mesh-deformation algorithms which produce realistic repre-
sentation of facial muscle actions;

• An interface which can be understood both by computer and
humans, enabling them to determine or edit characters’ ac-
tions;

• The real possibility of easy incorporation of the animated
faces in other applications;

• A framework which enables interactivity with real time an-
imation generation, without the need of previously recorded
animations.

In this context, our work presents an interactive facial anima-
tion framework which considers facial expressions, synchronized
speech and eye behavior generation where the users define the char-
acters’ actions by high-level description and can use the produced
animations on different face models. Our goal is to develop a robust
facial animation platform that can be easily extended, scalable and
usable in order to allow integration of other research on the area
and also the direct incorporation of the characters in interactive ap-
plications such as ECAs and games. Our main contribution is the
methodology of building an animation platform using free or open
source tools, integrating some known animation models and capa-
ble of generating a substantial amount of different face actions in
good quality animations.

This paper is organized as follows: the next section presents some
related work. Section 3 describes the architecture of our model and
the main technologies and tools that we have used for development
of the framework. In Section 3.4 we describe a case study: an inter-
active application where a character reacts according to detection
of the user’s face. Finally we make some final remarks and suggest
future work in order to improve and evaluate our model.

2 Related Work

Parameterization techniques for facial animation have been an area
of active research since Parke [Parke 1982]. We can identify in the

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 151

Facial
Animation

Module

Lip-synchronization
Module

Facial Expressions
Module

FAPs
Synchronization

Face Actions
Scripts

Eye Behavior
Module

FAP File
(.fap)

FAPs

FAPs

FAPs

Animation Engine
FDL2FAP

Interactive
Module

Face
Tracking

Data

Figure 2: Overall architecture diagram of the framework

literature two standards of parameter sets that are widely used in
facial animation works: Facial Coding System (FACS) [Ekman and
Friesen 1978] and the MPEG-4 Facial Animation (MPEG-4 FA)
[Pandzic and Forchheimer 2003]. However, these standards provide
a rather low-level basis for animators, as they describe the param-
eters as a set of pseudo-muscles which can be activated in a given
moment, producing a facial expression (Subsection 3.3 overviews
the MPEG-4 FA). Hence there are several efforts to produce a more
high-level parametric approach to generate facial animations in a ef-
fective way [Perlin 1997; Cassell et al. 2001; Rutledge 2001; Byun
and Badler 2002; Carolis et al. 2004; Not et al. 2005; Arya and
DiPaola 2007].

In the bibliography, we can also find some works that describe their
facial animation frameworks, which aim to provide a desirable plat-
form for facial animation research or the development of talking
heads applications. Wang [Wang et al. 2007] describes a methodol-
ogy to build an expressive facial animation system with lip synchro-
nization using affordable off-the-shelf components. This include
the FaceGen Modeller1 software for face and key meshes genera-
tion, and the Microsoft Speech SDK 2 as the speech API.

Cosi [Cosi et al. 2005] proposes a facial animation toolkit imple-
mented in MATLAB3 created mainly to speed up the procedure for
building the LUCIA talking head [Cosi et al. 2007] through motion
capture techniques, translated to MPEG-4 parameters. Although
it seems to be a promising approach, it was built over proprietary
software.

DiPaola and Arya [DiPaola and Arya 2007] propose a facial an-
imation framework compatible with the MPEG-4 standard called
iFace, whose binaries are available on the web4. iFace allows in-
teractive non-verbal scenarios through a XML-based scripting lan-
guage called FML (Face Modeling Language) [Arya and DiPaola
2007], which allows both parallel and sequential description of face
actions. Face actions include talking, expressions, head movements
and low-level MPEG-4 parameters. Actually, iFace has been used
for behavioral animation studies in order to reach a comprehensive
association of facial actions to personality types, creating a higher-
level facial parameter set in a personality-space [Arya et al. 2006].

Balci et al. [Balci et al. 2007] designs Xface, a set of open source
tools for creation of talking heads using MPEG-4 and keyframe-
based animation driven by the SMIL-Agent scripting language. The
toolkit is freely available 5 and aims to supply the lack of free and
open source tools for research as mentioned above. However, Xface
uses the SMIL-Agent scripting language for its keyframe-based an-
imation module. In other words, for each face model it is necessary
a set of corresponding key-meshes with the different facial expres-
sions and visemes.

Our approach uses Xface as the facial animation engine and in-

1http://www.facegen.com/
2http://www.microsoft.com/speech/download/sdk51
3http://www.mathworks.com/
4http://ivizlab.sfu.ca/research/iface/
5http://xface.itc.it/

tegrates a model to generate MPEG-4 animation automatically
through facial actions scripts with lip synchronization [Rodrigues
2007] and eye behaviors [Queiroz et al. 2007], without the need of
keyframing meshes. Moreover, in our framework external controls
are possible in order to interactively define characters’ actions. As
a case study of the framework capabilities, we have developed a
simple application where the character eye movements are driven
by detection of the user’s face, in an approach slightly similar to
[Courty et al. 2003].

3 Model

This section presents the overall architecture of our framework, as
well the scripting language for the description of facial actions. We
also present the approach to animation synthesis and interactivity.

3.1 Architecture

The overall architecture of our framework is presented in Figure 2.
The input for the Animation Engine is a script file containing the
description of one or more facial actions. Our scripting language is
called FDL (Face Description Language) hence we name our script
files as FDL files. The Animation Engine interprets the facial ac-
tions within a FDL file and generates the animation according to
them. In the current stage of our research, the FDL files can de-
scribe a sequence of three types of high-level face actions: talk-
ing, facial expressions and eye behaviors. Each of these types of
face actions are independent, and the processing of them in our
Animation Engine is performed by three different modules: Lip-
Synchronization Module, Facial Expression Module and Eye Be-
havior Module. This provides the values of each MPEG-4 facial
animation parameter (FAP) corresponding to the desired facial ac-
tions through time. After this step, the FAPs Synchronization Mod-
ule receive the FAP values and resolves possible conflicts among
them, such as making the combination of facial expressions and
visemes. The output is a FAP file containing the final animation,
which can run on any MPEG-4 compliant player and with differ-
ent face models. Our Facial Animation Module uses Xface for the
facial animation synthesis (described in Subsection 3.3).

The Eye Behavior Module, whose architecture is illustrated in Fig-
ure 3 contains the implementation of [Queiroz et al. 2007] a model
for automatic generation of eye animation. This provides a set
of eye behaviors which can be used in combination with different
affective states. The model uses a known statistical model [Lee
et al. 2002] (Default Model) as a saccadic eye movement engine
and creates differentiated behaviors (Behavioral Database) through
changes in the gaze parameters, such as direction, magnitude and
interval between movements. Saccadic movements (or saccades)
are rapid movements of both eyes from one gaze position to an-
other [Lee et al. 2002].

Eye behaviors are described as high-level actions in FDL scripts.
When combined with facial expressions, they contribute for in-
creasing both the expressiveness and engagement in communica-

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 152

tion. The Expressive Gaze Generator receives descriptions of face
actions and returns the FAP values for each gaze generated accord-
ing to the specified eye behavior, also providing head and eyelids
movements according to the model rules. The Interactive Module,
described in Subsection 3.4, can provide the input eye behavior se-
quence (e.g. following the user face) in a interactive way.

Modelo
Padrão

Gerador de Olhares Expressivos

Behavioral
Database

Default
Model

Expressive Gaze Generator

Face Action
Script

(for eyes)

Eye Behavior
Module

FAPs

Figure 3: Diagram of the Eye Behavior Module

The job of the Facial Expression Module (Figure 4) is simpler:
currently, it only produces facial expressions predefined as a set of
FAP values in the Emotional Database, representing “pure” emo-
tions. But the framework can be easily extended, in order to allow
new facial expressions and algorithms to generate derived expres-
sions. The facial expressions are also described as facial actions in
the FDL language.

Base de Dados

Gerador de Olhares Expressivos

Emotional
Database

Facial Expression Generator
Face Actions

Script
(expressions)

Facial Expressions
Module

FAPs

Figure 4: Diagram of the Facial Expressions Module

The Lip Synchronization Module follows the methodology de-
scribed in [Rodrigues 2007]. Basically the module receives a sound
file (.wav) as input, containing the character speech and an auxil-
iary file containing its textual description. For the generation of lip
animation, we use the CSLU Toolkit 6 which aligns the sound file
with the textual description and provides a file with the timeline of
the phonemes through time. This file is the input for the Phoneme-
Viseme Mapping Module, which connects the phonemes to their vi-
sual representation (visemes), according to [Rodrigues 2007]. The
CSLU toolkit alignment script generates 41 English phonemes that
are mapped to the 14 visemes specified in the MPEG-4 standard.
There is also an auxiliary “viseme” we have called silence to rep-
resent the pauses in speech. After this step, we have the complete
timeline of visemes, whose mapping to FAPs are carried out in the
Viseme-FAP Mapping Module. In this stage the blending of visemes
(i.e. the transition between two visemes) is also performed. For this
transition, we apply a linear interpolation between them. Figure 5
illustrates the architecture of this module.

After the three modules of the Animation Engine have finished, the
FAPs Synchronization Module receives the output FAP values and
resolves possible conflicts among them. Meanwhile, our frame-
work solves three types of conflicts:

6http://cslu.cse.ogi.edu/toolkit/

Audio
File (.wav)

Auxiliar
Text

CSLU
Toolkit

Phoneme timeline
file (.phn)

Phoneme-Viseme
Mapping

Viseme-FAP
Mapping

Communication
Scripts

Lip-sync
Module

FAPs

Facial Actions
Script

Figure 5: Diagram of the Lip Synchronization Module

1. Viseme-Expression conflict: occurs mainly in mouth region
FAPs, when the facial expression includes mouth movement.
To solve this conflict, we blend the mouth FAP streams gener-
ated by the Facial Expression and Lip Synchronization mod-
ules, in a weighted sum of them. Pyun [Pyun et al. 2003]
proposes that the weights for different visemes and expres-
sions should variate according to the “importance” of them.
However, in the current stage our framework uses the same
weights for all combinations of expressions and visemes, as
shown in equation 1. Therefore, each final FAP (Fi) will be
generated through the weighted sum of both expression (Ei)
and viseme (Vi) FAPs.

Fi =
Ei

4
+

3Vi

4
(1)

2. Eyes-Expression conflict: the Eye Behavior Module generates
eyelid movements related with the gaze direction and shift
[Queiroz et al. 2007]. But some facial expressions also in-
clude the eyelids conformation. In such cases, we also make a
weighted sum, as in the Viseme-Expression conflict (25% for
eye behavior and 75% for expression FAPs)

3. Head control: during FDL processing, some eye behaviors
lead to head movements. If that happens, the Eye Behavior
Module signals the FAPs Synchronization Module, which in
turn preserves the generated head FAPs. If there are no head
movements, then our framework provides an implementation
of Perlin Noise [Perlin 1985] to generate subtle head move-
ments instead of none, in order to approach a more realistic
head behavior.

We also include in our framework a more generic module we named
Interactive Module which is a hotspot to enable the inclusion of in-
teractive events detection and automatic generation of animation
with their respective characters’ responses in runtime. Through
this module, we can incorporate Virtual Reality approaches (e.g.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 153

through Computer Vision techniques), emotional models which
lead to facial expressions, Natural Language Processing techniques
to verbal or textual communication (e.g. a chat), and such. We can
also define rules of the interactivity of two or more virtual agents in
a simulation or game application.

3.2 Facial Description Language

In our previous work [Queiroz et al. 2007], we have encoded our
face actions as a high-level parameterized set of commands in Lua7

scripts we called Facial Description Language (FDL). We opted to
use Lua as auxiliary scripting language instead of XML-like nota-
tions (as SMIL-Agent and FML) for two reasons: i) Lua syntax is
clearer and its structure helps intuitively to understand the sequenc-
ing of actions; and ii) it is a powerful way to easily incorporate new
functionalities in the framework.

Our approach describes each expression, viseme or eye behavior as
a facial action which is triggered by script files supplied by an inter-
active application, or simply selected by an user. These script files
describe one or more face actions, which are interpreted, processed
and translated to low-level MPEG-4 Facial Animation Parameters
(FAPs). The main script file contains the information about the
speech (sound and text file names) and the scripts with the eye be-
havior and expressions “storyboard”, as shown below. If there is no
speech in the desired animations, the speechSound and speechText
fields should be filled with the "none" string value.

FDL = {
speakSound = "hastalavista.wav",
speakText = "hastalavista.txt",
expressionScript = "expressions.sb",
head = "default",
eyesScript = "eyes.sb",
output = "animation",

}

A sequence of facial expressions can be described as the script be-
low, which informs the desired expressions through time, with their
respective duration times in frames. The example shows some of
the facial expressions which are part of our Emotional Database.

expressions = {
{"joy", 100},
{"sadness",100},
{"surprise", 100},
{"anger", 50},
{"disgust",50},
{"fear",100},
{"trust",100},
{"tongueout",100},
{"inlove",100},
{"worry",100},
{"sleepy",100},

}

Similarly, the eye behavior sequence can be described as the exam-
ple below. The set of eye behaviors description and its parameters
are the same of GDL (Gaze Description Language) files of [Queiroz
et al. 2007] adding the “pursuit” behavior we describe in Section 4
in order to generate the eyes pursuit movement.

eyes = {
{"lookTo","left",17.0,"yes",50},
{"lookTo","upleft",10.0,"yes",150},
{"lookTo","up",15.0,"no",150},
{"lookTo","upright",7.0,"yes",50},
{"lookTo","right",15.0,"yes",50},
{"lookTo","downright",12.0,"no",50},
{"lookTo","down",12.0,"yes",50},
{"lookTo","downleft",12.0,"yes",50},
{"default", "talking", 0.9, 500},
{"concentration", 0.01,50},
{"discomfort", 0.99, 0.6,500},
{"distress", 0.5,400},
{"ironic", 0.5,50},

}

As we show above in the first FDL script, we generate mouth speech
animation automatically through a sound file and its textual de-
scription. After the phoneme-viseme mapping, our system gener-
ates a FDL script such as example below, which is processed by
the Viseme-FAP Module. This type of script can be alternatively

7http://www.lua.org

used for, e.g. the output of other speech-processing system, or
even edited manually. Following the same syntax of the other FDL
scripts, it describes the sequence of visemes through time.

Sentence = {
{"silence", 11},
{"A", 6},
{"kg", 1},
{"Q", 1},
{"nl", 3},
{"sz", 3},
{"I", 6},
{"A", 2},
{"silence", 27},

}

3.3 Animation Platform

Our framework follows the MPEG-4 Facial Animation standard for
face and animation parameterization. The MPEG-4 FA describes
the steps for creation of an animated face by definition of a set of
parameters in a standardized way. First, MPEG-4 defines 84 feature
points (the FPs - see Figure 6) placed on a character head, which in
turn define animation parameters, as well as calibrating the models
when they are exchanged between different players.

Figure 6: MPEG-4 Feature Points

In the standard, 68 values (the Facial Animation Parameters, or
FAPs) define the deformation between two frames of animation.
The first two suit a framework with high level parameters, repre-
senting visemes and the six basic emotions defined by Ekman [Ek-
man 1999]. The next ones deal with specific regions on the face,
as left eyebrow, right corner lip, tongue tip, etc. FAP values are
independent of model geometry. For this reason, FAPs have to be
calibrated prior to use on a face model. This is done using Face An-
imation Parameter Units (FAPU, illustrated in Figure 7) which are
defined as fractions of distances between key facial features. More-
over, the information about the 3D model is provided through the
Facial Definition Parameters (FDPs) which allow one to configure
the 3D facial model to be used at the receiver, either by adapting
a previously available model or by sending a new model. The new
or the adapted model is then animated by means of FAPs [Abrantes
and Pereira 1999; Balci 2004].

Each model geometry has its own FAPU and every FAP value is

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 154

calibrated by a corresponding FAPU value as defined in the stan-
dard. Together with FPs, they serve to achieve independence of the
face model for MPEG-4 players [Balci 2004]. Figure 8 illustrates
the FAP file format, which can be read by any MPEG-4 compliant
player.

Figure 7: MPEG-4 FAPU

We use Xface as the MPEG-4 FA engine which plays the FAP an-
imation generated by the Animation Engine Module. The Xface
toolkit is implemented in C++ using the OpenGL API and incorpo-
rates four pieces of software [Balci et al. 2007]: i) the Xface core
library, which enables the developers to embed 3D facial animation
into their applications; ii) XfaceEd, an authoring tool to generate
MPEG-4 parameterized meshes; iii); Xface Player, a sample appli-
cation that demonstrates the toolkit in action; and iv) XfaceClient,
which allows remote network control of XfacePlayer. Our Fa-
cial Animation framework module is implemented over the Xface-
Player, adding a FDL loader function and integrated to the Interac-
tive Module, as we describe in Subsection 3.4. Our 3D face mod-
els were generated in FaceGen Modeller, and body and hair was
modeled by artists. Our faces were parameterized according to the
MPEG-4 standard using the XfaceEd tool. XfaceEd generates a
configuration file containing FAPU and FDP data, which are read
by XfacePlayer to open a face model.

Generated_by_FDL2FAP 25 100

0 0 1 1 1 1 1 1 1 ... 0 1

0 0 -24 10 17 17 -24 -24 ...

0 0 1 1 1 1 1 1 1 ...

1 0 10 10 0 0 10 10 ...

...

0 0 1 1 1 1 1 1 1 ...

99 0 -10 10 0 0 -10 -10 ...

Frame rate Number of frames

Frame 0

Frame 1

Frame 99

Streams of 68 FAPs

Bit mask: FAPs used in frame
Used FAPs values in frameFrame

number

Figure 8: FAP file scheme

Figure 1 illustrates the visual results during the performance of
some scripted expressive talks. The 3D model independence of
our generated animations is illustrated in Figure 9, which shows
our two different characters performing the same facial expressions
(i.e. playing the same generated FAP file for both characters).

3.4 Interactivity

In our prototype, we can currently generate new animations by two
ways:

• loading FDL files, which calls the FDL processing routines
and then runs the generated FAP file; or

• enabling our Interactive Module to detect events and generate
runtime specific FDL/FAP files with the respective character
responses for these events.

The next section presents a case study in which our framework
was extended to an interactive application using a Computer Vision
technique to drive the animation of a character’s eye.

Figure 9: Performance of facial expressions by two different char-
acters in our system.

4 A Case Study: Following Faces

As we described in the previous sections, a robust facial animation
platform should be extensible enough to allow the developers to
build its applications in an effective way. When referring to facial
animation, we see that many applications need automatic runtime
generation of animation generation, in order to produce coherent
characters’ reactions throughout the interaction with other agents
or users.

In order to provide support for these features, we have extended our
framework with the Interactive Module and created an interactive
application that generates eye motion driven by Computer Vision
techniques. Specifically, our interactive application presents a vir-
tual character, which follows the user’s face through gaze behavior.
The module that detects and tracks the user’s face employs the face

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 155

detection method provided by the OpenCV8 Computer Vision li-
brary as a starting point [Viola and Jones 2001].

The face tracker runs on a separate thread, hence face detection
data is readily available. The OpenCV detection function returns
the location and the face radius (in pixels) of all recognized faces,
but at this moment we consider just the face which is closest to the
virtual character, i.e. the face with the largest radius. Based on this
information, the direction and magnitude (angle of eyeball rotation)
of the virtual character’s eyes are calculated as follows:

1. Obtain x and y coordinates from the face tracker for the clos-
est face. These coordinates are converted to the range [−1, 1]
(zero being the center of the camera image).

2. Determine gaze direction independently for x and y:

• If x < −0.1 we assume that the face is towards the
right side of the camera image. This is 10% of the right
half size, so very small face movements will not cause
any change in the eye direction. Note that the meaning
is reversed, as the camera image is normally mirrored.

• Likewise, if x > 0.1 then the face is towards the left
side of the camera image. The process is carried out
similarly for y.

3. Now to determine the direction, we just combine the vertical
and horizontal information. This produces one out of eight
discrete directions (up, up and left, left, etc).

4. Finally, the magnitude is computed through the Euclidean dis-
tance of the face to the center of the camera image, scaled by
a factor of 20. This produces roughly 12-15 degrees of hori-
zontal and vertical rotation, as the face tracker does not return
coordinates for faces that are very close to the edges of the
screen, as there is not enough data.

After that, these parameters are used to generate an eye behavior
FDL script file, which is processed by the Animation Engine Mod-
ule. Note that there is a single computation for both eyes: we as-
sume, for the purposes of this test application, that the user will
never get too close to the camera, thus the virtual character eyes
will never need to converge inwards.

In order to make the virtual character’s gaze follow the user’s face,
a new gaze behavior was implemented. This behavior (called pur-
suit), allows eyeball rotation without returning to a central position,
allowing continuity between eye’s face actions. Pursuit movements
occur when the eyes follow a moving object, either voluntarily or
involuntarily. They are quite different from saccadic movement:
they are smooth, slower and have a smaller latency [Lee et al. 2002].
After each face detection, a FDL script is generated, as shown in the
example below:

eyes = {
{"pursuit","right",17.0,"yes",50},
}

The parameters recognized by the pursuit behavior are the follow-
ing:

• gaze direction (2D rotation axis), described in a textual rep-
resentation as eight discretized directions (such as 0◦, 45◦,
90◦as “left”, “upleft”,“right”). The use of this discretized val-
ues is inherited of the Default Model implementation of the
model developed by [Lee et al. 2002];

• magnitude angle of eyeball rotation;

• a yes/no value indicating if the head should follow eye move-
ment or not;

• duration (in frames).

Figure 10 illustrates our “Following Faces” application.

8http://sourceforge.net/projects/opencvlibrary/

5 Final Remarks

This paper presents an interactive facial animation framework
which considers facial expressions, synchronized speech and eye
behavior generation where the users define the characters’ actions
by high-level description. For animation generation, we follow the
MPEG-4 Facial Animation standard. Consequently, the generated
animations can be used in different face models. We also present a
case study that incorporates Computer Vision techniques in a sim-
ple Virtual Reality application, in which character’s interacts with
user following his/her face with gaze behavior. This application
shows that our Interactive Module is promising for the incorpora-
tion of different events and runtime interactive issues.

As future work, we aim to:

• improve the Facial Expression Module;

• provide head control, also allowing independent head motion
as facial actions (head behaviors);

• support visemes from other languages;

• incorporate a GUI tool for editing facial actions in an easier
way;

• evaluate some framework features with subjects.

In summary, our visual results show that in the current stage of de-
velopment, our approach is promising, since our framework allows
the integration of other research on the area and also provides in-
teractive control of characters for applications such as ECAs and
games.

Acknowledgements

This work was developed in collaboration with HP Brazil R&D.
Thanks to Prof. Avelino Zorzo for providing his pictures.

References

ABRANTES, G., AND PEREIRA, F. 1999. Mpeg-4 facial animation
technology: survey, implementation, and results. Circuits and
Systems for Video Technology, IEEE Transactions on 9, 2 (Mar),
290–305.

ARAFA, Y., AND MAMDANI, A. 2002. Multi-modal embod-
ied agents scripting. Multimodal Interfaces, IEEE International
Conference on 0, 454.

ARYA, A., AND DIPAOLA, S. 2007. Face modeling and animation
language for mpeg-4 xmt framework. Multimedia, IEEE Trans-
actions on 9, 6 (Oct.), 1137–1146.

ARYA, A., JEFFERIES, L. N., ENNS, J. T., AND DIPAOLA, S.
2006. Facial actions as visual cues for personality: Research
articles. Comput. Animat. Virtual Worlds 17, 3-4, 371–382.

BALCI, K., NOT, E., ZANCANARO, M., AND PIANESI, F. 2007.
Xface open source project and smil-agent scripting language
for creating and animating embodied conversational agents. In
MULTIMEDIA ’07: Proceedings of the 15th international con-
ference on Multimedia, ACM, New York, NY, USA, 1013–1016.

BALCI, K. 2004. Xface: Mpeg-4 based open source toolkit for 3d
facial animation. In AVI ’04: Proceedings of the working confer-
ence on Advanced visual interfaces, ACM Press, New York, NY,
USA, 399–402.

BYUN, M., AND BADLER, N. I. 2002. Facemote: qualitative para-
metric modifiers for facial animations. In SCA ’02: Proceedings
of the 2002 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, ACM, New York, NY, USA, 65–71.

CAROLIS, B. D., PELACHAUD, C., POGGI, I., AND STEEDMAN,
M. 2004. Apml, a mark-up language for believable behavior
generation. H. Prendinger, ed., Life-like Characters., 65–85.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 156

Figure 10: Snapshots showing our application following user faces. The top right window shows the detection of the user’s face.

CASSELL, J., VILHJÁLMSSON, H. H., AND BICKMORE, T. 2001.
Beat: the behavior expression animation toolkit. In SIGGRAPH
’01: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, ACM, New York, NY,
USA, 477–486.

COSI, P., DRIOLI, C., TESSER, F., AND TISATO, G. 2005. Inter-
face toolkit: a new tool for building ivas. 75–87.

COSI, P., MAGNOCALDOGNETTO, E., AND TISATO, G.
2007. Emotional talking head: The development of
“lucia”. In CD Proceedings Workshop “Toni Mian”.
Available in http://www2.pd.istc.cnr.it/Papers/
PieroCosi/cp-TONI2007.pdf.

COURTY, N., BRETON, G., AND PELÉ, D. 2003. Embodied in
a look: Bridging the gap between humans and avatars. In IVA,
111–118.

DE ROSIS, F., PELACHAUD, C., POGGI, I., CAROFIGLIO, V.,
AND CAROLIS, B. D. 2003. From greta’s mind to her face:
modelling the dynamics of affective states in a conversational
embodied agent. Int. J. Hum.-Comput. Stud. 59, 1-2, 81–118.

DIPAOLA, S., AND ARYA, A. 2007. A framework for socially
communicative faces for game and interactive learning applica-
tions. In Future Play ’07: Proceedings of the 2007 conference
on Future Play, ACM, New York, NY, USA, 129–136.

EKMAN, P., AND FRIESEN, W. 1978. Facial Action Code System.
Consulting Psychologists Press, Inc., Palo Alto, CA.

EKMAN, P. 1999. Facial expressions. In Handbook of Cognition
and Emotion, Dalgleish and M. Power, Eds. John Wiley & Sons,
ch. 16.

HUANG, H.-H., NISHIDA, T., CEREKOVIC, A., PANDZIC, I. S.,
AND NAKANO, Y. 2008. The design of a generic framework
for integrating eca components. In AAMAS ’08: Proceedings of
the 7th international joint conference on Autonomous agents and
multiagent systems, International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 128–135.

LEE, S. P., BADLER, J. B., AND BADLER, N. I. 2002. Eyes alive.
In SIGGRAPH ’02: Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, ACM Press,
New York, NY, USA, 637–644.

NOT, E., BALCI, K., PIANESI, F., AND ZANCANARO, M. 2005.
Synthetic characters as multichannel interfaces. In ICMI ’05:
Proceedings of the 7th international conference on Multimodal
interfaces, ACM, New York, NY, USA, 200–207.

PANDZIC, I. S., AND FORCHHEIMER, R., Eds. 2003. MPEG-4
Facial Animation: The Standard, Implementation and Applica-
tions. John Wiley & Sons, Inc., New York, NY, USA.

PARKE, F. 1982. Parameterized models for facial animation. IEEE
Computer Graphics and Applications 2, 9, 61–68.

PERLIN, K. 1985. An image synthesizer. SIGGRAPH Comput.
Graph. 19, 3, 287–296.

PERLIN, K. 1997. Layered compositing of facial expression. In
ACM SIGGRAPH - Technical Sketch.

PYUN, H., KIM, Y., CHAE, W., KANG, H. W., AND SHIN,
S. Y. 2003. An example-based approach for facial expres-
sion cloning. In SCA ’03: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
167–176.

QUEIROZ, R. B., BARROS, L. M., AND MUSSE, S. R. 2007.
Providing expressive gaze to virtual animated characters in in-
teractive applications. In SBGames 2007, vol. 1, 197–206.

RODRIGUES, P. S. L. 2007. Um Sistema de Geração de Expressões
Faciais Dinâmicas em Animações Faciais 3D com Processa-
mento de Fala. PhD thesis, Pontifícia Universidade Católica do
Rio de Janeiro.

RUTLEDGE, L. 2001. Smil 2.0: Xml for web multimedia. Internet
Computing, IEEE 5, 5 (Sep/Oct), 78–84.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 157

SIFAKIS, E., NEVEROV, I., AND FEDKIW, R. 2005. Automatic
determination of facial muscle activations from sparse motion
capture marker data. ACM Trans. Graph. 24, 3, 417–425.

SMID, K., PANDZIC, I., AND RADMAN, V. 2004. Autonomous
speaker agent. Proceedings of Computer Animation and Social
Agents Conference (CASA’04) (July).

VILHJÁLMSSON, H., CANTELMO, N., CASSELL, J., CHAFAI,
N. E., KIPP, M., KOPP, S., MANCINI, M., MARSELLA, S.,
MARSHALL, A. N., PELACHAUD, C., RUTTKAY, Z., THÓRIS-
SON, K. R., VAN WELBERGEN, H., AND VAN DER WERF, R. J.
2007. The behavior markup language: Recent developments and
challenges. In Intelligent Virtual Agents. Springer Link.

VIOLA, P., AND JONES, M. 2001. Rapid object detection using a
boosted cascade of simple features. Computer Vision and Pattern
Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on 1, I–511–I–518 vol.1.

WANG, A., EMMI, M., AND FALOUTSOS, P. 2007. Assembling
an expressive facial animation system. In Sandbox ’07: Proceed-
ings of the 2007 ACM SIGGRAPH symposium on Video games,
ACM, New York, NY, USA, 21–26.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 158

Um Algoritmo Evolutivo para Aprendizado On-line em Jogos
Eletrônicos

Marcio Kassouf Crocomo Eduardo do Valle Simões

Laboratório de Robótica Móvel, Universidade de São Paulo, Brasil

Figura 1: Imagem do jogo produzido

Abstract

Abstract. The goal of this work is to verify if it is
possible to apply Evolutionary Algorithms to on-line
learning in computer games. Some authors agree that
evolutionary algorithms do not work properly in that
case. With the objective of contesting this affirmation,
this work was performed. To accomplish the goal of
this work, a computer game was developed, in which
the learning algorithm must create intelligent and
adaptive strategies to control the non-player characters
using an evolutionary algorithm. Therefore, the aim of
the evolutionary algorithm is to adapt the strategy used
by the computer according to the player’s actions
during the game. A review on Evolutionary
Computation and the techniques used to produce
intelligent behaviors for the computer controlled
characters in modern game is presented, exposing the
advantages, the problems and some applications of
each technique. The proposed game is also explained,
together with the implemented algorithms, the
experiments and the obtained results. Finally, it is
presented a comparison between the implemented
algorithm and the Dynamic Script technique. Thus, this
work offers contributions to the fields of Evolutionary
Computation and Artificial Intelligence applied to
games.

Keywords: games, Evolutionary Algorithms,
Artificial Intelligence, online adaptation.

Authors’ contact:
marciokc@gmail.com
simoes@icmc.usp.br

1. Introdução

Nos últimos anos, muita ênfase foi dada ao realismo
dos jogos eletrônicos, fazendo surgir uma variedade de

motores gráficos, físicos, de áudio e de Inteligência
Artificial (IA) [Bittencourt e Osório 2006]. Grandes
esforços foram empregados principalmente na
ambientação gráfica utilizada. Porém, já há algum
tempo, a previsão para o mercado de jogos era a de que
o seu próximo foco seria nos personagens que se
comportam de forma realista e podem aprender e se
adaptar, ao invés de personagens com maiores
resoluções e com mais quadros por segundo [Sweetser
2002]. Atualmente, é possível observar essa
tendência em empresas que possuem jogos que têm se
destacado pela qualidade de sua IA, como Black &
White1 e The Sims2.
 Máquinas de estado finito, nesse contexto, vêm
sendo empregadas na elaboração das estratégias
utilizadas pelo computador com uma freqüência maior
do que outros métodos nos jogos atuais [Ponsem
2004]. Isso se deve ao fato de serem fáceis de
implementar e geralmente suficientes para atingir o
propósito desejado. No entanto, essa técnica torna
previsível a estratégia utilizada pelo computador. Uma
alternativa promissora para contornar os
comportamentos previsíveis é a utilização de
Algoritmos Evolutivos (AEs) [Yannakakis 2005].
 Os AEs possuem diversas aplicações em jogos
[Yannakakis 2005], como por exemplo, adaptar as
estratégias utilizadas pelo computador àquelas
utilizadas pelo usuário, encontrar caminhos e evoluir
comportamentos de personagens controlados pelo
computador. Apesar das possibilidades de suas
aplicações serem numerosas, os AEs encontram
resistência em serem utilizados pelos desenvolvedores
de jogos. Alguns autores afirmam que essa técnica
(assim como a técnica de Redes Neurais Artificiais)
permite a obtenção de comportamentos “não

1 Lionhead Studios. Black & White 2. Disponível em:
<http://www.lionhead.com/bw2/>. Acesso em: 16 ago. 2007.
2
 Eletronic Arts. The Sims. Disponível em: <http://thesims.ea.com/>. Acesso

em: 16 ago. 2007.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 159

aceitáveis” durante o processo de aprendizado dos
personagens [Ponsem 2004]. Entre esses autores,
Spronck [2004] afirma que AEs não são uma
alternativa que funcione na prática para o aprendizado
on-line em jogos, por não satisfazerem os critérios de
eficiência e efetividade necessários. Este artigo é uma
resposta a essas afirmações, pois propõe um AE que
satisfaça esses requisitos.
 Dessa forma, é esperado com este trabalho
contribuir para o campo de IA em jogos respondendo a
pergunta: É possível construir um AE para o
aprendizado on-line de jogos que possa ser utilizado na
prática, por satisfazer os requisitos de rapidez,
efetividade, robustez e eficiência?

2. Trabalhos Relacionados

Diversos trabalhos envolvendo IA em jogos podem ser
encontrados, utilizando técnicas como, por exemplo,
Lógica Fuzzy, Flocking, Árvores de Decisão,
Máquinas de Estado Finito, Scripting, RNAs e AEs.
Uma revisão do uso destas técnicas em jogos pode ser
encontrada em [Sweetser 2002]. Com relação ao
aprendizado em jogos, o mesmo pode ocorrer de duas
formas: on-line e off-line [Spronck et al. 2004]. O
aprendizado off-line é aquele onde não é necessária
uma interação com o usuário, podendo ocorrer até
mesmo antes do jogo ser lançado. Por sua vez, o
aprendizado on-line permite que no decorrer do jogo, a
adaptação da estratégia utilizada pelo computador em
relação ao comportamento do jogador. Spronck et al.
[2004] afirma que AEs não satisfazem os dois últimos
dos quatro requisitos apontados por ele como
necessários no aprendizado on-line e, por isso, não são
candidatos a serem utilizados nesses jogos. Os
requisitos levantados por esse autor são:
• Rápido: o algoritmo de aprendizado deve ser
computacionalmente rápido, pois é realizado durante a
execução. Dessa forma, um algoritmo lento atrapalha o
desempenho do jogo.
• Robusto: o mecanismo de aprendizado deve
suportar uma quantidade de aleatoriedade significativa,
normalmente presente nos jogos comerciais.
• Efetivo: as estratégias adaptadas devem ser pelo
menos tão desafiadoras quanto as programadas
explicitamente. P. Spronck afirma que este requisito
exclui métodos de aprendizado aleatórios, como os
AEs, pois permitem a geração de estratégias muito
ruins para serem utilizadas contra o jogador.
• Eficiente: um pequeno conjunto de testes deve ser
suficiente para que o aprendizado ocorra. P. Spronck
diz que este requisito exclui técnicas de aprendizado
lento, como RNAs, AEs e Aprendizado por Reforço,
pois tomariam muito tempo dos jogadores para
poderem ajustar suas estratégias.
 No trabalho de Spronk et al. [2004] é afirmado que
AEs e Redes Neurais não são técnicas utilizáveis na
prática para a obtenção de um bom aprendizado on-line
em jogos e uma técnica chamada Dynamic Scripting
(DS) é proposta como alternativa. Como um contra-
exemplo para tal afirmação, o trabalho de Stanley et al.

[2005] descreve um jogo que utiliza RNA em seu
aprendizado on-line, demonstrando com sucesso a
viabilidade de utilização prática dessa técnica. Tal
trabalho ganhou o título de melhor artigo no CIG
(IEEE Symposium on Computational Intelligence and
Games) 2005. Em um trabalho desenvolvido
anteriormente, um AE utilizado no aprendizado on-line
apresentou o critério de eficiência, no entanto não o de
efetividade [Crocomo et. al 2005].

3. O Jogo Desenvolvido

O jogo implementado segue o modelo do simulador
elaborado para a realização dos experimentos de
Spronck et al. [2004]. Nesse jogo, o jogador será
responsável pela estratégia de quatro personagens,
contra quatro personagens controlados pelo
computador. O jogo é um simulador das batalhas que
ocorrem em jogos de RPG do estilo Baldur’s Gate3.
Esse estilo utiliza os sistemas de jogos mais complexos
encontrados em RPGs eletrônicos.

O jogo ocorre com o encontro de dois grupos de
personagens. Cada um desses grupos (um controlado
pelo computador e outro pelo jogador) é composto por
dois personagens magos e dois guerreiros. O
equipamento dos personagens é estático. Cada
personagem possui duas poções mágicas dentre as três
possíveis e cada mago possui sete magias de um total
de 21 possíveis. As magias existentes são de variados
tipos, como, por exemplo, maldições, invocações,
danos e bênçãos.

Cada um dos personagens possui as ações que serão
tomadas representadas por scripts compostos por cinco
regras para um guerreiro (selecionadas de uma base
contendo 20 regras) e 10 regras para um mago
(selecionadas de uma base de 50 regras). A Tabela I
mostra o exemplo de um script de guerreiro, no qual
cada linha representa uma regra.

Tabela 1 – Exemplo de um script

Ação Alvo Condições
Beber Poção
de Cura

Próprio
personagem

Pontos de vida < 50% e
personagem possuir poção

Beber Poção
contra
Paralisação

Próprio
personagem

Personagem estar
paralisado e possuir poção

Atacar Oponente com
condição
paralisado

Existir oponente com
condição paralisado e
personagem não estar
paralisado

Atacar Mago mais
próximo

Existir mago oponente
vivo e personagem não
estar paralisado

Atacar Oponente com
menor saúde

Personagem não estar
paralisado

 Quanto mais acima na tabela, maior a
prioridade da regra: a cada turno, o guerreiro
controlado pelo script da Tabela I testa as condições de

3
 BIOWARE. Baldur´s Gate. Disponível em:

<http://www.bioware.com/games/baldurs_gate/>. Acesso em: 16 ago. 2007.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 160

sua primeira regra. Caso elas sejam satisfeitas, a ação
da regra é executada. Caso contrário, são testadas as
condições da próxima regra. Esse procedimento se
repete até que alguma ação seja executada. No caso de
nenhuma ação poder ser executada, a ação de “passar o
turno” entra em execução (isso significa que o
personagem abre mão de seu movimento).

As regras que compõem os scripts são formadas a
partir de cinco ações básicas: atacar, beber uma poção,
se mover, executar uma magia ou passar a vez. O
conjunto contendo quatro scripts (dois para magos e
dois para guerreiros) constitui uma estratégia a ser
usada por um time. Dois times são colocados no
mesmo ambiente e entram em combate utilizando, cada
um, sua respectiva estratégia. Quando um time fica
sem personagens vivos, é considerado derrotado. Se o
time do jogador vencer o time controlado pelo
computador, um novo time é criado para dar
continuidade ao jogo, resultando em uma próxima
batalha.

3.1 O Algoritmo Evolutivo Proposto

O AE proposto possui como cromossomos as
estratégias de comando de um time composto por
quatro personagens: dois guerreiros e dois magos (um
conjunto de quatro scripts). Cada regra que compõe
esses scripts é considerada um parâmetro do
cromossomo sendo avaliado, resultando em um total de
30 regras por cromossomo: 5 para cada guerreiro e 10
para cada mago. O cromossomo descrito pode ser visto
na Figura 2.

Figura 2: O cromossomo proposto

 A população evoluída é composta por quatro
cromossomos. O funcionamento do AE proposto é
composto por três etapas básicas: geração da população
inicial, teste dos indivíduos no ambiente e geração de
uma nova população. A Figura 3 ilustra o
funcionamento do algoritmo.

Figura 3: Funcionamento do Algoritmo Evolutivo

 Na Etapa 1, é gerada a população inicial contendo
quatro cromossomos. Para cada um dos quatro
membros da população, são geradas oito estratégias de
jogo selecionando-se de forma aleatória as regras para
os scripts. É realizado um torneio entre essas
estratégias, como ilustra a Figura 4, e a estratégia
vencedora é o cromossomo inicial do correspondente
membro da população. Os confrontos realizados entre
essas estratégias ocorrem colocando as duas para

combater no ambiente de jogo em background, ou seja,
esse confronto não é visto pelo usuário do jogo. Com a
finalidade de gerar os quatro indivíduos da população
inicial, são realizados quatro torneios de estratégias,
como o mostrado pela Figura 4. Essa Etapa não
compromete o desempenho do jogo, pois ocorre antes
das partidas com o usuário começarem.

Figura 4: Torneio entre oito estratégias (geradas
aleatoriamente). A vencedora irá compor um dos quatro

indivíduos da população inicial.

 Na Etapa 2, ocorre o confronto entre as estratégias
da população sendo evoluída com a estratégia do
jogador. Os seguintes procedimentos são realizados:
1. O valor aptidão de cada cromossomo é iniciado

como –1, significando que os cromossomos ainda não
possuem um valor de aptidão. É selecionado o
primeiro cromossomo da população.

2. Os scripts que compõem o cromossomo são
utilizados para controlar o grupo de personagens do
computador.

3. Ocorre uma batalha entre os personagens do
computador e os personagens do jogador. Após o
término da batalha, calcula-se uma pontuação para a
estratégia utilizada pelo computador, dada pela
função de aptidão do grupo: Fit(p), representada pela
Equação 1 a seguir.

}{
{ }0)(|

0)(|

)(

)(
125,05,0

)(

)(
125,05,0

)(
>∈∃
≤∈∀

+

−
=

∑

∑

∈

∈

nhpn

nhpn

nH

nh
mH

mh

pFit

pn

om

Equação 1

sendo:
• F(p): Função de aptidão do grupo p

• H(n): Saúde total do personagem n

• h(n): saúde restante do personagem n após a
batalha (número natural entre 0 e H(n))

 A aptidão do grupo possui um valor real no
intervalo [0,1]. É 0 se o grupo perdeu a luta e 0,5 mais
a metade da média da percentagem de saúde restante
dos personagens do time.
4. Caso a estratégia do computador tenha sido

vitoriosa, a mesma estratégia é mantida para a
próxima batalha (retorna para o procedimento 3).

5. Caso o computador tenha sido derrotado pelo
jogador, o indivíduo com o cromossomo responsável
pela estratégia utilizada recebe um valor de aptidão
(fitness) igual à média aritmética das pontuações
obtidas por sua estratégia no procedimento dois, dada
pela Equação 2 abaixo:

R1 ... R5 R1 ... R5 R1 ... R10 R1 ... R10

Guerreiro 1 Guerreiro 2 Mago 1 Mago 2

Etapa 1
Gera população

inicial

Etapa 2
Teste dos

indivíduos no
ambiente

Etapa 3
Geração de uma
nova população

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 161

n

x
japtidão

n

i
i∑

== 1][
 Equação 2

 sendo:
• j: cromossomo sendo avaliado

• aptidão[j] : valor de aptidão do cromossomo j

• n: número de vitórias + 1 (número de batalhas
utilizando a estratégia de j)

• xi: pontuação obtida na i-ésima batalha dada
pela Equação 1

6. Se ainda houver um cromossomo na população sem
um valor de aptidão (aptidão = -1), então retorna para
o procedimento 2, testando o cromossomo em
questão. Caso contrário, a etapa dois chega ao fim.

 Após todos os indivíduos serem avaliados, é
executada a etapa 3, com o objetivo de aproveitar as
estratégias que obtiveram maior sucesso para gerar
uma nova população, da qual é esperado um maior
potencial para superar a estratégia utilizada pelo
jogador. Para se gerar a nova população, é inicialmente
utilizado o elitismo [Bramlette 1991] como técnica de
seleção, escolhendo o melhor indivíduo da população
atual, isto é, o indivíduo com maior valor de aptidão
(chamado de “pai” da população). Após o “pai” da
população ser selecionado, o operador evolutivo de
crossover [Bramlette 1991] é responsável por
determinar três cromossomos da nova população, tendo
50% de chance de receber o valor do cromossomo do
“pai” e 50 % de chance de receber o valor do
cromossomo antigo; o quarto cromossomo é
exatamente igual ao cromossomo do “pai”.

Após realizado o crossover, cada parâmetro do
cromossomo resultante possui 5% de chance de ser
substituído por uma regra aleatória que não pertença ao
script em questão. Após a nova população ter sido
gerada, a mesma é avaliada chamando novamente a
etapa dois. O laço entre as etapas dois e três (Figura 3)
representa a capacidade de adaptação do algoritmo,
presente durante todo o jogo. O laço só termina no
momento em que o jogo for encerrado pelo jogador.

3.2 Os experimentos

Com a finalidade de responder a questão apresentada
ao final do capítulo 1 (Introdução), é necessário
verificar se o AE implementado durante o trabalho
apresenta os quatro requisitos para um aprendizado on-
line utilizável na prática: Rápido, Efetivo, Robusto e
Eficiente. O AE proposto foi projetado de maneira a
cumprir pelo menos três dos requisitos:

• Rápido: o AE proposto é rápido, pois funciona
entre as batalhas exigindo apenas uma pequena
quantidade de operações lógicas e aritméticas. Desta
forma a próxima batalha é rapidamente carregada, sem
que o processamento feito pelo computador seja notado
pelo usuário, ou seja, o jogador não precisa ficar

esperando uma grande quantidade de processamento
para continuar jogando.

• Robusto: o AE proposto é robusto, pois nenhuma
regra é excluída em momento algum, ou seja, todas as
regras podem voltar a ser utilizadas em algum
momento do jogo devido ao operador evolutivo de
mutação. Desta forma, mesmo que uma regra seja
prejudicada devido ao estilo de um jogador, a mesma
não é excluída permanentemente. Ela poderá
reaparecer devido à mutação e caso o jogador mude de
estratégia, ela poderá ter um efeito positivo na
pontuação, sendo incorporada na população de scripts.

• Efetivo: P. Spronck afirma que AEs são incapazes
de garantir que as soluções geradas sejam pelo menos
tão desafiadoras quanto soluções projetadas
manualmente [Spronck et al. 2004]. No entanto,
também afirma que a técnica DS desenvolvida sempre
produz soluções pelo menos tão desafiadoras quanto
aquelas projetadas manualmente, por utilizar regras
baseadas em domínio de conhecimento (as regras
pertencentes à base de regras são projetadas
manualmente) [Spronck et al. 2004]. O AE proposto
neste trabalho possui como função realizar a seleção de
regras também baseadas em domínio de conhecimento.
Sendo assim, utilizando a mesma argumentação de P.
Spronck, o AE proposto também cumpre o requisito de
ser efetivo.

Foi necessário realizar experimentos para verificar
se o quarto requisito (eficiência) é cumprido pelo
algoritmo. Para esta finalidade, foram repetidos os
testes realizados durante o trabalho de P. Spronck para
verificar a eficiência da técnica DS. Tais experimentos
se baseiam em projetar scripts manualmente que
simulem um jogador humano. Após o script ser
projetado, o jogo é realizado, sendo que um conjunto
de personagens (personagens do jogador) é controlado
pelo script pré-concebido, e os outros (personagens do
computador) controlados pelos scripts gerados pelo AE
proposto. As estratégias projetadas para simular um
jogador humano são:

• Ofensivo: os personagens do jogador possuem
como prioridade diminuir a vida de seus oponentes na
maior velocidade possível: guerreiros sempre atacam o
inimigo mais próximo, enquanto os magos usam suas
magias de dano mais fortes.

• Deteriorante: os guerreiros iniciam a batalha
utilizando poções contra paralisia; após isso atacam o
inimigo mais próximo. Os magos utilizam todas as
suas magias para debilitar os oponentes (como, por
exemplo, magia de paralisação) durante os primeiros
turnos.

• Amaldiçoante: guerreiros sempre atacam o inimigo
mais próximo; os magos utilizam magias de invocação,
redução de atributos, e magias de controle.

• Defensivo: guerreiros começam bebendo poções
que reduzam dano do elemento fogo (diminuindo dano
de algumas magias); após isso, atacam o inimigo mais

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 162

próximo. Os magos usam todas suas magias defensivas
e magias de invocação.

As técnicas propostas até o momento não
apresentam variações durante a batalha. Isto
geralmente não ocorre com um oponente humano,
portanto outras três técnicas compostas foram criadas:

• Técnica aleatória: a cada batalha, uma das quatro
táticas apresentadas anteriormente é selecionada de
maneira aleatória.

• Técnica aleatória para cada personagem: para cada
batalha, cada um dos personagens utiliza
aleatoriamente um script relativo a uma das primeiras
quatro técnicas apresentadas anteriormente. A escolha
de um script para um personagem não depende da
escolha dos scripts para os outros personagens do
grupo.

• Mudança de estratégias: O grupo começa utilizando
uma das quatro primeiras técnicas aleatoriamente.
Enquanto a técnica utilizada pelo grupo é vitoriosa, ela
é mantida; quando a técnica é derrotada, outra é
selecionada.

Para avaliar a eficiência das técnicas desenvolvidas
pelo AE em relação às técnicas apresentadas para
simular o jogador, a cada batalha foi calculada a
aptidão média dos grupos durante as últimas 10
batalhas. Quando este valor for maior para o grupo
controlado pelo computador, é dito que a estratégia do
computador dominou a estratégia do usuário. A partir
da estatística apresentada, serão verificados dois
valores:

1. Ponto de equilíbrio médio: número da primeira
batalha após a qual o grupo controlado pelo
computador domina o grupo do usuário por pelo
menos 10 batalhas consecutivas.

2. Ponto de equilíbrio absoluto: número da primeira
batalha após a qual um número consecutivo de
batalhas em que o grupo do computador vence o
grupo do usuário nunca é seguido por um número
maior de batalhas consecutivas em que o grupo do
jogador vence o grupo do computador.

Os valores destes pontos de equilíbrio são avaliados
para revelar a eficiência do algoritmo, sendo que
quanto menores os valores encontrados mais eficientes
são os algoritmos. As simulações realizadas são
mostradas abaixo.

1. DS X Jogador Humano

2. AE X Jogador Humano

3. AE X DS

Os resultados coletados durante estas simulações
foram avaliados com o objetivo de verificar a
eficiência do AE implementado. Estes resultados
também possibilitam a comparação entre os dois
algoritmos de aprendizado on-line: o DS proposto por
P. Spronck e o AE proposto neste trabalho.

3.3 Resultados Obtidos

Depois de implementados os algoritmos de
aprendizado, foram realizados experimentos para
verificar se os mesmos apresentam capacidade de
adaptação. Para isso, os personagens adaptados pela
técnica DS disputaram duas mil partidas contra
personagens com a estratégia ofensiva, explicada no
capítulo anterior. Em cada partida, as pontuações das
duas equipes são comparadas. A equipe com maior
pontuação é considerada a vencedora na partida em
questão.

Para melhor compreensão dos dados coletados
neste experimento, os resultados foram representados
em um gráfico, utilizando média móvel com largura
10. A equação da média móvel utilizada está
representada pela Equação 2 abaixo:

 , i ≥ 10
Equação 2

sendo:
pi : “pontuação média” explicada no texto acima.
f(k): A pontuação da equipe sendo avaliada, explicada
pela função de avaliação da técnica DS.
A função f(k) acima, é dada pela Equação 3 abaixo.
Tal equação é utilizada na técnica DS de maneira
análoga a Equação 1, utilizada no AE deste trabalho.

}{
{ }0)(|

0)(|

)(

)(
125,05,0

0
)(

>∈∃
≤∈∀

+= ∑
∈

nhpn

nhpn

nH

nhpF
pn

Equação 3

sendo:
• F(p): Função de aptidão do grupo p

• H(n): Saúde total do personagem n

• h(n): saúde restante do personagem n após a
batalha (número natural entre 0 e H(n))

Os pontos de equilíbrio médio e absoluto
encontrados no experimento representado pela Figura 5
foram 54 e 92 respectivamente. O mesmo experimento
foi realizado para se verificar a capacidade de
adaptação do AE. Desta vez, para a exibição dos
dados, foi utilizada a média móvel feita com a
pontuação obtida pela função de avaliação da equipe
utilizada no AE, representada pela Equação 1 Os dados
coletados desta forma estão representados no gráfico
da Figura 6, e apresentaram pontos de equilíbrio médio
e absoluto de 41 e 43 respectivamente.

A Figura 5 e a Figura 6 permitem verificar que os
algoritmos implementados fornecem ao computador a
capacidade de gerar estratégias que vençam a estratégia
sendo enfrentada. Ambos os algoritmos necessitaram
de um pequeno número de partidas para superar a
estratégia pré-elaborada, sendo isso uma evidência de
que os algoritmos satisfazem o critério de eficiência.

()
10
9

∑
−==

i

ik
i

kf
p

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 163

Média Móvel Aptidão X Partida
Estratégia Ofensiva e " Dinamic Scripting "

0
0,1
0,2

0,3
0,4
0,5
0,6
0,7

0,8
0,9

1

1 208 415 622 829 1036 1243 1450 1657 1864

Partida

M
éd

ia
 M

óv
el

A

pt
id

ão

10 por. Méd. Móv. (Estratégia Ofensiva)

10 por. Méd. Móv. (DS)

Figura 5 - DS Disputando Contra a Estratégia Ofensiva,
Gráfico de Média Móvel Aptidão por Partida

Média Móvel Aptidão X Partida
Estratégia Ofensiva e " Dinamic Scripting "

0

0,1
0,2

0,3
0,4

0,5

0,6
0,7

0,8
0,9

1

1 208 415 622 829 1036 1243 1450 1657 1864

Partida

M
éd

ia
 M

óv
el

A

pt
id

ão

10 por. Méd. Móv. (Estratégia Ofensiva)

10 por. Méd. Móv. (AE)

Figura 6 - AE Disputando Contra a Estratégia Ofensiva,
Gráfico de Média Móvel Aptidão por Partida

Para cada uma das estratégias pré-elaboradas
explicadas no capítulo anterior, foram realizados 21
testes como os descritos acima contra cada algoritmo
de aprendizado implementado, e para cada uma das
estratégias compostas (técnica aleatória, aleatória para
cada personagem, e mudança de estratégia) foram
realizados 11 testes. O número de testes realizados foi
assim escolhido para reproduzir os testes realizados
pelo criador da técnica DS no artigo [Spronck et al.
2004]. Os resultados baseados nos pontos de equilíbrio
médio e absoluto podem ser visualizados na Tabela II e
na Tabela III. É importante observar que, de acordo
com as definições dos pontos de equilíbrio, quanto
menores os valores encontrados, mais eficiente é o
algoritmo.

A Tabela I representa os resultados obtidos pela
técnica DS neste trabalho. A tabela referente aos
mesmos experimentos realizados pelo criador da
técnica DS pode ser encontrada em [Spronck et al.
2004]. Nos dois trabalhos, a estratégia “Mudança de
Estratégia” foi a indicada pela mediana como a mais
difícil de ser vencida. É possível verificar também que
as estratégias pré-elaboradas possuem algumas
diferenças:

Tabela II – Resultados obtidos confrontando os scripts
desenvolvidos pela técnica DS com as estratégias pré-

elaboradas da primeira coluna.
Dynamic Scripting – Ponto de Equilíbrio Médio
Estratégias Menor Maior Média Mediana
Ofensiva 12 1129 88 38
Deteriorante 11 36 20 18
Amaldiçoante 11 51 26 22
Defensiva 11 48 18 12
Aleatória 11 214 70 53
Personagens
Aleatórios

11 35 17 16

Mudança de
Estratégia

11 102 60 56

Dynamic Scripting – Pontos de Equilíbrio Absoluto
Estratégias Menor Maior Média Mediana
Ofensiva 15 1919 158 47
Deteriorante 1 832 112 28
Amaldiçoante 6 115 39 31
Defensiva 1 80 21 12
Aleatória 70 --- 4064 174
Personagens
Aleatórios

1 70 21 18

Mudança de
Estratégia

62 1938 507 254

1. A estratégia “Deteriorante” apresentou maior

dificuldade a ser vencida neste trabalho do que em
[Spronck et al. 2004].

2. A estratégia Defensiva apresentou maior facilidade
a ser vencida neste trabalho do que em [Spronck et al.
2004].

3. A estratégia “Aleatória” apresentou neste trabalho
um caso em que a técnica DS não conseguiu obter um
ponto de equilíbrio absoluto (tal verificação encontra-
se explicada mais adiante). Tais diferenças são
naturais dado que o ambiente construído neste
trabalho não é exatamente igual, embora tenha sido
montado de maneira a se assemelhar ao ambiente
criado por Spronck [2004]. Além disso, as estratégias
foram montadas por especialistas diferentes, embora
sigam a mesma idéia nos dois trabalhos.

O importante é verificar a eficiência da técnica DS,
independente das diferenças do ambiente e das
estratégias enfrentadas. Com relação a isso,
observações feitas em [Spronck et al. 2004] são
também válidas para a Tabela II e encontram-se
realizadas mais adiante.

Tabela III – Resultados obtidos confrontando os scripts
desenvolvidos pelo AE com as estratégias pré-elaboradas

da primeira coluna.
Algoritmo Evolutivo – Ponto de Equilíbrio Médio
Estratégias Menor Maior Média Mediana
Ofensiva 11 167 61 40
Deteriorante 11 170 30 17
Amaldiçoante 11 354 54 22
Defensiva 11 124 18 11
Aleatória 11 214 70 53
Personagens
Aleatórios

11 35 17 16

Mudança de
Estratégia

11 102 60 56

4 Neste caso, o valor da média foi calculado utilizando apenas os 10
testes em que um ponto de equilíbrio absoluto foi encontrado.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 164

Algoritmo Evolutivo – Ponto de Equilíbrio Absoluto
Estratégias Menor Maior Média Mediana
Ofensiva 1 1331 192 107
Deteriorante 1 328 81 28
Amaldiçoante 1 1326 174 38
Defensiva 1 137 13 4
Aleatória 6 1798 505 102
Personagens
Aleatórios

1 340 67 25

Mudança de
Estratégia

4 1996 776 506

Analisando as duas tabelas (Tabela II e Tabela III),

é possível observar que:
1. Em todos os experimentos, e para os dois pontos de

equilíbrio, a média sempre possui valor maior que a
mediana. Isso se explica pelo fato de serem raras as
ocorrências de pontos de equilíbrio com valores altos.

2. Ambos os algoritmos mostraram médias e
medianas factíveis para os pontos de equilíbrio
médio, isto é, para que a adaptação ocorra, é
necessário que o jogador jogue uma quantidade de
partidas aceitável (levando em consideração que cada
partida leva geralmente menos de um minuto no jogo
implementado). Tal constatação indica que os
algoritmos são eficientes.

3. Comparando as duas tabelas, é difícil afirmar qual é
o melhor algoritmo, sendo que em alguns testes, a
técnica DS obteve melhores resultados, e em outros a
utilização do AE teve melhor desempenho.

4. Ao enfrentar a estratégia “Aleatória”, A técnica DS
não conseguiu obter um turning point absoluto em um
dos experimentos. A ocorrência de tal acontecimento
é dada ao fato de que em algumas partidas, devido ao
fator sorte, a técnica DS pode aumentar o peso de
regras não adequadas, e até mesmo excluir regras
necessárias para obter uma estratégia vencedora. Tal
limitação do algoritmo já havia sido constatada pelos
desenvolvedores da técnica. O fato de permitir que o
peso mínimo para uma regra seja zero, resulta em
uma grave desvantagem, pois com o passar do tempo,
a técnica perde a capacidade de adaptar suas
estratégias.

Para chegar a uma melhor comparação entre os
algoritmos, a próxima etapa dos testes foi realizada,
confrontando no jogo as duas técnicas. Ou seja,
enquanto um grupo de personagens é evoluído pelo
AE, o grupo oponente foi adaptado pela técnica DS. Os
pontos de equilíbrio obtidos pelo AE podem ser
verificados na Tabela IV. Enquanto os obtidos pela
técnica DS se encontram na Tabela V. Para obtenção
destes pontos de equilíbrio foram realizados 21 testes,
cada um composto por duas mil partidas.

Tabela IV– Pontos de Equilíbrio obtidos pelo AE ao
confrontar a técnica DS

AE – Ponto deEquilíbrio Médio
Menor Maior Média Mediana

11 393 49 12
AE – Ponto deEquilíbrio Absoluto

Menor Maior Média Mediana
2 -- 598 391

Tabela V– Pontos de Equilíbrio obtidos pela técnica DS
ao confrontar o AE

DS – Ponto deEquilíbrio Médio
Menor Maior Média Mediana

11 240 55 38
DS – Ponto deEquilíbrio Absoluto

Menor Maior Média Mediana
76 -- 1172 1997

Olhando os pontos de equilíbrio obtidos a partir

deste experimento, é possível observar que:
1. Tanto o AE quanto a técnica DS encontraram casos

em que não foi possível obter um ponto de equilíbrio
absoluto. Dos 21 testes realizados, o AE não
conseguiu obter um ponto de equilíbrio absoluto em 2
testes. Já a técnica DS não foi capaz de obter este
ponto de equilíbrio em 5 testes.

2. A mediana do ponto de equilíbrio absoluto obtida
pela técnica DS foi de 1997. Este valor é muito alto
considerando o número de partidas realizadas em
cada teste (2000), o que é um indicador de que o AE
dominou a técnica DS na maioria das partidas.

3. As médias e as medianas apresentaram melhores
resultados para as estratégias desenvolvidas pelo AE.

Média Móvel Aptidão X Partida
DS e AE

0

0,2

0,4
0,6

0,8

1

1 262 523 784 1045 1306 1567 1828

Partida

M
éd

ia
 M

óv
el

 A
pt

id
ão

10 por. Méd. Móv. (DS) 10 por. Méd. Móv. (AE)

Figura 7 - AE Disputando Contra a Técnica DS, Gráfico de
Média Móvel Aptidão por Partida

A fim de verificar as constatações 2 e 3 realizadas,
foram verificados os comportamentos dos testes
realizados. Foi constatado que o grupo adaptado pela
técnica DS perde a capacidade de adaptação após
alguns jogos. Tal constatação é coerente com a
observação realizada no experimento anterior, no qual
a técnica DS não encontra um ponto de equilíbrio
absoluto ao confrontar a estratégia “Aleatória”. A
Figura 7 mostra um dos testes realizados onde é
possível visualizar a perda da capacidade de adaptação
da técnica DS.

Para colher dados capazes de confirmar a
superioridade do AE sobre a técnica DS ao longo de
um jogo composto por 2000 partidas, foi utilizado um
método que utiliza como critério o erro máximo de
estimação com um nível de confiança de 95% [Bussab
e Morettin 2006]. O método utilizado é explicado pela
Figura 8.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 165

Figura 8 - Método Adotado para a Coleta dos Dados

No passo 2, o jogo é realizado como no
experimento relatado anteriormente, realizando 2000
partidas. No passo 3 o valor calculado da amostra
(freqüência das partidas vencidas pelo grupo adaptado
pelo Algoritmo Evolutivo durante o jogo i) é chamado
de xi e dado pela razão abaixo:

xi =
NP

VAE

sendo:
• VAE Número de vitórias obtidas pelo grupo cuja

estratégia é evoluída pelo AE
• NP Número total de partidas realizadas,

(2000 neste caso).

 No critério de parada, o erro máximo (e) é calculado
a partir dos valores amostrados até o momento [Bussab
e Morettin 2006]. A fórmula para cálculo deste erro é
dada pela Equação 7:

n

s
e

2

=

Equação 7
sendo:
• e erro máximo
• s2 variância amostral
• n número de jogos realizados (amostras)

A variância amostral (s2) é estimada através da
Equação 8 abaixo.

()∑
=

−
−

=
n

i
i xx

n
s

1

22

1

1

Equação 8
sendo:
• xi Valor da amostra

• x Média das amostras
• n Nmero de jogos realizados (amostras)

Frequências de Vitórias em 2000 Partidas
erro amostral ≈ 0,028

0,600005

0,397403

0
0,1
0,2
0,3

0,4
0,5
0,6
0,7

DS AE

Algoritmo

F
re

qü
ên

ci
a

de
 V

itó
ria

s

Figura 9 – Freqüência de Vitórias das Técnicas AE e DS em
2000 Partidas

Os resultados obtidos encontram-se no gráfico da
Figura 9, onde as colunas indicam as freqüências
obtidas de vitórias do AE e da técnica DS, e o intervalo
indicado sobre as colunas representa o intervalo de
possíveis valores para as freqüências esperadas,
considerando o erro máximo encontrado.

Tais resultados permitem concluir, com um nível de
confiança de 95%, que em um jogo composto por 2000
partidas, as estratégias geradas pelo AE vencem as
estratégias geradas pela técnica DS na maioria das
vezes. A afirmação é possível de ser realizada, pois é
visível no gráfico que o pior caso do AE (freqüência
encontrada de vitórias do AE menos o erro máximo) é
melhor que o melhor caso da técnica DS (freqüência
encontrada de vitórias da técnica DS mais erro
máximo). Tal resultado é esperado, dada a constatação
de que a técnica DS perde a capacidade de adaptar sua
estratégia após um determinado número de partidas,
sendo que 2000 partidas são suficientes para se
verificar tal acontecimento, como visto no experimento
anterior. Os casos de empate não foram exibidos no
gráfico, pois se mostraram desprezíveis (casos de
empates e erro máximo de aproximadamente 0%).

Os resultados explicados até o momento são
suficientes para apontar os Algoritmos Evolutivos
como uma melhor opção a ser utilizada em jogos nos
quais a adaptação deve ocorrer continuamente. Em
jogos em que ocorrem poucas partidas, as duas técnicas
seriam aceitáveis, pois a técnica DS só perde sua
capacidade de adaptação após um número de partidas
suficiente para reduzir os pesos de suas regras a zero (a
quantidade de partidas varia de acordo com fatores
como o espaço de busca e a quantidade de
aleatoriedade do jogo). No entanto, isso não permite
comparar as duas técnicas com relação ao critério de
eficiência, pois o mesmo diz respeito a um número
pequeno de partidas para que o aprendizado ocorra.
Para comparar este critério, o último experimento foi
repetido, mas desta vez o número de partidas por jogos
foi diminuído, realizando testes para 300, 200, 100 e
50 partidas por jogo. Os resultados do teste podem ser
visualizados na Tabela VI abaixo.

Tabela VI – Comparação das freqüências de vitórias
entre o AE implementado e técnica DS. Resultados
coletados utilizando 300, 200, 100 e 50 partidas por jogo.

Freqüência de Vitórias Partidas
por jogo DS AE Erro amostral ≈

300 0,514 0,475 0,026
200 0,505 0,487 0,025
100 0,509 0,479 0,025
50 0,463 0,521 0,023

É valido avisar que a soma das freqüências de uma

linha da tabela não é exatamente um, pois existem os
casos de empate (que possuem valores a partir da
quarta casa decimal) e também devido a
arredondamentos realizados pelo computador. Estes
casos de empate, mais uma vez não foram mostrados
na tabela acima, pois se mostraram desprezíveis.
Observando os dados resultantes dos experimentos, é
possível verificar que as freqüências de vitórias obtidas

1 Repita
2 Realize um jogo composto por 2000 partidas;

3 Calcule a freqüência das partidas vencidas pelo
grupo adaptado pelo Algoritmo Evolutivo;

Até que (Número de Jogos > 200) ou (erro máximo < 0.05
* (Média dos valores calculados no passo 3)).

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 166

para o AE e para a técnica DS foram similares. Só é
possível concluir que a eficiência de uma técnica de
aprendizado ‘A’ é superior à eficiência da outra técnica
de aprendizado ‘B’, se o pior caso de ‘A’ for superior
ao melhor caso de ‘B’. Ao dizer pior ou melhor caso, é
considerado o erro máximo, assim como feito no
experimento com 2000 partidas por jogo. De outra
maneira, podemos afirmar a superioridade da técnica
‘A’ com relação à técnica ‘B’ caso a inequação abaixo
seja satisfeita [Bussab e Morettin 2006]:

FVA – ea > FVB + eb
Sendo:
• FVA Freqüência de Vitórias do Grupo cujos

scripts foram adaptados pela técnica ‘A’

• FVB Freqüência de Vitórias do Grupo cujos
scripts foram adaptados pela técnica ‘B’

• ea erro máximo da Percentagem de
Vitórias do Grupo cujos scripts foram adaptados
pela técnica ‘A’

• eb erro máximo da Percentagem de
Vitórias do Grupo cujos scripts foram adaptado
pela técnica ‘B’

Como conseqüência dos casos de empate terem se
mostrado desprezíveis, o erro amostral aproximado
(representado na Tabela VI) é igual para ea e eb (ea ≈
eb). Em nenhum dos resultados apresentados pela
Tabela VI pode ser constatada superioridade na
eficiência da técnica DS sobre o AE, já que, embora
alguns experimentos apontem a técnica DS como
vencedora (experimentos com 300, 200 e 100 partidas
por jogo), ao considerar o erro amostral encontrado tal
superioridade não pode ser admitida, pois nenhum dos
experimentos torna verdadeira a inequação
apresentada. De maneira análoga, ao se comparar a
superioridade do AE sobre a técnica DS, é possível
verificar a superioridade do AE no último experimento
realizado (50 partidas por jogo), pois os dados
coletados tornam válida a inequação verificada.

É possível concluir, com base nos dados obtidos,
que a eficiência apresentada pelo AE se mostrou
melhor ou próxima a da técnica DS, que já teve sua
eficiência verificada no trabalho de Spronck. Com tal
verificação tornou-se evidente que Algoritmos
Evolutivos podem satisfazer o critério de eficiência
para um aprendizado on-line que funcione na prática.
Atingido este objetivo, os experimentos foram
finalizados.

3. Conclusão

A proposta deste trabalho foi a de verificar a
possibilidade de se construir um Algoritmo Evolutivo
(AE) capaz de ser aplicado de fato no aprendizado on-
line em jogos, capacidade esta apontada como
impossível por alguns autores [Spronck et al. 2004]
[Ponsem 2004]. Para o cumprimento de tal objetivo,
inicialmente foi realizada uma revisão bibliográfica
que apresentou fatos encorajadores, pois possibilitou
encontrar trabalhos que diziam ter obtido aprendizado

on-line eficiente utilizando Algoritmos Evolutivos e
Redes Neurais Artificiais.

Para constatar que o AE funciona de fato no
aprendizado on-line, foi verificado se o mesmo satisfaz
os requisitos: rapidez, robustez, efetividade e
eficiência. O AE proposto foi projetado de maneira a
cumprir os primeiros três dos requisitos. Para mostrar a
presença destes critérios, foi realizada uma comparação
da estrutura do algoritmo a técnica de aprendizado DS
que satisfaz os quatro requisitos. Para verificar o
critério de eficiência, foi necessário:

1. Produzir um jogo como ambiente de testes assim
como uma linguagem de scripting capaz de controlar
o comportamento dos personagens. Para a produção
deste jogo, foi procurado recriar o ambiente de testes
produzido pelos criadores da técnica DS, cujos
detalhes explicados no artigo [Spronck et al. 2004]
exigiram grande atenção para estarem presentes
também no jogo produzido neste trabalho.

2. Propor e codificar um AE, realizando testes sobre a
função de avaliação utilizada, e otimizando suas
funções evolutivas. Inicialmente a função de
avaliação utilizada seria igual a função de avaliação
do time utilizada pela técnica DS. Os testes realizados
durante esta etapa mostraram a necessidade de se
modificar esta avaliação para o funcionamento junto
ao AE implementado. A taxa de mutação e o tamanho
da população do AE foram definidos empiricamente,
realizando alguns testes nesta etapa do projeto.

3. Implementar a técnica DS e realizar testes para
verificar a capacidade de adaptação da mesma. Para
isso foi necessário um estudo cuidadoso da técnica a
fim de não cometer enganos em sua implementação.
Os testes realizados permitiram verificar a correta
implementação desta, assim como mostrar sua
capacidade de adaptação.

4. Elaborar estratégias de jogo, com o objetivo de
simular um jogador humano para permitir a
realização de grandes quantidades de testes com as
técnicas de aprendizado. Estas estratégias foram
extraídas do trabalho de Spronck [2004], e
procuraram ser reproduzidas neste trabalho.

5. Reproduzir, para os dois algoritmos de
aprendizado, os testes realizados para verificar a
eficiência da técnica DS no trabalho onde a mesma
foi proposta, assim como realizar testes confrontando
diretamente os dois algoritmos de aprendizado. Nesta
etapa foi necessário um estudo detalhado sobre os
testes realizados no artigo que apresenta a técnica DS
[Spronck et al. 2004].

6. Avaliar os dados coletados segundo os critérios
estatísticos adotados durante a etapa seis.
Dificuldades foram encontradas com o rigor
estatístico a ser utilizado. Foi então buscado o auxílio
de um especialista da área de estatística, que se
mostrou de grande ajuda para o cumprimento desta
etapa.

Ao final da última etapa descrita acima, foi possível
verificar que o algoritmo de aprendizado proposto
neste trabalho satisfaz o requisito de eficiência.
Também foi observado que o algoritmo em questão

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 167

apresenta eficiência melhor ou similar a da técnica DS,
cuja eficiência já havia sido comprovada no trabalho
[Spronck et al. 2004]. Tal constatação permite
responder à pergunta chave deste trabalho: sim, é
possível desenvolver um AE que satisfaça os quatro
requisitos: rapidez, robustez, efetividade e eficiência.

Os testes realizados permitiram verificar uma
deficiência da técnica DS: esta perde a capacidade de
adaptação após um determinado tempo de
funcionamento. Uma forma para corrigir tal deficiência
seria definindo um peso mínimo de valor maior que
zero a ser utilizado. Assim, nenhuma regra seria
permanentemente descartada e, portanto, a técnica
preservaria sua capacidade de adaptação. É provável
que com esta correção a eficiência da técnica diminua,
pois regras que já tenham sido testadas e mostradas
inadequadas contra a estratégia utilizada continuariam
apresentando a possibilidade de serem testadas.

A obtenção de um AE como o implementado neste
trabalho traz contribuições para o campo de
Inteligência Artificial aplicada a jogos, no qual é
reconhecido que as possíveis aplicações para AE são
numerosas, embora a técnica encontre certa resistência
para ser aceita pelos desenvolvedores de jogos. Tal
resistência é reforçada por afirmações como as
contestadas e negadas neste trabalho. Portanto, espera-
se com este trabalho, que os desenvolvedores de jogos
tornem-se mais receptivos às técnicas evolutivas de IA.

Uma aplicação em potencial de AEs seria em jogos
como MMORGPs, que estão em destaque atualmente.
Este tipo de jogo permite que uma grande quantidade
de usuários jogue simultaneamente. A avaliação de
seus indivíduos poderia ocorrer de forma paralela,
sendo que cada jogador funcionaria como uma função
de avaliação para os oponentes que os enfrentassem.

O nível de complexidade do jogo produzido foi
escolhido de maneira a ser alto quando comparado a
outros jogos mais simples (espaço de busca de
tamanho 25*1027 aproximadamente) [Fairclough et
al., 2001]. Desta forma, ao se constatar que o AE
apresentou bom desempenho neste jogo, é esperado
que em jogos similares, mas com soluções contidas em
um espaço de busca menor do que o deste projeto o AE
apresente um desempenho ainda melhor. Em suma,
foram obtidos neste trabalho:

1. Uma revisão sobre técnicas utilizadas na
Inteligência Artificial dos jogos atuais.Um jogo5 com
alta complexidade que serve como ambiente de testes
para técnicas de aprendizado on-line.

2. Um AE capaz de produzir estratégias inteligentes
adaptadas às estratégias utilizadas pelo usuário em
tempo de jogo. Além disto, foi verificado que este
algoritmo funciona na prática, pois satisfaz quatro
requisitos: rapidez, efetividade, robustez e eficiência.

5 Site do jogo ZantArena. Disponível em:
<http://quadros.no-ip.org/zantarena>. Acesso em: 02
fev. 2008.

3. Resultados experimentais que: (1) mostram que o
AE implementado é mais eficiente ou apresenta
eficiência similar a da técnica DS desenvolvida por
Spronck; (2) apontam deficiências da técnica DS e
sugestões de melhorias para a mesma; e (3) negam
afirmações que dão suporte à resistência encontrada
para a aceitação de AEs por desenvolvedores de
jogos.

Ao se concluir este trabalho, várias alternativas
para sua continuação foram encontradas, dentre as
quais podem ser citadas:

1. Implementar a correção proposta para a técnica DS
e realizar outros experimentos para verificar se o
mesmo continua satisfazendo o critério de eficiência.

2. Comparar outros algoritmos de aprendizado com os
utilizados neste trabalho.

3. Tentar encontrar AEs que se mostrem ainda mais
eficientes que o deste trabalho

Referencias
BITTENCOURT, J. AND OSÓRIO, F., 2006. Motores de jogos
para criação de jogos digitais – gráficos, áudio, interface,
rede, inteligência artificial e física. In: Anais da V ERI-MG
SBC, v. 1, 1–36.

BRAMLETTE, M., 1991. Initialization, mutation and selection
methods in genetic algorithms for function optimization. In:
Proceedings of the 4th International Conference on Genetic
Algorithms, San Mateo, CA, USA, 100–107.

BUSSAB, W.O., Morettin, P. A. 2006. Estatística Básica. 5.
ed. SARAIVA. P. 540. ISBN 8502034979.

CROCOMO, M. K.; MIAZAKI , M.; SIMÕES, E.V. 2005.
Algoritmos evolucionários no desenvolvimento de jogos
adaptativos, In: Simpósio Brasileiro de Jogos Para
Computador e Entretenimento Digital – WJogos, São Paulo,
Brail, 342-347.

FAIRCLOUGH, C. ET AL., 2001. Research Directions for AI in
Computer Games. In: Irish conference on AI and cognitive
science, 12. Kildare, AICS, 1 – 12.

PONSEM, M., 2004. Improving adaptive game AI with
evolutionary learning. Dissertação de Mestrado, Faculty of
Media & Knowledge Engineering, Delft University of
Technology.

SPRONCK, P., YEE, N., SHPRINKHUIZEN-KUYPER, I. AND

POSTMA, E., 2004. Online adaptation of game opponent AI in
theory and practice. In: Proceedings of the 4th International
Conference on Intelligent Games and Simulation, London,
UK, 45–53.

STANLEY , K., BRYANT, B. AND MIIKKULANINEN , R., 2005.
Evolving neural network agents in the NERO video game.
In: Symposium on Computational Intelligence and Games,
Piscataway, NJ, USA, IEEE Press, 182–189.

SWEETSER, P., 2002. Current AI in games: a review.
Relatório Técnico, School of ITEE, University of
Queensland.

YANNAKAKIS , G., 2005. AI in computer games: generating
interesting interactive opponents by the use of evolutionary
computation. Tese de doutorado, Faculty of Media &
Knowledge Engineering, University of Edinburgh.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 168

A Cellular Automata Framework for Real Time Fluid Animation
Sicilia F. Judice and Bruno Barcellos S. Coutinho and Gilson A. Giraldi

National Laboratory for Scientific Computing

Abstract

In this work, we focus on fluid modeling and animation through
Lattice Gas Cellular Automata (LGCA) for computer games.
LGCA are discrete models based on point particles that move on
a lattice, according to suitable and simple rules in order to mimic a
fully molecular dynamics. In this paper, we combine the advantage
of the low computational cost of LGCAs and its ability to mimic
the realistic fluid dynamics. The new animating framework is com-
posed by two LGCAs models: (a) A 3D fluid animation technique;
(b) A GPU surface flow animation over terrain models. In this work
we highlight the advantages of our proposal for computer games ap-
plications. In the experimental results we emphasize the simplicity
and power of the proposed models when combined with efficient
techniques for rendering.

Keywords:: Real-time Simulation, Cellular Automata, Fluid Ani-
mation,Terrain Models

Author’s Contact:

{sicilia,lsdelphi,gilson}@lncc.br

1 Introduction

Physically-based techniques for the animation of natural elements
like fluids (gas or liquids), elastic, plastic and melting objects,
among others, have taken the attention of the computer graphics
community. The motivation for such interest rely in the potential
applications of these methods and in the complexity and beauty of
the natural phenomena that are involved. In particular, techniques
in the field of Computational Fluid Dynamics (CFD) have been ap-
plied for fluid animation in applications such as virtual surgery sim-
ulators and visual effects [Müller et al. 2004a; Müller et al. 2004b;
Müller et al. 2003].

The traditional fluid animation methods in computer graphics rely
on a top down viewpoint that uses 2D/3D mesh based approaches
motivated by the Eulerian methods of Finite Element (FE) and Fi-
nite Difference (FD), in conjunction with Navier-Stokes equations
of fluids [Stam 2003b; Foster and Metaxas 1997; Hirsch 1988].

Animation of fluids is important for computer games applications in
order to immerse players into plausible virtual worlds [Gam 2004].
However, real time is a fundamental requirement in this area which
is the main challenge for traditional CFD methods due to the cost
of the computational simulation [Stam 2003a].

Recently, we demonstrated the advantages of changing the view-
point to the bottom up models of the Lattice Gas Cellular Automata
(LGCA) [Xavier et al. 2005; Barcellos et al. 2007]. These are dis-
crete models based on point particles that move on a regular grid
structure (lattice), according to suitable and simple rules in order
to mimic a fully molecular dynamics [Frisch et al. 1987a]. Parti-
cles can only move along the edges of the lattice and their interac-
tions are based on simple collision rules. Such framework needs

low computational resources for both the memory allocation and
the computation itself. Such models have been applied for scien-
tific application in two-phase flows description (gas-liquid systems,
for example), numerical simulation of bubble flows [Inamuro et al.
2004], among others.

Besides, a multiscale technique was applied to demonstrated that a
particular type of LGCAs, the so called FHP model, can reproduce
Navier-Stokes behaviors for 2D fluids [Frisch et al. 1986; Wolfram
1996]. However, there is no need to solve Partial Differential Equa-
tions (PDEs) to obtain a high level of description. Besides being
fast and realistic from the physical viewpoint, it is based on binary
variables, and so, there are no numerical instabilities at all [Doolen
1990]. In [Giraldi et al. 2005] we show the FHP capabilities for
animating 2D fluid-fluid interactions. In [Barcellos et al. 2007] we
demonstrated the advantages of a technique inspired in the FHP
model for surface water flow simulation in digital terrain models.

In this paper we propose a framework for real time fluid animation
based on two elements: (a) A three dimensional fluid simulation
model based on the FHP and interpolation techniques; (b) The sur-
face flow simulation in Digital Terrain Models (DTMs) proposed in
[Barcellos et al. 2007]. In the former, our proposal consists of regu-
larly distribute independent FHP planes along the x and z directions
and perform simple interpolations to generate a 3D macroscopic
flow. The latter is a LGCA which is based on (water) particles
which can move over the terrain surface but the projections of their
displacements are constrained to the lattice directions. The DTM
is a piecewise linear approximation of the terrain surface built as
a digital elevation model (DEM); that means, there is a lattice that
keeps the elevation of the terrain at each grid node. We can apply
the 3D fluid simulation method to animate rainfall. On the other
hand, we can simulate flood and watershed rainfall by using simple
interaction model between the fluid and the terrain.

The main contributions of this work is the development of a par-
ticle based framework, combining LGCA techniques and DTMs
to create realistic animations of systems that involve 3D fluid and
fluid-terrain interaction for computer graphics and computer games
applications.

The paper is organized as follows. Section 2 gives a review of re-
lated works. Section 3 describes the FHP model and our extension
for 3D. In sections 4 and 5 we describe our technique for simulat-
ing surface water flow over terrains and its GPU implementation.
The interaction between models is discussed on section 6. Section
7 presents experimental results. In section 8 we present the conclu-
sions and future works.

2 Related Work

This work focuses on the animation of three dimensional fluids and
fluid-terrain interaction. The former involves numerous works that
can be coarsely classified in non-physically and physically based
models [Iglesias 2004; Deusen et al. 2004]. Our work belongs to
the latter class, which can be subdivided in PDEs and Lattice based
techniques [Frisch et al. 1987b; Iglesias 2004]. PDEs methods in-

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 169

cludes continuous fluid equation, like the Navier-Stokes ones, and
numerical techniques based on discretization approaches that can
be Lagrangian Smoothed Particle Hydrodynamics (SPH) [Liu and
Liu 2003], method of characteristics [Stam 1999], Moving-Particle
Semi-Implicit [Premoze et al. 2003] or Eulerian (Finite Element)
ones [Foster and Metaxas 1997].

Lattice based techniques, like HPP, FHP and Lattice Boltzmann
methods, work following a different viewpoint [Frisch et al. 1987b;
Benzi et al. 1992]. For instance, in the case of HPP and FHP, in-
stead of applying continuous mechanics (and, consequently, PDEs)
principles, they model the system as a set of point particles, that
move on a lattice, interacting according to suitable and simple rules
in order to mimics a fully dynamics [Frisch et al. 1987b]. These
are bottom up approaches in which the macroscopic behavior of
the fluid can be recovered by interpolation techniques [Frisch et al.
1987b].

Lattice models have a number of advantages over more traditional
numerical methods, particularly when fluids mixing and phase tran-
sitions occur [Rothman and Zaleski 1994]. The simulation is al-
ways performed on a regular grid and can be efficiently imple-
mented on a massively parallel computer. Solid boundaries and
multiple fluids can be introduced in a straightforward manner and
the simulation is performed equally efficiently, regardless of the
complexity of the boundary or interface [Buick et al. 1998]. In
addition there are not numerical stability issues because the evolu-
tion follows integer arithmetic. However, system parametrization
(viscosity, for example) is a difficult task in such lattice models and
they are less realistic than PDE based models.

For the purpose of game application, real time is a fundamental
requirement. So, the trad-off between realism and frame rate be-
comes the main challenge. Therefore, Navier-Stokes equations
solvers, based on finite difference approaches, with special care
about stability and speed were proposed [Stam 2003a] as well as
Lattice Boltzmann methods (LBM) on graphics hardware [Zhao
et al. 2007] and real time techniques for simulating atmospheric
effects [Wenzel 2006].

SPH has been also applied for fluid simulation and interaction of the
fluid with rigid bodies through penalty techniques, contact (pres-
sure) forces, and a discrete angular velocity representation ([Gam
2004], Vol. 6, page 189). Besides, Linearized Bernoulli’s equations
and convolution techniques for discretization have been applied for
real time computer-generated ocean surface ([Gam 2004], Vol. 4,
page 256).

Interaction between fluids models and digital terrains is a subclass
of fluid-surface interaction [Ye et al. 1996]. It can be addressed
by hybrid methods in which the fluid is a continuum medium, sim-
ulated by Navier-Stokes plus SPH or grid based techniques, and
the surface is represented as a discrete one [GENEVAUX et al.
2003; Solenthaler et al. 2007; Batty et al. 2007]. These approaches
deal with the specific problem of preventing the leaking of fluid
across the polygonal surface [Guendelman et al. 2005; Bridson
et al. 2002].

In addition, fluid flows can be simulated on 2D manifolds repre-
sented by (continuous) subdivision surfaces that have a natural quad
patch parametrization [Stam 2003b]. Besides, a hybrid particle and
implicit surface approach to simulating water was proposed in [Fos-
ter and Fedkiw 2001], which led to the particle level set method
[Enright et al. 2002].

Finally, rendering techniques must be applied to ensure the desired
level of realism but keeping the frame rate suitable for game appli-
cations. Realistic rendering can be properly addressed through sev-
eral algorithms incorporating usual refraction, reflection and Fres-
nel terms ([Gam 2004], Vol. 1, page 583), refraction approaches
based on perturbing the texture coordinates used in a texture lookup
of an image of the nonrefractive objects in the scene ([GPU 2005],
Chap. 19) and accelerated volume rendering on GPU [Krger and
Westermann 2005].

3 FHP

The FHP was introduced by Frisch, Hasslacher and Pomeau [Frisch
et al. 1986] in 1986 and is a model of a two-dimensional fluid. It
can be seen as an abstraction, at a microscopic scale, of a fluid. The
FHP model describes the motion of particles traveling in a discrete
space and colliding with each other. The space is discretized in a
hexagonal lattice.

The FHP particles move in discrete time steps, with a velocity of
constant modulus, pointing along one of the six directions of the
lattice. The dynamics is such that no more than one particle enters
the same node at the same time with the same velocity. This restric-
tion is the exclusion principle; it ensures that six Boolean variables
at each lattice node are always enough to represent the micrody-
namics.

The velocity modulus is such that, in a time step, each particle trav-
els one lattice spacing and reaches a nearest-neighbor node. When
exactly two particles enter the same node with opposite velocities,
both of them are deflected by 60 degrees so that the output of the
collision is still a zero momentum configuration with two particles.
The deflection can occur to the right or to the left, indifferently, as
shown in Figure 1. For symmetry reasons, the two possibilities are
chosen randomly, with equal probability.

Figure 1: The two-body collision in the FHP Source.

When exactly three particles collide with an angle of 120 degrees
between each other, they bounce back to where they come from
(so that the momentum after the collision is zero, as it was before
the collision). Both two- and three-body collisions are necessary to
avoid extra conservation laws. For all other configurations no colli-
sion occurs and the particles go through as if they were transparent
to each other.

The full microdynamics of the FHP model can be expressed by evo-
lution equations for the occupation numbers defined as the number,
ni (r, t), of particle entering node r at time t with a velocity point-
ing along direction ~ci

~ci =
(
cos

2πi

6
, sin

2πi

6

)
, (1)

where i = 1, 2, . . . , 6 labels the six lattice directions, as shown in
Figure 2.

Figure 2: The six lattice directions.

The numbers ni can be 0 or 1. We also define the time step as ∆t

and the lattice spacing as ∆r . Thus, the six possible velocities ~vi of
the particles are related to their directions of motion by

~vi =
∆r

∆t
~ci. (2)

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 170

The microdynamics of a LGCA is written as

ni (r + ∆r~ci, t + ∆t) = ni (r, t) + Ωi (n (r, t)) (3)

where Ωi is called the collision term [Chopard and Droz 1998].

Now we propose an extension to 3D, using the 2D FHP model ex-
plained above. In practice, the system of a given cellular automata
rule cannot deal with an infinite lattice, it must be finite and have
boundaries [Chopard and Droz 1998]. So, first we must define a
domain in the three dimensional space, where the microscopic par-
ticles can evolve. Then, our proposal consists of regularly distribute
planes along the x and z axis, like in Figure 3. Each of these planes
is a system whose cellular automata rule is the 2D FHP.

Figure 3: (a) Domain in 3D Space and (b) the distribution of 2D
FHP planes.

Once simulated the two dimensional FHP in each plane indepen-
dently, we perform a simple interpolation to generate a 2D macro-
scopic flow in each plane. In this step, we add new nodes to the
FHP grid in order to complete a rectangular grid in each plane, as
pictured in Figure 4.

Figure 4: Extend the (a) FHP grid to generate a (b) rectangular
mesh.

Following the usual definition of statistical mechanics, we compute
the macroscopic density in each node (xi, yi, zi) of the plane x =
xi through the expression:

ρx (xi, yi, zi, t) =
∑
j∈V

6∑
k=1

nk (xj , yj , zj , t) , (4)

where V is a neighborhood of point (xj , yj , zj).

An analogous expression can be used for the plane z = zi. Now,
we must render a 3D macroscopic flow. We shall observe that each

node (xi, yi, zi) in Figure 3 belongs to the planes x = xi and z =
zi. So, the 3D density can be finally obtained through a simple
mean of the corresponding values in the FHP planes, that means:

ρ (xi, yi, zi, t) =
ρx (xi, yi, zi, t) + ρz (xi, yi, zi, t)

2
. (5)

We also calculate the velocity field through macroscopic samples of
the FHP behavior. In order to do that, we use a set of test particles
whose initial positions in 3D domain are random. For each macro-
scopic particle pmac, we take a neighborhood V (pmac, radius),
where radius is an radius of influence, and we calculate the sum of
the velocities ~ci (equation (1)) of the microscopic particles inside
the neighborhood:

~υ (pmac) =
∑

~r∈V (pmac,radius)

~ci (~r, t) . (6)

Once we have calculated the velocity field, given a test particle p,
in ~x (p, t) position at instant t, the position of the particle p at next
time is:

~x (p, t + ∆t) = ~x (p, t) + σ~υ(p), (7)

where σ is a constant for the macroscopic step in time.

4 Surface Flow Simulation Model

The model is composed by two basic elements: (1) A DEM that ap-
proximate the terrain; (2) A LGCA for water flow simulation [Bar-
cellos et al. 2008]. The DEM is composed by a regular lattice and
an elevation function ϕ(i, j) that gives the elevation of the terrain
in the lattice node (i, j). The LGCA is a particle based model that
uses the 2D regular lattice of the DEM. The Figure 5 highlights a
(i, j) node of the lattice and its 4 neighbors given by (i − 1, j),
(i, j − 1), (i + 1, j) and (i, j + 1). These nodes are numbered
V1, V2, V3 and V4, respectively. We also can compute the terrain
slope at point s (i, j). It is defined as the projection of the surface
normal over the domain D.

Figure 5: Neighborhood of a lattice node.

For each grid node (i, j) a particle counter is associated, which
mimics the water held at terrain point (i, j, ϕ(i, j)). The particle
system is used in order to update the field of counters of the lattice.
The elevation and the slope define the stationary fields of the model.
The water particles evolution updates the counter field which will
be a non-stationary one.

The particles movement are discrete; that means, each particle
moves from one lattice node to another one in the neighborhood,
in the time step 4t. Therefore, given a particle at the position
(i, j) and its slope −→s (i, j), we can define its direction of move-
ment through the Algorithm 1.

Specifically, the particle moves from a node (i, j) to a nearest
neighbor P , if the corresponding lattice direction P−(i, j) is closer
the slope direction at (i, j) and the high of the water free surface at
(i, j) is greater than in P . This is verified in the 4th line in the Al-
gorithm 1. A four bit string n1(i, j), n2(i, j), ..., n4(i, j) is related
to each node (i, j) of the lattice. We set nk(i, j) = 1 if the node
(i, j) has one particle to send to the neighbor k, as we will see in
the Algorithm 2, in the 14th line, explained below.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 171

Algorithm 1 : findVelocityDirection

1: P ⇐ findV elocityDirection(i, j,−→s);
2: V ⇐ {(k, l) | (i, j)− (k, l) |≤ 1};
3: while V 6= NULL do
4: P ⇐ arg min{arc(−→s , (k, l)− (i, j)), (k, l) ∈ V };
5: Delete P from V ;
6: P ⇐ NULL;
7: end while
8: return P ;

The Algorithm 2 summarizes the whole method. The inputs are the
elevation function ϕ and the precipitation P (t). In the initializa-
tion step, we must initialize the field nk(i, j), the particle counter
counter(i, j) and the slope field s(i, j). In the first loop of the sim-
ulation, given a particle at the position (i, j) and its slope −→s (i, j),
the direction of movement is obtained through Algorithm 1, and,
consequently, the four bits string n are updated. The second loop
of the simulation step updates the particle counters of each node
(i, j) and its neighbors.

Algorithm 2 : calculateWaterSurface()

1: Input:
2: Elevation function ϕ.
3: Precipitation P (t).
4: Initialization:
5: Define the lattice L;
6: nk(i, j) ⇐ 0, counter(i, j) ⇐ 0, (i, j) ∈ L;
7: Compute the slope −→s (i, j), (i, j) ∈ L;
8: Simulation:
9: for each (i, j) ∈ L do

10: P ⇐ findV elocityDirection(i, j,−→s);
11: nl(i, j) = 0, l = 1, 2, 3, 4;
12: for l ∈ {1...4} do
13: if P = Vl then
14: set nl(i, j) = 1;
15: end if
16: end for
17: end for
18: for each (i, j) ∈ L do
19: counter(i, j) ⇐ counter(i, j) − n1(i, j) − n2(i, j) −

n3(i, j)− n4(i, j) + P (t);
20: counter(i− 1, j) ⇐ counter(i− 1, j) + n1(i, j) + P (t);
21: counter(i, j + 1) ⇐ counter(i, j + 1) + n2(i, j) + P (t);
22: counter(i + 1, j) ⇐ counter(i + 1, j) + n3(i, j) + P (t);
23: counter(i, j− 1) ⇐ counter(i, j− 1) + n4(i, j) + P (t);
24: end for

The result is a function

f(i, j, t) = ϕ(i, j) + β · counter(i, j, t), (8)

which gives the high of the free surface flow f , at the point (i, j) in
the simulation time t (β is a scale parameter). We shall emphasize
that the algorithm does not suffer from numerical stability issues
because the floating point fields are stationary and the update of
the counter field is based on simple comparisons and integer arith-
metic. Besides, volume conservation, an important issue to accurate
simulates the flood distribution, is straightforward verified because
all operations are conservative with respect to the number of parti-
cles. This algorithm can be generalized for DTMs that approximate
the terrain surface for triangulations, as demonstrated in [Barcellos
et al. 2008; Barcellos et al. 2007].

5 GPU-Based Simulation Model

The algorithm described in section 4 for surface flow simulation in
DTMs is based on a cellular automaton approach, with local and
simple rules. Therefore it may be very suitable for a GPU imple-
mentation. The main idea is to encode the information needed in
the simulation as textures into the video memory (see [Barcellos
et al. 2008] for more details).

The Figure 6 gives an overview of the whole GPU processing. At
each interaction of the main loop a 2D texture, called Property
Texture, encoding the automaton configuration is generated as fol-
lows. To each texture point (i, j) it is associated the index k, such
that each color channel represents a different data: the four bit string
nk(i, j) = 1; k = 1, 2, 3, 4, the terrain elevation ϕ(i, j) and a
particle counter, respectively channels R, B and G. Based on the
Property Texture a RGBA texture is generated, named Incident
Directions Texture, with each channel been a flag that is set to 1 if
the corresponding neighbor of a node has one particle to send to its
position and set to 0 otherwise.

By using the Incident Directions Texture and the particles counter
at time interaction t, two new fields are generated at time t + 1.
One with the updated particle counters and a second field with the
elevation of the free surface flow f(i, j) at each (i, j) node of the
lattice. These fields will be composed to form the new Property
Texture and the Free Surface Texture, at time t + 1, represented
on Figure 6. Then, the visualization pipeline starts, producing a
new texture to encode the normal field of the free surface, called
Normal Vector Texture in Figure 6.

Property
(t)

Update
Incident

Directions

Incident Directions
(t)

Update
Free

Surface

Property
(t + 1) (t + 1)

Free Surface

Compute
Normals

Normal Vectors

VBO

Figure 6: GPU processing for the surface flow animation.

The Normal Vector Texture and the Free Surface Texture are
used as input to the Vertex Buffer Object (VBO), as Figure 6 shows.
The VBO will be managed as a Vertex Array to render the final visu-
alization of the free surface of the fluid. Therefore, the whole com-
putation (simulation and visualization) is performed in the GPU.
This scheme allow us to minimize the information flow between
the CPU and the GPU and improve the performance of the applica-
tion. The GPU implementation is summarized by the algorithm 3.
The corresponding shader are described in [Barcellos et al. 2008].

Algorithm 3 : GPU Simulation()

1: Input:
2: Property Texture (Velocity, Terrain Elevation, Particles

Counter);
3: Simulation:
4: Update Incident Directions;
5: Update Free Surface;
6: Compute Normals;
7: Send Results to Vertex Array;
8: Visualization:
9: Draw Vertex Array;

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 172

6 Interaction between Models

Our proposed framework for real time fluid animation is based on
two elements: (a) A 3D fluid simulation model based on the FHP
and interpolation techniques, that is implemented in CPU; (b) The
surface flow simulation in DTMs, that is implemented in GPU. To
integrate this two elements we have to implement a communication
between then through a suitable boundary condition.

We use the 3D FHP to simulate a rainfall over a random region of
the terrain, chosen by the user. After setting the initial configuration
and parameters, we can start the evolution of the system. The Figure
7 shows the interaction between the models in each time step.

CPU GPU

SIMULATE
SURFACE FLOW

SEND LATTICE
OF HEIGHTS

SEND LATTICE
OF PRECIPITATION

SIMULATE
3D FLUID

Figure 7: Interaction between models in each time step.

Basically, the rainfall has to evolve to reach the terrain. This is
what happens in the Simulate 3D Fluid box in CPU (Figure 7).
In each time step the microscopic particles of the 3D FHP evolve
following the rules explained in section 3. After that, the system
has to know if some of these particles have overtaken the limits of
the three dimensional fluid (FHP). To perform this task, the GPU
implementation has to send to the CPU implementation a lattice
with the information about the field computed by the expression (8)
at each node (i, j). With this data, the system can check all the new
position of the 3D FHP particles: if the particle has reached the
limit it dies in the FHP grid and feed the lattice of the LGCA for
water flow simulation. So, the CPU implementation has to send to
the GPU implementation the updated particles counter field. The
corresponding precipitation is used in the algorithm 2, updating the
P (t) variable. Then, the GPU implementation is able to simulate
the fluid behavior over the terrain, what is represented in Figure 7 by
the Simulate Surface Flow box in GPU. The GPU implementation
has to update the free surface elevation, given by expression (8).

7 Experimental Results

In this section we describe details of the implementation and some
experiments with the proposed framework. In these experiments
we show the behavior of the fluid in different digital terrain models
and highlight aspects that can be useful for computer graphics and
real time applications: simple to initialize the animation, simulation
over complex topography and computational efficiency.

The framework was developed in C/C + + language, with GLUI
[Rademacher 1999; Stewart 2006] library for the graphic inter-
face. The visualization was implemented in OpenGL [Wright et al.
2007]. To increase the scene realism we applied the environment
mapping technic , the point sprite method to render the rainfall and
Fresnel effects (based on the physical laws of reflection and refrac-
tion) to render the water free surface. The shaders was implemented
in OpenGL Shading Language.

The experiments were performed in a Intel Core 2 Duo
2.66 GHz, with 4 GB of RAM and a Video Card NVidia
GeForce 8800 GTX, running Windows XP. The pictures
included in this paper are snapshots obtained from the
framework. The corresponding videos can be found in
http://virtual01.lncc.br/∼barcellos/videosSBGames2008.zip

7.1 Particles Visualization

The microscopic particles of the FHP are initialized in random posi-
tions at the top of the bounding box. As the system evolve, new mi-
croscopic particles are born to feed the rainfall flow. As explained
in section 3, with simple interpolation techniques we can fill the
3D macroscopic fields (density and velocity) over a regular grid. In
this way we can estimate the particle density (equation (5)) at each
node of the grid, and visualize then using the Point Sprite method.
Meanwhile, we can observe the patterns of a regular grid, as shown
in Figure 8.(a).

(a) (b)

Figure 8: Particles visualization: (a) Microscopic particles; (b)
Macroscopic particles.

To avoid this patterns we use a set of macroscopic particles at ran-
dom positions, inside the bounding box of the rainfall. This macro-
scopic particles move according to the macroscopic velocity field,
following expressions (6) and (7). In this way we have a more real-
istic visualization of the rainfall, as shown in Figure 8.(b). That is
the way in the following examples, we render macroscopic particles
to visualize the rainfall.

7.2 Fluid Behaviors

Before initialize the framework the user has to decide which digital
terrain model he wants to use in the simulation. Then, the graphical
user interface implemented allows to interactively place the rainfall
domain over the terrain. Figure 9 shows some examples of digital
terrain models and a bounding box that represents the location of
the 3D fluid model. With the environment mapping technique we
are able to generate different environments, like a sunny or cloudy
day.

The Figure 10 shows some snapshots of the fluid motion with the
downhill path over the terrain surface and affected regions. As ex-
pected, the water flows directly downhill and it takes the easiest
downhill path that is available.

The lake formation can be better observed in Figure 11. We can
notice, along time evolution, the enlargement of the flooded area,
generating a watershed. A watershed is an area of land that drains
downhill to a body of water, such as a river. It includes both the
waterway and the land that drains to it.

The Figure 12 shows a concave region in the terrain digital model
and the the water accumulation along time evolution.

7.3 Computational Efficiency

The examples of section 7.2 where performed with 20 × 30 × 30
(height × width × depth) nodes in the 3D fluid simulation. We
use a 256 × 256 lattice resolution for the surface flow simulation.
Both initialization as particle generation methods for the particles
of the FHP and for the set of macroscopic particles are random.
The microscopic particles iterate following the rules explained in
section 3. In our implementation the FHP particle are restricted to
the bounding boxes pictured in Figure 9. If a microscopic particle
goes outside this volume it is discarded by the simulation. The set
of macroscopic particles iterate following the FHP velocity field.
We use radius = 5 in expression (6) and σ = 0.0015 in expression
7. All the examples were simulated until 3000 frames.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 173

(a) (b)

(c) (d)

Figure 9: Examples of FHP bounding box over some DTMs with
different environments: (a) Cloudy day at Mars terrain; (b) Sunny
day at Puget Sound terrain; (c) Canyon terrain with sunrise; (d)
Starry night at Venus terrain.

(a) (b)

(c) (d)

Figure 10: Fluid motion: (a) At initial time steps; (b) After 400
steps; (c) Configuration after 1200 time steps; (d) After 3000 steps.

(a) (b)

(c) (d)

Figure 11: The lake formation: (a) At initial configuration; (b)
After 60 steps; (c) After 900 steps; (d) After 3000 steps.

(a) (b)

(c) (d)

Figure 12: The water accumulation: (a) At initial configuration;
(b) After 940 steps; (c) After 1500 steps; (d) After 3000 steps.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 174

The time measurements presented in Table 1 were performed in or-
der to compare the increase of the FPS when using different 3D
FHP grid dimensions, as to observe what happens with the num-
ber of the FHP particles per frame and the accumulated particles
in the water flow over the terrain. We maintain the configuration
explained above and the Puget Sound as the terrain model.

Table 1: Table listing the 3D FHP grid dimensions (height× width
× depth), the average number of FHP particles per frame, the ac-
cumulated number of particles in the water flow over the terrain,
the average number of Macro particles per frame and finally the
frames per second rates(FPS).

FHP Grid FHP Water Macro FPS
1) 10× 10× 10 772 479 61 60
2) 10× 20× 20 4333 26033 178 44.78
3) 10× 30× 30 10653 64549 383 31.91
4) 10× 40× 40 19343 121747 651 22.72
5) 20× 10× 10 6541 14958 35 60
6) 20× 20× 20 5686 1029 274 37.50
7) 20× 30× 30 16464 41086 553 25
8) 20× 40× 40 32219 104146 937 16.04
9) 30× 10× 10 11620 16343 44 56.60

10) 30× 20× 20 36535 54453 165 35.29
11) 30× 30× 30 18397 1381 765 19.35
12) 30× 40× 40 40038 56094 1230 12.24
13) 40× 10× 10 14380 14853 53 53.57
14) 40× 20× 20 52295 54265 191 30.61
15) 40× 30× 30 104865 118215 454 17.65
16) 40× 40× 40 42559 2039 1572 10.27

The 7th line shows the 3D FHP grid configuration used to generate
the examples of section 7.2. We can observe that it returns a 25
FPS, which is closer a real time one. Other configurations, like the
30 × 20 × 20 (line 10th), gives a FPS that goes beyond the real
time frame rate.

The frame rate is very dependent from the number of FHP nodes
and particles. However, once the FHP particles that goes outside
the bounding box is simply discarded, it is possible that two similar
configurations show different frame rates. That is why the experi-
ments reported in the 2nd and 13th lines have the same number of
nodes (4000) but the FPS is larger in the latter one.

We can observe that the experiment reported in the 13th line has
a highest bounding box (height = 40) than the one in the 2nd line
(height = 10), which ensures a large average number of FHP parti-
cles per frame in the first case (14380 against 4333). However, due
to be higher, the experiment reported in the 13th line has a larger
number of discarded particles (the particles that goes outside the
bounding box), which means that it contributes less to the precipi-
tation over the terrain (14853 against 26033).

Once the surface flow simulation is performed in GPU, an im-
portant concern is the accuracy of the numerical simulation. The
graphics hardware used supports 4 bytes per color channel which
fits the requirement on the accuracy of the computation.

Table 2: Table listing the lattice dimensions, the average number
of FHP particles per frame, the accumulated number of Water Par-
ticles in the surface flow and the frame rate.

Lattice FHP Water FPS
128× 128 15884 53911 32.9
256× 256 19163 71345 24.8
512× 512 19219 77390 13.6

In the Table 2 we report the FPS evolution against the lattice res-
olution. If we keep parameters for the rainfall simulation and vi-
sualization unchanged, we get lower frame rates when increasing
the lattice resolution because the computational cost of the surface
flow simulation gets larger. Figure 13 pictures the effect of the lat-
tice resolution in the final scene visualization. According to Table
2 we have a real time frame rate in this case. We observe also that
the visual quality of the generated scene was preserved quite well.

Figure 13: 128× 128 digital terrain model.

8 Conclusion and Future Works

In this work, we propose a framework for fluid animation based
on Cellular Automata models for computer games. The new ani-
mating framework is composed by a 3D fluid animation technique
and a GPU surface flow simulation over terrain models. In the ex-
perimental results we emphasize the simplicity and power of the
proposed models when combined with efficient techniques for ren-
dering.

Future directions in this work are to perform a GPU implementation
of the fluid model in order to improve performance and to compare
the obtained results with the Lattice Boltzmann model to quantify
the level of physical realism obtained.

Acknowledgements

To João Vicente P. Reis Filho, for all the discussions.

References

BARCELLOS, B., GIRALDI, G. A., SILVA, R. L., APOLINARIO,
A. L., AND RODRIGUES, P. S. S. 2007. Surface flow animation
in digital terrain models. In SVR 2007 - IX Symposium on Virtual
an Augmented Reality, 123–132.

BARCELLOS, B., GIRALDI, G. A., APOLINARIO, A. L., AND
RODRIGUES, P. S. S. 2008. Gpu surface flow simulation and
multiresolution animation in digital terrain models. Tech. rep.,
National Laboratory of Scientific Computing.

BATTY, C., BERTAILS, F., AND BRIDSON, R. 2007. A fast varia-
tional framework for accurate solid-fluid coupling. ACM Trans.
Graph..

BENZI, R., SUCCI, S., AND VERGASSOLA, M. 1992. The lattice
boltzmann equation: Theory and applications. Physics Reports.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
treatment of collisions, contact and friction for cloth animation.
In SIGGRAPH ’02.

BUICK, J. M., EASSON, W. J., AND GREATED, C. A. 1998.
Numerical simulation of internal gravity waves using a lattice
gas model. Int. J. Numer. Meth. fluids.

CHOPARD, B., AND DROZ, M. 1998. Cellular Automata Modeling
of Physical Systems. Cambridge University Press.

DEUSEN, O., EBERT, D. S., FEDKIW, R., MUSGRAVE,
F. K., PRUSINKIEWICZ, P., ROBLE, D., STAM, J., AND
TESSENDORF, J. 2004. The elements of nature: Interactive

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 175

and realistic techniques. In SIGGRAPH ’04: ACM SIGGRAPH
2004 Course Notes.

DOOLEN, G. 1990. Lattice Gas Method for Partial Differential
Equations. Addison-Wesley.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Ani-
mation and rendering of complex water surfaces. ACM Trans.
Graph..

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liq-
uids. In SIGGRAPH ’01.

FOSTER, N., AND METAXAS, D. 1997. Modeling the motion
of a hot, turbulent gas. In SIGGRAPH ’97: Proceedings of the
24th annual conference on Computer graphics and interactive
techniques.

FRISCH, U., HASSLACHER, B., AND POMEAU, Y. 1986. Lattice-
gas automata for the navier-stokes equation. Phys. Rev..

FRISCH, U., D’HUMIÈRES, D., HASSLACHER, B., LALLE-
MAND, P., POMEAU, Y., AND RIVET, J.-P. 1987. Lattice gas
hidrodynamics in two and three dimension. Complex Systems,
649–707.

FRISCH, U., D’HUMIÈRES, D., HASSLACHER, B., LALLE-
MAND, P., POMEAU, Y., AND RIVET, J.-P. 1987. Lattice gas
hydrodynamics in two and three dimension. Complex Systems.

2004. In Game Programming Gems, K. Pallister, Ed. Charles River
Media, Cambridge, MA.

GENEVAUX, O., HABIBI, A., AND DISCHLER, J.-M. 2003.
Simulating fluid-solid interaction. In Graphics Interface.

GIRALDI, G., XAVIER, A., JR, A. A., NETO, A., AND RO-
DRIGUES, P. 2005. Animation of gas-liquid systems through
lattice gas cellular automata and smoothed particle hydrodynam-
ics. In Proceedings of the CNMAC 2005.

2005. In GPU Gems 2, M. Pharr, Ed. Addison Wesley.

GUENDELMAN, E., SELLE, A., LOSASSO, F., AND FEDKIW, R.
2005. Coupling water and smoke to thin deformable and rigid
shells. In SIGGRAPH ’05.

HIRSCH, C. 1988. Numerical Computation of Internal and Ex-
ternal Flows: Fundamentals of Numerical Discretization. John
Wiley & Sons.

IGLESIAS, A. 2004. Computer graphics for water modeling and
rendering: a survey. Future Gener. Comput. Syst..

INAMURO, T., OGATA, T., AND OGINO, F. 2004. Numerical sim-
ulation of bubble flows by the lattice boltzmann method. FU-
TURE GENERATION COMPUTER SYSTEMS 20, 6, 959–964.

KRGER, J., AND WESTERMANN, R. 2005. Gpu simulation and
rendering of volumetric effects for computer games and virtual
environments. In In Proceedings, Eurographics, 685–693.

LIU, G. R., AND LIU, M. B. 2003. Smoothed Particle Hydrody-
namics : a Meshfree Particle Method. World Scientific.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In Proceed-
ings of ACM SIGGRAPH symposium on Computer animation.

MÜLLER, M., KEISER, R., NEALEN, A., PAULY, M., GROSS,
M., AND ALEXA, M. 2004. Point based animation of elastic,
plastic and melting objects. In SCA ’04: Proceedings of the
2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation.

MÜLLER, M., SCHIRM, S., AND TESCHNER, M. 2004. Inter-
active blood simulation for virtual surgery based on smoothed
particle hydrodynamics. Technol. Health Care 12, 1, 25–31.

PREMOZE, S., TASDIZEN, T., BIGLER, J., LEFOHN, A., AND
WHITAKER, R. 2003. Particle-based simulation of fluids. Com-
puter Graphics Forum 22, 3.

RADEMACHER, P. 1999. GLUI: A GLUT-Based User Interface
Library. Último acesso em 25/05/2006, June.

ROTHMAN, D. H., AND ZALESKI, S. 1994. Lattice-gas models
of phase separation: Interface, phase transition and multiphase
flows. Rev. Mod. Phys.

SOLENTHALER, B., SCHLAFLI, J., AND PAJAROLA, R. 2007.
A unified particle model for fluid-solid interactions. Comput.
Animat. Virtual Worlds.

STAM, J. 1999. Stable fluids. In Siggraph 1999.

STAM, J. 2003. Real-time fluid dynamics for games. In Proceed-
ings of the Game Developer Conference.

STAM, J. 2003. Flows on surfaces of arbitrary topology. In SIG-
GRAPH ’03.

STEWART, N. 2006. GLUI User Interface Library. Último acesso
em 25/05/2006.

WENZEL, C. 2006. Real-time atmospheric effects in games. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses, 113–128.

WOLFRAM, S. 1996. Cellular au-
tomata and complexity. Addison-Wesley,
http://www.stephenwolfram.com/publications/articles/ca/86-
fluids/index.html.

WRIGHT, R. S., LIPCHAK, B., AND HAEMEL, N. 2007. OpenGL
SuperBible (4rd Edition). Addison-Wesley Professional.

XAVIER, A. V., GIRALDI, G. A., RODRIGUES, P. S., JR, A.
L. A., AND NETO, A. A. S. 2005. Lattice gas cellular au-
tomata for computational fluid animation. In SIBGRAPI 2005
- Proceedings of the 4th Workshop of Theses and Dissertations,
1–6.

YE, Z., MAIDMENT, D., AND MCKINNEY, D. 1996. Map-
based surface and subsurface flow simulation models: An object-
oriented and gis approach. Tech. rep., Center for Research in
Water Resources, University of Texas at Austin.

ZHAO, Y., QIU, F., FAN, Z., AND KAUFMAN, A. E. 2007. Flow
simulation with locally-refined lbm. In SI3D, ACM, 181–188.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 176

Plataforma Saberlândia: Integrando Robótica e Multimídia no
Desenvolvimento de Jogos Educacionais

Ivete Martins Pinto¹, Silvia Costa Botelho¹, Rodrigo Chaves de Souza¹, Thiago Sonego
Goulart², Rafael Colares², Raphael Leite Campos²

¹Programa de Pós-Graduação em Educação em Ciências
²Curso de Engenharia de Computação

Universidade Federal do Rio Grande – FURG, Rio Grande – RS – Brasil

Resumo

Este artigo apresenta o Projeto SABERLÂNDIA,
uma plataforma para o desenvolvimento de jogos
educacionais que, a partir de contextos e conteúdos
fornecidos,, propicia a geração automática de jogos
de ação. O projeto SABERLÂNDIA tem como focos
principais: i. o desenvolvimento de sistemas de
autoria que estimulem a construção do conhecimento,
de forma lúdica, propiciando aos diferentes atores
(professores, aprendizes) atuarem como autor no
desenvolvimento destes jogos; ii. a utilização de
recursos multimídias como motivação, fazendo uso
de recursos de Realidade Virtual e Robótica. São
utilizadas técnicas de planificação associadas à IA
(Inteligência Artificial) para gerar a
seqüenciabilidade do jogo, utilizando-se o
formalismo STRIPS para definição genérica das
possíveis ações permitidas, definidas pelo autor. O
roteiro e conteúdos, fornecidos pelo autor, são então
inseridos de forma automática no plano do jogo. Um
conjunto de cenários pré-disponíveis, armazenados
em uma biblioteca de cenários e personagens, são
reproduzidos de forma virtual (com visualização 3D)
e em maquetes. Os personagens também são
disponibilizados de forma virtual e através de
sistemas robóticos, em kit fornecido. Habilidades
necessárias à jogabilidade são adquiridas através de
atividades de motricidade associadas ao sistema
robótico. A proposta encontra-se em fase final de
implementação, sendo apresentados testes e análises
do protótipo hoje existente.

Palavras-chave: jogos eletrônicos, jogos
educacionais, robótica, Planejamento (planning),
sistemas de autoria

1. Introdução

Conceber a aprendizagem como um processo de
interação em que todos participam, trocam e
compartilham conhecimentos é um dos caminhos
para substituir a concepção de aprendizado, na qual
os conhecimentos são apresentados pelo professor,

cabendo aos alunos a recepção passiva. A troca por
uma concepção mais dinâmica, na qual os
conhecimentos são socialmente (re) construídos,
conduzirá à uma interação que, não é senão uma nova
maneira de descrever o que se passa na história de
um sujeito, entre ele e o mundo, é a própria dinâmica
da aprendizagem (Merieu, 1998, p. 57).

As atividades lúdicas estimulam a curiosidade, a
autoconfiança, o potencial criador e a autonomia,
proporcionando o desenvolvimento da linguagem, do
pensamento, da concentração e atenção, exercendo
assim, função educativa.

Os jogos educativos são atividades lúdicas que
possuem objetivos pedagógicos especializados para o
desenvolvimento do raciocínio e aprendizado de
crianças e adultos.

Tendo o pedagógico como meta, deve-se atentar
ao fato de que a motivação não deva ser
desconsiderada. Por exemplo, por divertir e motivar
sabe-se que jogos de ação retêm a atenção e o
interesse de crianças e adolescentes, exercitando as
funções mentais e intelectuais dos jogadores. Se
convenientemente planejados, estes poderiam ser um
recurso pedagógico eficaz para a construção do
conhecimento.

O uso de recursos tecnológicos, dentre eles o
computador e a Internet, pode vir a potencializar os
aspectos acima descritos, produzindo jogos
eletrônicos educativos, sempre que atrelado a
princípios teórico-metodológicos claros e bem
fundamentados. Defende-se que tais princípios
passam pela individualização dos aprendizes,
respeitando sua cultura, interesses, dúvidas e
incertezas. Busca-se assim aliar-se o lúdico às
necessidades e contexto do aluno, permitindo a estes,
e aos professores desenvolverem jogos educativos,
cujos cenários, roteiros, personagens, e outros
elementos, façam parte da sua realidade.

O presente trabalho visa apresentar um sistema
baseado em técnicas de planificação associadas à
Inteligência Artificial (IA) para a autoria de jogos

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 177

eletrônicos educacionais de ação, onde, a partir do
roteiro definido pelo autor, o jogo de ação é gerado
de forma automática. Além de o sistema oferecer aos
educadores e educandos a oportunidade de interagir
num ambiente lúdico, flexível e dinâmico, propõe-se
também neste artigo combinar a motivação associada
a jogos de ação/estratégia com diferentes recursos
tecnológicos como a Realidade Virtual e a Robótica.

A proposta está sendo implementada no projeto
SABERLÂNDIA, atualmente financiada pela FINEP,
através do Edital FINEP/MCT/MEC para
desenvolvimento de jogos educacionais para o ensino
fundamental.

As principais características deste sistema são: a
possibilidade dos atores envolvidos, alunos e
professores, serem “autores” dos roteiros de ação a
serem criados (jogo que faz jogo); a possibilidade de
utilização colaborativa do ambiente de aprendizado; e
a utilização de diferentes mídias integrando recursos
de realidade virtual e robótica; com portabilidade
para diferentes tipos e custos de máquinas.

Neste enfoque, a proposta propicia a criação de
jogos de aventura em terceira pessoa, onde o roteiro
do jogo possa ser fornecido pelos autores. Associados
ao roteiro, professores e alunos poderão criar
situações problemas, cenários e personagens de
acordo com a realidade das crianças envolvidas, além
da possibilidade de serem compartilhados de forma
remota entre diferentes grupos. Crê-se que através da
interação aluno/aluno, aluno/professor e
professor/professor, a educação pode ser
transformada em um processo dinâmico, motivador e
significativo.

A plataforma será validada em algumas escolas
do ensino fundamental da cidade de Rio Grande/RS.

A seguir contextualiza-se a proposta, seguida pela
apresentação da arquitetura do sistema desenvolvido,
seu estado atual de desenvolvimento, conclusões e
trabalhos futuros.

2. Contextualização

As tecnologias da informação e comunicação,
especialmente o computador, propiciam a
transformação dos mais diversos setores da
sociedade. A inserção da tecnologia computacional
na educação tem sido alvo de muitas pesquisas
(Lévy, 1995, 1999; Fagundes et al, 1999; Mantoan et
al, 1999; D’Abreu e Chella, 2001; Palloff e Pratt,
2002; Ramal, 2002; Behar et al, 2005; etc...),
evoluindo desde a introdução dos laboratórios de
informática nas escolas, desenvolvimento de
softwares educacionais, ambientes de ensino na Web,

sistemas de autoria e tutores inteligentes, robótica
pedagógica, realidade virtual e jogos educativos.

Apesar de algumas limitações, a escola busca
acompanhar os avanços tecnológicos, em sintonia
com os processos de transformação da sociedade em
meio a tais demandas. A utilização dos computadores
e da Internet permite a criação de ambientes de
aprendizagem que possibilitam novas formas de
pensar e aprender, favorecendo a aprendizagem ativa
e o desenvolvimento de processos metacognitivos
levando os alunos a aprender a aprender.

Os jogos educacionais, se convenientemente
planejados, são um recurso pedagógico eficaz para a
construção do conhecimento. Segundo Vygotsky
(1984), o brinquedo estimula a curiosidade e a
autoconfiança, proporcionando desenvolvimento da
linguagem, do pensamento, da concentração e da
atenção; através do brinquedo a criança aprende a
agir numa esfera cognitivista, habilitando-se a
escolher suas próprias ações.

Nesta perspectiva, salienta-se a importância do
jogo para o desenvolvimento de crianças e
adolescentes, como uma atividade que envolve
aspectos lúdicos, intelectuais, afetivos e sociais.
Além disso, os jogos educacionais podem ser
utilizados para introduzir e aprofundar conteúdos e,
se desenvolvidos considerando-se os pressupostos
pedagógicos adequados, podem se apresentar como
motivadores e facilitadores na construção do
conhecimento.

2.1 Saberlândia como sistema de autoria

Ao enfocar o uso de sistemas computacionais no
desenvolvimento de jogos, destaca-se a possibilidade
de potencialização do desenvolvimento de situações
significativas, levantamento de hipóteses e a
reconstrução de conceitos, bem como da interação
dos usuários em ambientes virtuais de aprendizagem.

Sob essa ótica, a construção dos conhecimentos é
um processo em que o sujeito elabora os significados
e não simplesmente os assimila, construindo o
caminho específico de sua evolução
(D´Ambrosio,1986, p. 14). Neste caminho, não
existem estruturas rígidas e únicas de
desenvolvimento pré-fixadas, o que existem são
caminhos individuais e coletivos que se pretende
alcançar. Caminhos estes associados às experiências
dos atores, as suas vivências e expectativas.

Esta proposta busca desenvolver um sistema de
autoria de jogos educacionais voltados ao ensino
fundamental, tendo como principais premissas a
motivação no processo de ensino e aprendizagem, o
tratamento do erro como parte desse processo, e a
interdisciplinaridade.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 178

Estas diretrizes conduzirão à implementação da
possibilidade de autoria, a partir da concepção do
professor e mesmo dos próprios alunos, os quais
definem o cenário, os personagens e o roteiro; tudo
isso aliado à utilização de recursos tecnológicos
diversos.

As ferramentas de autoria se caracterizam por
permitirem aos seus usuários que estes criem suas
próprias produções. Tais sistemas devem ser de fácil
operação, não necessitando de profundos
conhecimentos de programação (Valle Filho et al,
2000).

A utilização de ferramentas de autoria para o
desenvolvimento de jogos apresenta-se como uma
alternativa para diminuir o custo, o tempo e a
dependência em relação aos conhecimentos
específicos em computação que seriam necessários
para sua criação.

2.1 Saberlândia e os recursos tecnológicos

No sistema proposto, os recursos tecnológicos serão
disponibilizados como ferramentas didático-
pedagógicas, conforme o pressuposto do próprio
termo SABERLANDIA, o qual é entendido como um
espaço onde se propicia a criação dos seus próprios
saberes, de explicação, reformulação, de criação de
'teorias' através da ação, da operação e mesmo da
construção de sistemas simbólicos diferenciados.

Entende-se tal proposta como um sistema
cognitivo, considerando os sujeitos em atividade
cognitiva na interação uns com os outros e com as
tecnologias disponíveis. Este será construído na
interação entre sujeitos-sujeitos e sujeitos-objetos,
transformando-se na medida em que as interações
vão ocorrendo, sendo atualizado a cada solução
provisória, e sua natureza modificando-se a cada
problematização. Da mesma forma os sujeitos são
transformados na/pela interação.

Nesta proposta é apresentada a possibilidade da
autoria, sendo que no jogo, podem ser acoplados
sistemas robóticos, que visam reproduzir em um
tabuleiro as ações do avatar além dos recursos
multimídia. Dessa forma é disponibilizada uma
diversidade de mídias (som, vídeo, sistemas
robóticos,...) que privilegiam não só o acesso à
informação, mas também a troca e o
compartilhamento de idéias e ações, conduzindo a
educação a um processo cognitivo, abrangente e
transdisciplinar.

3. A Arquitetura SABERLÂNDIA

Formalismo do Jogo. Para implementar o sistema
proposto, formaliza-se o jogo das seguinte forma:

elementos gráficos: conjunto de objetos virtuais
a serem confeccionados pelo autor do jogo. Um
objeto, obji, é classificado pelo autor como sendo
um prêmio, barreira, chave ou cenário. Prêmios
são os elementos gráficos que devem ser
resgatados, barreiras são elementos gráficos que
restringem o acesso à obtenção dos prêmios e as
chaves são elementos gráficos que permitem a
liberação dos diferentes prêmios espalhados pelo
cenário. Finalmente, cenários são elementos
gráficos que compõe o ambiente de jogo, não
podendo, ao contrário dos demais, terem seu
estado modificado ao longo do jogo.

atributos: são características associadas aos
diferentes elementos do jogo, que podem ser
modificadas durante a partida. Um atributo, attrj,
descreve uma característica de um determinado
elemento obji, attrj(obji). O conjunto de atributos
verdadeiros em determinado instante de tempo t
descreve o estado do mundo W(t) associado ao
jogo.

ações: ao longo da partida, os atributos dos
diferentes elementos são modificados por
eventos que os jogadores realizam, conduzindo a
diferentes seqüências de estado de mundo. Estes
eventos são formalizados através de ações
descritas através do formalismo STRIPS (Silva,
2000). Neste formalismo, as ações são
compostas de três campos básicos: i. pré-
condições: conjunto de atributos que necessitam
ser verdadeiros para que a ação possa ser
aplicada, ii. efeitos de adição: atributos que são
adicionados ao estado do mundo W(t) após
aplicação da ação e iii. efeitos de remoção:
atributos que são deletados do mundo W(t) após
a realização da ação.

Dinâmica do Jogo. O formalismo adotado visa
permitir a descrição de diferentes dinâmicas de jogo.
Entretanto, devido à necessidade de visualização
gráfica dos efeitos das diferentes ações no ambiente
de jogo, neste primeiro momento busca-se
desenvolver um jogo de aventura em terceira pessoa
que permita a criação de diferentes roteiros que
envolvam situações virtuais e reais, onde
avatares/robôs devem procurar/resgatar elementos
dispostos em diferentes regiões do cenário
desenvolvido. Assim, parte-se de um conjunto de
ações cuja lista de efeitos é preestabelecida do ponto
de vista gráfico.

De acordo com o roteiro criado pelo autor, os
personagens explorarão tais cenários de forma
virtual, movimentando-se através de ambiente 3D ou
real, através da navegação teleoperada pelo
computador, e/ou dos veículos robóticos pelas
maquetes desenvolvidas.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 179

Ao longo da evolução do jogo, obtida através da
realização de ações pelos seus jogadores, prêmios são
resgatados, sendo apresentadas, ao jogador, partes do
roteiro criado, bem como os conteúdos relacionados
ao conhecimento a ser adquirido. Conteúdos podem
ter associados à testes e desafios, que validarão o
elemento resgatado ou não conforme resposta dada
pelo jogador.

Os resgates podem ser realizados de forma
individual por um jogador, ou de forma colaborativa
em grupo de jogadores.

A seqüência de prêmios a serem resgatados é
obtida de forma dinâmica através do uso de
planificadores advindos da Inteligência Artificial. O
planificador estabelece uma seqüência adequada de
ações a ser cumprida pelo jogador(es), em função do
conjunto de elementos descritos, nível do aluno e
características do conteúdo a ser apresentado.

Tal dinâmica é implementada em uma plataforma
multi-tecnológica, onde a partir de cenários e
personagens, próprios à realidade dos grupos,
utilizam-se situações-problema como ferramentas
pedagógicas de ensino colaborativo. Para tal, o
sistema SABERLÂNDIA é dividido em três módulos
principais: o i. Módulo de Autoria, ii. Módulo Jogo, e
o iii. Módulo Recursos Multi-Tecnológicos. A seguir
detalham-se as características e metodologia
associadas a cada um destes módulos.

3.1 Módulo Autoria

O módulo autoria é responsável por permitir a
criação de diferentes cenários e personagens, bem
como diferentes roteiros e conteúdos associados às
características do grupo e conhecimentos a serem
trabalhados. O módulo é composto de dois principais
blocos: i. o editor de jogo e ii. a biblioteca de
elementos .

3.1.1. O Editor de Jogo

Foi desenvolvido um sistema de edição visando
possibilitar a autoria do roteiro, conteúdos, cenários e
personagens. Tal sistema é baseado na biblioteca de
código aberto Radiant, utilizado pela Id Software na
criação do jogo Quake.

Editando cenários e Personagens: partindo-se de
um cubo que encapsula todo o cenário onde o jogo se
passará, o Editor de Jogo permite a criação de objetos
tridimensionais simplificados, utilizados para criação
de paredes e demais objetos que possuam formas
geométricas primitivas. Podem também ser definidos
scripts que possibilitam a criação de efeitos como:
texturas com diversos graus de transparência,
chamadas de Alpha Channel; propriedades de

penetração e densidade. Elementos gráficos podem
ser criados e colocados no cenário, associando-se a
estes atributos (regiões a que pertencem, estados
quanto a resgate, abertura, etc), bem como
categorias (prêmio, barreira, chave ou cenário) e
roteiros/conteúdos relacionados. Cada atributo
especificado, se modificável ao longo do jogo, deve
possuir descrição de ação que permita tal
modificação.

Editando Roteiros e Conteúdos: como
apresentado anteriormente, o SABERLÂNDIA
apresenta a implementação de um jogo de aventura
em terceira pessoa, cujo objetivo do(s) personagens é
resgatar elementos (prêmios) distribuídos no cenário.
Mesmo partindo de tal dinâmica de jogo fixa, o
sistema permite a criação de diferentes roteiros, que
associados à conteúdos distintos, permite o
desenrolar de diferentes histórias ambientadas em
diferentes cenários e realizadas por diferentes
personagens.

O roteiro é apresentado ao longo do jogo. Ações
realizadas pela obtenção de chaves, aberturas de
barreiras e resgate de prêmios conduzem a
apresentação de partes da história ao jogador. Esta
história é fornecida pelo autor através de uma
interface que permite a criação de textos com
diferentes recursos multi-mídia (som, imagens e
filmes). Conteúdos podem ser associados a tais
ações, inclusive com a disponibilidade de inserção de
questões de múltipla escolha associadas a estes. Cabe
ao autor definir um ordenamento parcial de
apresentação de tal roteiro/conteúdo ao jogador.

O autor pode fixar conteúdos/trechos de roteiros à
ações específicas, ou pode delegar tal associação ao
próprio planificador do SABERLÂNDIA. Neste caso
de forma automática, o sistema atrelará o roteiro a ser
apresentado ao aluno às diferentes possíveis ações a
serem realizadas ao longo da partida.

3.1.2 A Biblioteca de Elementos

Para criação de objetos mais complexos, com formas
orgânicas, como avatares, terrenos, carros ou árvores,
é requerida a utilização de softwares que envolvam
maior complexidade na manipulação. A fim de que,
professores e estudantes, não estivessem privados do
uso destes objetos, foi criado um banco de objetos
modelados em low-poly (modelos com menor
número de polígonos) e texturizados com
mapeamento UVW. Desta forma, ao criarem seus
mapas os usuários poderão simplesmente agregar
estes elementos. Assim, a Biblioteca de Elementos
implementa uma biblioteca virtual com objetos em
3D, tais como casas, ruas, relevos, rios, etc,
permitindo compor diferentes cenários. Um conjunto
de personagens virtuais também é disponibilizado,
desde elementos mais genéricos como meninos e

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 180

meninas, passando por animais, personagens de
lendas, etc...

De posse da biblioteca virtual, figuras
representativas dos cenários e personagens poderão
ser impressas (via impressora comum) e anexadas às
maquetes de elementos de cenários e sistemas
robóticos entregues através de kit. As figuras poderão
ser facilmente anexadas, recolocadas e retiradas das
maquetes e sistemas robóticos.

3.2 Módulo Jogo

Este módulo é responsável pelo controle e realização
do jogo, incorporando conceitos pedagógicos à
plataforma. De forma mais precisa, o módulo é
responsável pelas seguintes atividades: i. Roteiro de
Partida, ii.Motor de Jogo e iii. Interface Interativa.

3.2.1 O Roteiro da Partida

A proposta visa o uso de jogos como ferramenta
educacional. Conteúdos serão associados ao jogo, de
forma que ao longo de cada partida sejam
apresentados ao jogador/aluno conhecimentos a
serem transmitidos. O Autor do jogo estabelece tais
conteúdos fixando, a priori, apenas uma ordenação
parcial entre estes. O planificador além de estabelecer
a seqüência de ações a ser realizada para obtenção
dos prêmios a cada partida, distribui também o
conteúdo informado pelo autor, respeitando o
ordenamento parcial fornecido.

A seqüência de ações, com seus devidos
conteúdos, fornecida pelo planificador constitui o
roteiro da partida. Mais do que a implementação de
um jogo de resgaste de elementos através de cenário,
o SABERLÂNDIA permite que a cada nova jogada,
sejam estabelecidas diferentes ações de resgate,
resultando em diferentes seqüências de obtenção de
chave/barreira/prêmio, respeitando apenas a relação
de precedência entre os conteúdos fornecidos pelo
autor do jogo.

Criando Novas Partidas: o planificador, a partir
do estado de mundo inicial, Wt0, definido pelo autor,
gera a cada nova partida, de forma autônoma, uma
seqüência de ações de procura/resgate a ser realizado
pelo jogador.

Conjunto de diferentes custos podem ser
atribuídos a cada tipo de ação conduzindo a partidas
diferentes. Pode-se modificar tais custos ao longo do
jogo, em função da atuação do(s) jogadores(s),
conduzindo a possibilidade de uma dinâmica de jogo
auto-configurável on-the-fly pelo sistema. Ou seja, o
jogo percebendo a atuação do aluno, pode ter seus
objetivos modificados durante cada partida.

3.2.2 O Motor do Jogo

O Motor do Jogo é o conjunto de procedimentos que
controlam a evolução do jogo. Tais procedimentos
associam-se a duas atividades principais: i. a
verificação, monitoramento e liberação das possíveis
ações, actioni, a serem realizadas no tempo t; ii.
atualização do estado do mundo W(t+1) após a
aplicação das ações, actioni, em t.

A cada instante t, tem-se como verdadeiro um
conjunto de atributos attri(objj) que descrevem o
estado do mundo, Wt. O motor de jogo verifica quais
ações são aplicáveis em t, . permitindo que estas
sejam realizadas pelo jogador.

Uma vez realizadas as ações, actioni ,pelo
jogador em t, o Motor de Jogo é responsável por
atualizar o novo estado do mundo em (t+1), Wt+1.
através da adição e deleção de atributos associados ao
efeitos de actioni,, bem como é responsável pela
apresentação dos conteúdos e pontuação do(s)
jogadore(s) de acordo com o roteiro estabelecido pelo
autor e fornecido pelo planificador.

Cabe também ao Motor do Jogo a avaliação do
desempenho do jogador, de forma a adequar a
dinâmica do jogo aos atores envolvidos a partida
corrente.

3.3.3 A Interface Interativa

A interface interativa é responsável pela renderização
e visualização do sistema 3D. A interface deve
apresentar graficamente ao(s) jogador(es) os
diferentes objetos e seus atributos presentes a cada
estado do mundo Wt . Tal representação deve
considerar aspectos inclusive de simulação física dos
elementos.

A interface interativa desenvolvida é baseada no
motor de jogo do Quake 3: Arena1 [__]. A interface
permite o gerenciamento das diversas possibilidades
de interação com o ambiente, de forma a seguir
estritamente a dinâmica gerada pelo planificador. É
também responsável por gerenciar os conteúdos que
foram inseridos pelo educador e apresentá-los ao
jogador de uma forma que estes não possam ser
simplesmente ignorados, e sim que sejam parte
fundamental da estrutura do jogo.

3.3 Módulo Recursos Multi-Tecnológicos

O módulo Recursos Multi-Tecnológicos congrega
uma série de recursos multi-mídias que podem ser
inseridos pelo autor e utilizados durante o jogo. Uma
série de recursos estão presentes, tais como:

1 O jogo Quake 3 teve seu código liberado pela
desenvolvedora Id Software [__[, sob licença GPL
[__].

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 181

possibilidade de inclusão de vídeos, imagens e
sons nos ambientes, retratando, inclusive, em
tempo real a situação dos participantes,
utilização de sistemas robóticos de baixo custo,
compostos de pequenos veículos teleoperados,
que permitem a realização de ações da mesma
forma que personagens virtuais no cenário
virtual do jogo.
maquetes compostas de diferentes blocos cujo
layout possa ser modificado, e que compõem
cenário real a ser explorado pelos robôs.
sistema para a comunicação entre o jogo virtual e
o sistema robótico;
disponibilização online da plataforma com
possibilidade de uso remoto por diferentes
jogadores.

Com base no formalismo apresentado e nos
módulos descritos é possível o desenvolvimento de
um sistema de autoria para jogos de ação bastante
genéricos. De forma a permitir sua efetiva utilização
por professores do ensino fundamental, optou-se por
restringi-lo a criação de jogos de ação em terceira
pessoal, associado a busca/resgate de prêmios. O
sistema efetivamente implementado apresenta-se
descrito na próxima sessão.

4. A Implementação do Jogo
SABERLÂNDIA – Testes e Análises

Um sistema de autoria que possibilite a criação de um
jogo de ação onde o objetivo principal é fazer com
que o jogador explore os vários ambientes existentes
em busca de um objetivo, possibilitando a existência
de diferentes tramas foi desenvolvido.

Para avançar no jogo, o jogador deve seguir uma
ordem específica de interações com objetos do
ambiente, fornecidas de forma automática por um
planificador. Tais interações liberam ações que antes
não seriam possíveis.

As interações ocorrem da seguinte forma:
enquanto move-se livremente pelos locais acessíveis
do mapa, o jogador é sinalizado na tela ao encontrar
um objeto com o qual pode executar alguma ação; ao
interagir podem ser apresentados conteúdos e
desafios que devem ser superados para possibilitar o
avanço.

Os conteúdos/desafios são fornecidos pelos
próprios professores, contextualizados conforme sua
vivência, e podem ser apresentados em forma de
questões de múltipla escolha, para facilitar a
"comunicação" entre o aluno e o computador, ou
através de respostas discursivas. Inserir os conteúdos
na criação do jogo é uma tarefa simples, não

necessitando conhecimento técnico por parte dos
educadores.

Além de um jogo-modelo completo acompanhar a
Plataforma Saberlândia, é disponibilizada uma
ferramenta de edição de jogos, permitindo ao usuário
a criação de seus próprios jogos, bem como
bibliotecas de modelos prontos. A ferramenta,
baseada na biblioteca Radiant, utilizado pela Id
Software na criação do jogo Quake, é apresentada na
figura 1.

Esta ferramenta permite a criação de brushes, os
quais são objetos tridimensionais simplificados,
ideais para criação de paredes e demais objetos que
possuam formas geométricas primitivas. Neste
mesmo programa é possível a aplicação de texturas
sobre a superfície destes brushes, seu mapeamento, a
iluminação do cenário e a inserção de pontos
específicos de materialização dos personagens no
jogo.

Figura 1: Editando cenários e personagens

Por meio da utilização de scripts, já
implementados, é possível a criação do skybox,
composto por texturas especiais aplicadas sobre as
superfícies de um cubo que envolve o cenário, o qual
dará origem a atmosfera do jogo. A utilização de
scripts permite também a criação de efeitos como:
texturas com diversos graus de transparência, a
criação de água, onde os brushes terão propriedades
de penetração e densidade; água corrente e
movimento de fogo e fumaça.

A figura 2 apresenta alguns dos cenários
desenvolvidos e que compõem a biblioteca do jogo:

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 182

Figura 2: Alguns Cenários do jogo “Os quatro
elementos”

Além de criar e compilar os mapas, o editor
também é responsável por gerar uma estrutura lógica
das áreas de um mapa que será usada como entrada
no planificador. Esta entrada é apresentada em
linguagem específica, gerada a partir de uma análise
lógica dos modelos e estruturas do mapa.

Foi utilizado o planificador IPP escrito em C++
utilizando linguagem PDDL no domínio STRIPS. A
seguir é apresentado um exemplo de elementos
gráficos fornecidos ao planificador e que compõem
os componentes do jogo.

(((DOMAINS::PEGA-ITEMDOMAINS::AVA DOMAINS::ITEM3 DOMAINS::REG1
DOMAINS::AREA3)
(DOMAINS::PEGA-ITEMDOMAINS::AVA DOMAINS::ITEM1 DOMAINS::REG1
DOMAINS::AREA3)
(DOMAINS::PEGA-ITEMDOMAINS::AVA DOMAINS::ITEM2 DOMAINS::REG1
DOMAINS::AREA3))
((DOMAINS::DESTRAVA-BARREIRADOMAINS::AVA DOMAINS::BAR1
DOMAINS::ITEM3 DOMAINS::AREA1 DOMAINS::REG1))
((DOMAINS::MOVE DOMAINS::AVA DOMAINS::AREA1 DOMAINS::AREA3
DOMAINS::REG1))
((DOMAINS::DESTRAVA-BARREIRADOMAINS::AVA DOMAINS::BAR3
DOMAINS::ITEM2 DOMAINS::AREA3 DOMAINS::REG1))
((DOMAINS::MOVE DOMAINS::AVA DOMAINS::AREA3 DOMAINS::AREA2
DOMAINS::REG1))
((DOMAINS::DESTRAVA-BARREIRADOMAINS::AVA DOMAINS::BAR2
DOMAINS::ITEM1 DOMAINS::AREA2 DOMAINS::REG1)))

(define (domain saberlandia-strips)
(:requirements :typing)
(:types regiao area barreira item avatar)
(:predicates (regiao ?r - regiao)

(regiao-liberada ?r - regiao)
(area ?a - area)
(barreira ?b - barreira)
(item ?i - item)
(area-regiao ?r - regiao ?a - area)
(barreira-area ?a - area ?b - barreira)
(area-aberta ?area - area)
(fechada ?b - barreira)
(aberta ?b - barreira)
(item-barreira ?b - barreira ?i - item)
(avatar ?A - avatar)
(item-avatar ?A - avatar ?i - item)
(avatar-regiao ?r - regiao ?A - avatar)
(avatar-area ?a - area ?A - avatar)
(item-regiao ?r - regiao ?i - item)
(item-area ?a - area ?i - item)
(sem-item ?A - avatar ?i - item)
(deletado ?i - item)

Um conjunto de ações pode ser definido, que
modificarão o estado do mundo, permitindo a

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 183

evolução do mesmo. A seguir apresenta-se um
exemplo de um conjunto de ações definidas para a
dinâmica de resgate de prêmios.

(:action destrava-barreira
:parameters (?Avatar - avatar ?barreira - barreira ?item - item

?area - area ?regiao - regiao)
:precondition(

and
(regiao ?regiao)
(regiao-liberada ?regiao)
(area ?area)
(area-regiao ?regiao ?area)
(barreira ?barreira)
(barreira-area ?area ?barreira)
(fechada ?barreira)
(avatar ?Avatar)
(avatar-area ?area ?Avatar)
(item ?item)
(item-avatar ?Avatar ?item)
;;(item-barreira ?barreira ?item)

)
:effect (

and (aberta ?barreira)
(area-aberta ?area)
(deletado ?item)
(not (fechada ?barreira))
(not (item-avatar ?Avatar ?item))

)
)
(:action pega-item
:parameters (?Avatar - avatar ?item - item ?regiao - regiao ?area - area)
:precondition (

and (regiao ?regiao)
(avatar ?Avatar)
(item ?item)
(area ?area)
(sem-item ?Avatar ?item)
(not (deletado ?item))
;;(or (
;; (an?itemd (item-regiao ?regiao ?item)

(avatar-regiao ?regiao ?Avatar))
;; (and (item-area ?area ?item) (avatar-area

?area ?Avatar) (area-regiao ?regiao ?area))
;;)
;;)

)
:effect (and (item-avatar ?Avatar ?item)

(not (sem-item ?Avatar ?item))
;;(not(or (item-area ?area ?item) (item-regiao

?regiao ?item)))
)
)
(:action move
:parameters (?Avatar - avatar ?origem - area ?destino - area
?regiao - regiao)
:precondition (

and (regiao ?regiao)
(area ?origem)
(area ?destino)
(area-regiao ?regiao ?origem)
(area-regiao ?regiao ?destino)
(avatar ?Avatar)
(avatar-area ?origem ?Avatar)
(not(area-aberta ?destino))

)
:effect (

and (avatar-area ?destino ?Avatar)
(not (avatar-area ?origem ?Avatar))

)

O planificador pode ser chamado a qualquer
instante de tempo, t, com a descrição do mundo, Wt
e a meta a ser atingida. A seguir apresenta-se um
exemplo de tal chamada.

(define (problem saberlandia)
(:domain saberlandia-strips)
(:objects Ava - avatar Area1 Area2 Area3 - area Bar1 Bar2 Bar3 -
barreira Reg1 - regiao Item1 Item2 Item3 - item)
(:init

(avatar Ava)
(area Area1)
(area Area2)
(area Area3)
(barreira Bar1)
(barreira Bar2)
(barreira Bar3)
(regiao Reg1)
(item Item1)
(item Item2)
(item Item3)
(avatar-regiao Reg1 Ava)
(area-regiao Reg1 Area1)
(area-regiao Reg1 Area2)
(area-regiao Reg1 Area3)
(barreira-area Area1 Bar1)
(barreira-area Area2 Bar2)
(barreira-area Area3 Bar3)
;(item-barreira Bar1 Item1)
;(item-barreira Bar2 Item2)
;(item-barreira Bar3 Item3)
;(item-regiao Reg1 Item1)
;(item-regiao Reg1 Item2)
;(item-regiao Reg1 Item3)
(fechada Bar1)
(fechada Bar2)
(fechada Bar3)
(regiao-liberada Reg1)
(sem-item Ava Item1)
(sem-item Ava Item2)
(sem-item Ava Item3)
(avatar-area Area1 Ava)

)
(:goal
(and
(aberta Bar1)
(aberta Bar2)
(aberta Bar3)
)

)

O Motor do Jogo gerencia as diversas
possibilidades de interação dos personagens com o
ambiente, de forma monitorar se as ações destes
seguem a dinâmica gerada pelo planificador. É
também responsável por gerenciar o roteiro e
conteúdos que foram inseridos pelo educador e
apresentá-los ao jogador de uma forma que estes não
possam ser simplesmente ignorados, pois são parte
fundamental da estrutura do jogo.

Os elementos robóticos utilizados são construídos
a baixo custo utilizando a plataforma móvel
FURGBOL. Tais robôs móveis (figura 3)
representam em tabuleiro o movimento dos
personagens no jogo virtual.

Figura 3: Fotos do robô móvel

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 184

Os diferentes módulos da arquitetura compõem
hoje o primeiro protótipo do jogo. O sistema permite
a visualização estereoscópica e utilização em rede.

Outra função importante desempenhada pela
Interface do Sistema é apresentar, de forma amigável,
informações como inventário dos elementos e alguns
tipos de animações para tornar o jogo mais atrativo.

5 Conclusão e trabalhos futuros

Face às mudanças no paradigma pedagógico e à
evolução das tecnologias, tais como o computador e a
Internet, os professores têm buscado o uso de
recursos que extrapolem a visão tradicional e os
métodos meramente discursivos no processo de
ensino-aprendizagem. Assim, os jogos educacionais
se configuram num recurso motivador tanto para o
professor como para o aluno, como uma ferramenta
complementar na construção do conhecimento,
chegando à sala de aula.

A possibilidade de autoria de jogos educacionais,
de forma fácil, sem que seja necessário um
conhecimento aprofundado em computação, pode
fazer com que professores e pedagogos se interessem
pelo desenvolvimento de jogos educacionais, e
passem a utilizar este recurso lúdico em sua sala de
aula.

Além disso, busca-se a possibilidade de autoria de
jogos cuja dinâmica seja bem atraente a crianças e
jovens, como por exemplo jogos de ação e aventura.

Assim, neste artigo apresentou-se um sistema de
autoria para jogos de aventura educacionais, que
integra várias mídias em um ambiente virtual de
aprendizagem. O sistema permite ao professor
conceber diferentes roteiros para relacioná-los com
diversas disciplinas, possibilitando que novos
desafios sejam propostos.

O jogo é descrito formamente através do
formalismo STRIPS. Um planificador do tipo
GRAPHPLAN é utilizado como gerador automático
de ações e seqüências de conteúdos.

Foi apresentada a arquitetura do sistema, bem
como o estado atual da sua implementação. Foi
também apresentado o editor de jogo, conjunto de
componentes da biblioteca, exemplo de descrição de
mundo e ações, bem como o kit robótico
disponibilizado.

Em sua fase atual desenvolve-se o avaliador,
capaz de solicitar, on-the-fly, adequações da
seqüenciabilidade do jogo, em função do
desempenho do(s) jogador(es). Também se finaliza
o desenvolvimento do Módulo Interface e a

implementação das maquetes associadas ao kit-
robótico.

Como trabalhos futuros, pretende-se associar as
diferentes vertentes pedagógicas as diferentes
possibilidade de apresentação dos conteúdos,
estabelecendo-se correlação entre os diferentes
algoritmos de busca por ações e as diferentes linhas
psico-pedagógicas.

Referências

____ FURGBOL. Disponível em
http://www.ee.furg.br/~furgbol/, acessado em jun.
2008.

____ GNU General Public License, Free Software
Foundation. Disponível em
http://www.gnu.org/copyleft/gpl.html, acessado em jun.
2008.

____ ID SOFTWARE, Game Developer. Disponível em
http://www.idsoftware.com/, acessado em jun. 2008.

___ QUAKE 3: Arena, Id Software, 1999. Disponível em
http://www.idsoftware.com/games/quake/quake3-
arena/, acessado em jun. 2008.

BEHAR, P. et al. Projeto ROODA : a construção de um
ambiente para EAD baseado em Software Livre.
Disponível em
http://www.nuted.edu.ufrgs.br/biblioteca/arquivo.php?a
rq=37, acessado em jul. 2005

D’ABREU, J. V. V., Chella, M. T. Ambiente
Colaborativo de Aprendizagem a Distância Baseado
no Controle de Dispositivos Robóticos. In: XII
Simpósio Brasileiro de Informática na Educação –
SBIE2001, Universidade Federal de Espírito Santo –
UFES, Vitória – ES. Anais.... . 2001.

D’AMBRÓSIO, Ubiratan. Da Realidade à Ação:
reflexões sobre educação e Matemática. 2ªed. São
Paulo: Summus, 1986.

FAGUNDES, L. C., Sato, L. S. e Maçada, D. L.
Aprendizes do futuro: as inovações começaram!.
Brasília: MEC. 1999.

LÉVY P. As Tecnologias da Inteligência - O Futuro do
Pensamento na Era da Informática. Editora 34. Rio
de Janeiro. 1995.

LÉVY, P. Cibercultura. São Paulo: Editora 34. 1999.

MANTOAN, M. T. E.; Stegun, M. C, B.; Baranauskas, M.
C. C.; Barcellos, G. C. O Processo Comunicativo em
Ambientes Virtuais de Aprendizagem: Uma
Proposta, um Estudo Exploratório. In: X Simpósio
Brasileiro de Informática na Educação – SBIE99 “As
Novas Linguagens da Tecnologia na Aprendizagem”.
Universidade Federal do Paraná – UFPR, Curitiba – PR
Anais... 1999.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 185

MERIEU, P. Aprender...Sim, mas como? Porto Alegre:
Artmed, 1998.

PALLOFF E PRATT. Construindo Comunidades de
Aprendizagem no Ciberespaço. Artmed, Porto
Alegre. 2002.

RAMAL, A. C. Educação na cibercultura:
hipertextualidade, leitura, escrita e aprendizagem.
Porto Alegre: Artmed. 2002.

SENA, G.; Moura, J. Jogos eletrônicos e educação: novas
formas de aprender. Disponível em
http://www.gamecultura.com.br/index.php?option=com
_content&task=view&id=438&Itemid=9, acessado em
junho, 2008.

SILVA, F. Algoritmo para Planificação baseada em
STRIPS. Dissertação de Mestrado. Programa de Pós-
Graduação em Informática da Universidade Federal do
Paraná. Curitiba, 2000.

TAHAN, M. O homem que calculava. Rio de Janeiro:
Record,1968.

VALLE FILHO, A. M. ; SOUZA, P. ; ALVES, J. B. M. ;
WAZLAWICK, R. S. ; LUZ, R. P. Ferramentas de
Autoria de Realidade Virtual - um estudo
comparativo. In: VI Congreso Internacional de
Ingeniería Informática, 2000, Buenos Aires. VI
Congreso Internacional de Ingeniería Informática.
Buenos Aires : ICIE 2000, 2000.

VIGOTSKY, L.S. Pensamento e linguagem. São Paulo:
Martins Fontes, 1984.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 186

Jogo Simulador de Vida Artificial Implementado em Hardware
Reconfigurável

Figura 1: O jogo rodando na placa de desenvolvimento UP1, com suas interfaces de teclado e monitor

Abstract

This paper presents a one-chip hardware
implementation of a strategic life-simulation game.
This work makes use of a FPGA (Field-Programmable
Gate Array) that can be configured by the user in the
field, through a Computer-Aided Design software. The
game environment is implemented in VHDL language,
together with a keyboard capture module and a VGA
video interface. The article shows how this hardware
solution is optimized to run in a low-cost FPGA
device, with severe speed and memory limitations. The
resulting game makes use of the intrinsic parallelism of
the logic cell array of the FPGA, that is able to read the
user input, analyse the selected actions, redraw the
graphic environment and generate video signals that
control the monitor. The results show a medium
complexity life-simulation game, integrated with its
keyboard interface and video control module, that runs
in a 25MHz hardware.

Palavras Chave: hardware reconfigurável, FPGA,
vida artificial

Contato dos Autores:
felipenavas@gmail.com

simoes@icmc.usp.br

1. Introdução

Este artigo descreve a implementação de um jogo
desenvolvido completamente em hardware, integrando

em um único chip, o hardware e os algoritmos de um
simulador de vida artificial. Foi utilizado, para isso, um
FPGA (Field-Programmable Gate Array), que permite
a configuração de suas células programáveis pelo
usuário em campo, através de uma ferramenta de CAD
(Computer Aided Design) [QUARTUS, 2004]. O
resultado equivale a um videogame completo em um
único chip, contendo interface com teclado e vídeo (ver
Figura 1).
 As vantagens da implementação de um jogo em
hardware incluem [WOLLINGER, T. , GUAJARDO, J.,
PAAR, C. 2004]: uma proteção maior contra abusos de
falhas de segurança e pirataria, uma vez que o usuário
não tem acesso aos recursos do chip depois que este é
programado e que nenhuma parte do jogo é
implementada em software, este não pode ser copiado
ou alterado sem que se realize o rompimento do
encapsulamento do chip do FPGA. Outras vantagens
são a não dependência das limitações impostas por
uma plataforma específica e a possibilidade de criação
de hardware dedicado para executar de maneira mais
eficiente as necessidades do jogo, como, por exemplo,
a física e a inteligência artificial [BOULÉ, M. and ZILIC,
Z. 2002].
 Os primeiros jogos eram implementados em
hardwares específicos, mas a generalização das
plataformas e o surgimento dos videogames tornaram
mais rápido e eficiente a produção de jogos, que
passaram a ser implementados em software [DEMARIA
R., WILSON, J. 2002]. Com a produção em larga escala
dos videogames, o custo de um hardware específico
para cada jogo tornou-se impraticável, assim a

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 187

simoes
Typewritten Text

simoes
Typewritten Text

simoes
Typewritten Text

simoes
Typewritten Text
Felipe A. Navas Eduardo V. Simões

simoes
Typewritten Text

simoes
Typewritten Text
Universidade de São Paulo – Instituto de Ciências Matemáticas e de Computação

simoes
Typewritten Text

simoes
Typewritten Text

indústria de jogos passou a se dedicar ao
desenvolvimento de softwares para plataformas
específicas. Atualmente, os jogos tem se tornado cada
vez mais complexos e os fabricantes preocupam-se
novamente com o desenvolvimento de hardwares
específicos para executar necessidades como
aceleração de gráficos 3D, como as placas de vídeo e,
mais recentemente, a aceleração de física [LIENHART,
G., KUGEL, A., MANNER, R. 2002].

O desenvolvimento de jogos em hardware
específico tem apresentado alguns problemas como a
impossibilidade de modificar o jogo após este ser
comercializado [CRABILL, E. 2005]. Isso faz com que o
jogador perca rapidamente o interesse após jogar
diversas vezes. Em contraste, nos videogames atuais, o
jogador tem a possibilidade de utilizar o mesmo
hardware para jogar diversos jogos, apenas sendo
necessária a mudança da mídia na qual o jogo em
software está armazenado. Entretanto, a utilização de
hardware reconfigurável, como os FPGAs, vem tornar
possível modificar a configuração do jogo e até mesmo
a substituição do mesmo por meio da completa
reprogramação do hardware do chip [WATERMAN, S.,
2005]. Assim, novos jogos poderão ser jogados se o
FPGA for reinicializado com novos arquivos de
configuração. Isso vem estimular o desenvolvimento
de novos jogos principalmente para plataformas
móveis, que passam a poder contar com soluções
totalmente embarcadas em um único chip
reconfigurável de baixo custo.

 2. Descrição do Jogo

Para a implementação do jogo foi utilizada a placa de
Desenvolvimento com FPGA UP1 da Altera e, como
plataforma de desenvolvimento, o software Quartus II
[QUARTUS, 2004]. A placa possui conectores para
teclado e vídeo tipo VGA, mas o hardware de interface
com o teclado de computador e o monitor de vídeo
tiveram de ser implementados utilizando-se o próprio
FPGA. A interface com o monitor de computador
implementada para este projeto suporta resolução de
640x480 pixels e oito cores por pixel. O hardware
utilizado oferece uma pequena quantidade de memória,
apenas 4KB, o que exigiu o desenvolvimento de
técnicas para lidar com essa limitação.

O tema do jogo escolhido é a simulação da vida de
um aluno universitário da Universidade de São Paulo
que realiza o trabalho final de uma disciplina e,
paralelamente, enfrenta os afazeres diários em sua
casa. O jogador deve administrar os atributos do
avatar como alimentação, higiene, cansaço e humor;
levando-o pela casa e executando ações como tomar
banho, dormir e estudar; de maneira que consiga
manter uma qualidade de vida mínima enquanto o
avatar desenvolve o seu trabalho de faculdade. O
avatar morrerá caso algum dos seus atributos chegue à
zero. Não conseguindo terminar o trabalho até o prazo
ou em caso de morte do avatar, o jogador perde o jogo.
O jogador vence se conseguir entregar o trabalho antes
do final do prazo.

 O jogador começa com sete pontos em cada um dos
atributos: descanso, higiene, alimentação e
humor. As variáveis trabalho, dia e ações são
inicializadas com zero. O jogador, através de
comandos pelo teclado, pode mover-se pela
representação da casa e executar diferentes ações em
cada cômodo. Cada ação incrementa ou decrementa
um ou mais atributos ou variáveis, sendo necessário o
jogador manter um planejamento e raciocínio constante
para equilibrá-los, de modo a conseguir paralelamente
desenvolver o seu trabalho antes do final do prazo. O
valor máximo para os atributos é dez e o mínimo é
zero. Pode-se ver, na Tabela I, as alterações
provocadas em cada atributo e variável ao executar
cada ação.

Tabela I: Mudanças provocadas por cada ação
Ação Mudança

Navegar na Internet Descanso -2

Higiene -1

Alimentação -1

Ações +2

Dormir na Cama Descanso +5

Higiene -1

Humor +2

Alimentação -2

Ações +4

Usar o Banheiro Descanso +1

Higiene +5

Humor +1

Alimentação -1

Ações +2

Ir para a “Balada” Descanso -3

Higiene -2

Humor +4

Alimentação -2

Ações +2

“Atacar” a geladeira Descanso -1

Higiene -1

Alimentação +4

Ações +2

Ir para a Faculdade Descanso -5

Higiene -3

Humor -2

Alimentação -2

Trabalho +1

Ações +4

Ir para a Casa Descanso -3

Higiene -1

Humor +2

Alimentação -2

Ações +4

Fazer Trabalho Descanso -4

Higiene -1

Humor -5

Alimentação -4

Trabalho +3

Ações +4

Ir para o Bar Descanso -1

Higiene -1

Humor +2

Alimentação +1

Ações +3

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 188

 Ao executar uma ação, o número de ações é
incrementado conforme demonstrado na Tabela I. Ao
atingir um número de ações maior que 11, o número
de dias é incrementado e zero é atribuído ao número
de ações. O jogo começa no dia igual a zero, e
termina quando atinge o dia dez. Se o jogador chegar
ao décimo dia com o trabalho igual a 10 ou maior,
o jogador vence o jogo; caso contrário, ele não
conseguiu terminar o trabalho antes do prazo final
perdendo o jogo. O jogador também perderá se a
qualquer momento um dos atributos possuir um valor
igual ou abaixo de zero.

3. Implementação do Jogo em
Hardware

Três módulos responsáveis por todas as funções
realizadas pelo jogo foram desenvolvidos e
implementados em linguagem VHDL (Very High
Speed Integrated Circuit Hardware Description
Language): a interface com teclado, a lógica do jogo e
o módulo de vídeo [WATERMAN, S., 2005]. A Figura 2
mostra a relação entre estes módulos.

3.1 Módulo de Interface com o Teclado

A placa UP2 possui um conector para o teclado de
computador do tipo PS2 ligado aos pinos de entrada e
saída do FPGA. Foi implementada a lógica para a
decodificação dos sinais emitidos pelo teclado em
sinais utilizáveis pelo jogo. Este bloco consiste de uma
interface serial para receber bit a bit os bytes
correspondentes às teclas pressionados e um bloco de
filtragem que traduz os bytes enviados no código
ASCII de cada tecla. Estes códigos são enviados ao
módulo que processa a lógica de jogo. A figura 2
apresenta um diagrama representativo desta
configuração e também mostra a arquitetura do sistema
e a conexão entre os blocos. As nove ações possíveis
são escolhidas através das teclas numéricas de “1” a
“9” do teclado.

Placa de Desenvolvimento UP1

FPGA

Vídeo

PS2
Interface

Serial
Teclado

Filtro
ASCII

Lógica
de Jogo

Módulo
Vídeo

Monitor

Figura 2: Diagrama representativo da arquitetura do sistema.

3.2 Módulo de Lógica do Jogo

A lógica do jogo foi implementada como uma máquina
de estados, conforme descrito na Figura 3. Cada ação
que o jogador pode executar é um estado da máquina

de estado. Foram implementados os nove estados da
Tabela I. O estado da máquina é alterado conforme os
comandos dados pelo usuário através do teclado. Em
cada estado, as variáveis do jogo são alteradas
conforme explicado na Tabela I.

É preciso notar que o estado atual do jogador limita
as possíveis ações que este pode realizar. Por exemplo,
se este estiver em ”Casa”, não poderá “navegar na
Internet” e terá que “ir para a faculdade” para depois
escolher entre “fazer o trabalho”, “ir para o bar” ou
“navegar na Internet”.

3.3 Módulo de Vídeo

Devido à restrição de memória do FPGA da placa UP1,
de apenas 4kb, foi necessário buscar outra abordagem
para armazenar e exibir o ambiente do jogo em uma
resolução 640x480 pixels. A solução encontrada foi
descrever toda a interface gráfica do jogo diretamente
em código VHDL, fazendo assim a utilização de
elementos lógicos em vez de espaço em memória para
representar os gráficos do jogo.

O FPGA da placa UP1 possui pinos de saída
ligados a um conector para vídeo do tipo VGA, como
pode ser visto na Figura 2. Foi implementado um bloco
de controle no qual é gerado o sinal de vídeo baseado
nos dados apresentados pelo módulo de lógica.

Ao gerar o sinal de vídeo, é necessário gerar o sinal
que posiciona o feixe de elétrons do monitor na tela em
relação aos pulsos de sincronismo vertical e horizontal.
Ao gerar esse sinal, sabe-se a posição do feixe de
elétrons em cada instante, em coordenadas (X,Y),
através de contadores que contam os pulsos (480 para
cada linha e 640 para cada coluna). Com base nisso, foi
possível desenhar os gráficos do jogo, fazendo-se uso
da linguagem VHDL. Abaixo, é apresentado um
exemplo de código VHDL para desenhar um quadrado
vermelho com as coordenadas mostradas na Figura 4.
Neste código, as variáveis CINT e LINT são os
contadores de coluna e linha, respectivamente, e Ra,
Ga e Ba são os valores de vermelho, verde e azul para
o monitor colorir cada pixel. Não são fornecidos sinais
intermediários de intensidade de cor, e Ra, Ga e Ba
podem apenas ligar ou desligar cada cor, formando oito
combinações possíveis.

IF ((cint > 0) AND (cint < 421) AND

(lint > 0) AND (lint < 301)) THEN

 Ra := '1';

 Ga := '0';

 Ba := '0';

END IF;

Para a construção dos textos dos menus do jogo foi

armazenada a posição de cada caractere como
constante, utilizando assim elementos lógicos ao invés
de memória. Esses dados então são utilizados para
buscar em uma memória do tipo ROM a representação
do caractere e seu posicionamento na tela. Abaixo, um
trecho onde o caractere ‘D’, representado pelo número
quatro, está na coluna nove e linha 44.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 189

 CONSTANT letra232_c : INTEGER := 9;

 CONSTANT letra232_l : INTEGER := 44;

 CONSTANT letra232ch : INTEGER := 4;

Para a execução dessa extensa tarefa, foram

implementados scripts na linguagem Ruby para
auxiliar o processo. Esses scripts transformam
representações textuais da interface em código VHDL,
que posteriormente foram inseridas no código. Isso
permitiu que fossem escritos ou gerados em torno de 4
mil linhas de código em linguagem VHDL para o
vídeo.

Figura 4: Representação do resultado ao executar.

 O jogo é constituído de várias telas contendo a
descrição dos ambientes (como Casa, USP, Bar, por
exemplo) e uma lista dos possíveis lugares que o
jogador pode ir a partir da posição atual. Também é
apresentado uma lista das variáveis em forma de
barras, indicando o valor dos parâmetros (alimentação,
higiene, descanso, etc...). A Figura 5 apresenta uma
dessas telas do jogo, representando a planta da casa do
jogador. Quando o jogador se movimenta, novas telas
são desenhadas, juntamente com suas novas opções e
valores dos parâmetros.

3.4 Detalhes da Implementação

Cada módulo é representando por um ou mais
blocos que foram implementados utilizando linguagem
VHDL. A ligação entre os blocos foi feita através do
editor de esquemático do QuartusII utilizando linhas,
que representam os fios e os barramentos de
interconexão e também labels demarcando algumas
ligações. A Figura 6 mostra quais blocos foram
utilizados para implementar cada módulo e as ligações
entre eles.

O módulo de teclado, não demonstrado na Figura 6,
envia os sinais já decodificados do teclado pelo
barramento key_s, demarcado na figura em amarelo.
O módulo de lógica (demarcado em azul),
implementado pelo bloco state_sim, possui a
implementação da máquina de estados do jogo em
VHDL. O módulo de vídeo (demarcado em azul) é
composto por 3 blocos: VGA_SYNC, que é responsável
pela interface com o monitor; lpm_rom0, que é uma
memória do tipo ROM e decoder, que é o

responsável por receber os sinais do módulo de lógica
e transformar as informações em representações
gráficas e sinal de vídeo para o monitor.

4. Resultados

Um grupo de 50 alunos do terceiro e quarto ano do
curso de Bacharelado em Ciência da Computação da
Universidade de São Paulo foram convidados para
avaliar o jogo, em um período de duas horas. Com base
nos parâmetros especificados na Tabela I, somente um
jogador conseguiu concluir o objetivo proposto
(terminar o trabalho) e salvar seu avatar, como pode
ser visto na Tabela II. Isso mostrou que a especificação
inicial dos parâmetros do jogo, representados pelos
valores numéricos apresentados na Tabela I, tornou
muito difícil a conclusão do jogo.

Tabela II: Resultado do 1º teste co m 50 alunos

 Nro de Jogadores % Total
Vencedores 1 2%
Não concluíram 49 98%

Os valores dos parâmetros que modificam as

variáveis descanso, higiene, alimentação, trabalho,
humor e ações foram então modificados conforme a
Tabela III apresentada abaixo, e um novo grupo (no
qual não participaram nenhum dos jogadores do
experimento anterior) foi convidado para avaliar o
jogo. Os resultados da Tabela IV mostram que esta
alteração tornou possível que 46% dos jogadores
completassem o objetivo antes de duas horas ou do
limite de 10 turnos, vencendo o jogo.

Tabela III: Alteração nas Mudanças provocadas por cada

ação para o segundo experimento
Ação Mudança

Navegar na Internet Descanso -2

Higiene -1

Alimentação -1

Ações +3

“Atacar” a geladeira Descanso -1

Higiene -1

Alimentação +5

Ações +2

Ir para a Faculdade Descanso -2

Higiene -2

Humor -2

Alimentação -1

Trabalho +2

Ações +4

Ir para a Casa Descanso -2

Higiene -1

Humor +3

Alimentação -1

Ações +4

Fazer Trabalho Descanso -3

Higiene -1

Humor -4

Alimentação -3

Trabalho +4

Ações +4

(420,300) (0,300)

(0,0)

(420,0)

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 190

Estes experimentos permitiram então a
especificação de dois níveis de dificuldade para o jogo
desenvolvido. Foi decidido, inclusive, permitir que
jogadores mais experientes modifiquem diretamente o
arquivo de parâmetros antes de reprogramar o jogo no
FPGA.

Tabela IV: Resultado do 2º teste com 50 alunos

 Nro de Jogadores % Total
Vencedores 23 46%
Não concluíram 27 54%

5. Conclusão

Este artigo apresentou a implementação em hardware
de um jogo do tipo simulador de vida artificial.
Diferentemente de outros trabalhos que apresentam a
implementação de jogos de baixa complexidade, do
tipo arcade, este artigo apresenta um jogo de maior
complexidade, no qual o jogador pode realizar em cada
turno até nove ações diferentes. Após extensa revisão
bibliográfica, é possível concluir que este artigo traz
pela primeira vez a descrição de um jogo deste tipo
implementado totalmente em hardware, em linguagem
VHDL, sendo executado juntamente com sua interface
de teclado e vídeo em um único chip FPGA.
 Este trabalho também contribui com a área de
desenvolvimento de jogos para plataformas móveis
como PDAs e telefones celulares ao apresentar
soluções criativas para os problemas emergentes da
utilização de um hardware de baixo custo, pouca
memória e pequena velocidade de operação. Desta
maneira, foi feito uso extensivo do paralelismo
intrínseco de matrizes de células lógicas programáveis,
como os FPGAS. Assim, vários módulos do jogo
foram distribuídos no hardware e operam em paralelo
no chip, realizando a interface com o usuário, a análise
das ações escolhidas, o redesenho da tela gráfica e a
geração dos sinais de vídeo para o monitor.
 Também para compensar os poucos recursos de
memória do hardware utilizado, a tela gráfica do jogo
foi implementada na forma de um algoritmo em
linguagem VHDL, ao invés de ser desenhada em
memória. Assim, foi possível descrever uma tela de
resolução 640 por 480 pixels em apenas 4 Kbytes de
memória.
 Outra contribuição diz respeito à produção de um
hardware específico para o jogo, que inclui em um
único chip a interface com o usuário e o módulo de
geração dos sinais de vídeo para um monitor. Assim,
foi produzido um jogo completo embarcado em um
dispositivo eletrônico do tipo FPGA de baixo custo:
cerca de U$ 1,00.

Agradecimentos

Os autores gostariam de agradecer o Conselho
Nacional de Desenvolvimento Científico e
Tecnológico – CNPq, pelo apoio financeiro recebido
durante este projeto.

Referências

BRADSHAW, L. , 2005. Postmortem: Avoiding Sequelitis in

The Sims 2. Game Developer Magazine, January 2005.
Game Developer, 40-44.

QUARTUS, 2004. Quartus II Handbook, Design

Implementation & Optimization. Volume 2, Printed by
Altera Corporation, San Jose, CA, 2004.

WATERMAN, S., 2005. Lab Manual for Digital Electronics

with VHDL (Quartus II Version). Publisher: Prentice Hall
(May 27, 2005) ISBN-10: 0131715143, 400p.

WOLLINGER, T. , GUAJARDO, J., PAAR, C. 2004

Security on FPGAs: State-of-the-art implementations and
attacks, ACM Transactions on Embedded Computing
Systems (TECS), v.3, n.3, 534-574.

DEMARIA R., WILSON, J. 2003. High Score!: The

Illustrated History of Electronic Games., Publisher:
McGraw-Hill Osborne Media.

LIENHART, G., KUGEL, A., MANNER, R. 2002. Using

Floating-Point Arithmetic on FPGAs to Accelerate
Scientific N-Body Simulations, 10th Annual IEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM'02), p. 182.

CRABILL, E. 2005. FPGA-Based Video Games, Xcell

Journal Online, July 11, 2005. Acessado em 10 de agosto
de 2008. http://china.xilinx.com/publications/xcellonline
/xcell_54/xc_pdf/xc_atari54.pdf.

BOULÉ, M. and ZILIC, Z. 2002. An FPGA Based Move

Generator for the Game of Chess, IEEE Custom
Integrated Circuit Conference 2002, 71-74.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 191

Início

Navegar

na Internet

Dormir na
Cama

Usar o
Banheiro

Ir para a

"Balada"

"Atacar" a
geladeira

Ir para a

Faculdade

Ir para

casa

Fazer

Trabalho

Ir para o

Bar

Figura 3: Diagrama representativo da máquina de estados que descreve o funcionamento do sistema e as possíveis ações que o
jogador pode realizar a partir de cada estado.

Figura 5: Representação da tela do jogo, mostrando os ambientes e os locais que o jogador pode visitar de acordo com cada ação
possível.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 192

Figura 6: Representação dos blocos que implementam os módulos de vídeo e da lógica do jogo.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9217-1 193

	Proceedings of SBGames 2008
	Title Page
	Table of Contents
	Preface
	Program Committee
	Reviewers
	Computing Track – Full Papers
	Procedural Animation with Genetic Algorithms and Physics Simulation
	SDK Gameplay - Ferramenta voltada para Edição de Gameplay
	Parallel Culling and Sorting based on Adaptive Static Balancing
	Proposta de uma heurística para o jogo de dominó de 4 pontas
	Event Relations in Plan-Based Plot Composition
	Improving Boids Algorithm in GPU using Estimated Self Occlusion
	P2PSE - A Peer-to-Peer Support for Multiplayer Games
	A Feature Model Proposal for Computer Games Design
	Fast and Safe Prototyping of Game Objects with Dependency Injection
	Supermassive Crowd Simulation on GPU based on Emergent Behavior
	Uma Engine em XNA e Prolog para Apoio ao Ensino de Programação Declarativa
	A Real-Time Proxy for Flexible Teamwork in Dynamic Environments
	Neuronal Editor Agent for Scene Cutting in Game Cinematography
	IRTaktiks: Jogo de Estratégia para Mesa Multitoque
	Simulation of Deformable Bodies Based on Tetrahedral Meshes and Shape Matching
	An Adaptative Game Loop Architecture with Automatic Distribution of Tasks between CPU and GPU
	Using Game Engines in Digital Manufacturing through Immersive and Collaborative Visualization Systems
	Parallel Lazy Amplification: Real-Time Procedural Modeling and Rendering of Multi-Terabyte Scenes on a Single PC
	Posicionamento de Câmeras através de Previsão das Simulações Físicas
	Algoritmos de busca em tempo real aplicados a jogos digitais
	A Facial Animation Interactive Framework with Facial Expressions, Lip Synchronization and Eye Behavior
	Um Algoritmo Evolutivo para Aprendizado On-line em Jogos Eletrônicos
	A Cellular Automata Framework for Real Time Fluid Animation
	Plataforma Saberlândia: Integrando Robótica e Multimídia no Desenvolvimento de Jogos Educacionais
	Jogo Simulador de Vida Artificial Implementado em Hardware Reconfigurável

