Template-based autonomous navigation and obstacle
avoidance in urban environments

Jefferson R. Souza, Daniel O. Sales, Patrick Y. Shinzato,
Fernando S. Osoério and Denis F. Wolf
Mobile Robotics Laboratory, University of Sdo Paulo (USP)
Av. Trabalhador Sao-Carlense, 400 - P.O. Box 668 - 13.560-970, Sao Carlos, Brazil

{jrsouza, dsales, shinzato, fosorio, denis}@icmc.usp.br
http://www.lrm.icmc.usp.br/

ABSTRACT

Autonomous navigation is a fundamental task in mobile
robotics. In the last years, several approaches have been
addressing the autonomous navigation in outdoor environ-
ments. Lately it has also been extended to robotic vehi-
cles in urban environments. This paper presents a vehi-
cle control system capable of learning behaviors based on
examples from human driver and analyzing different levels
of memory of the templates, which are an important capa-
bility to autonomous vehicle drive. Our approach is based
on image processing, template matching classification, finite
state machine, and template memory. The proposed sys-
tem allows training an image segmentation algorithm and a
neural networks to work with levels of memory of the tem-
plates in order to identify navigable and non-navigable re-
gions. As an output, it generates the steering control and
speed for the Intelligent Robotic Car for Autonomous Na-
vigation (CaRINA). Several experimental tests have been
carried out under different environmental conditions to eva-
luate the proposed techniques.

Categories and Subject Descriptors
1.2.9 [Artificial Intelligence:Robotics]: Autonomous Vehi-
cles.

General Terms

Algorithms, Performance, Design, Experimentation.

Keywords
Robotic Vehicles Navigation, Obstacles Avoidance, Tem-
plate Matching, FSM and Urban Environments.

1. INTRODUCTION

Human driver errors are a major cause of accidents on ro-
ads. Frequently people get injured or even die due to road
traffic accidents (RTA). Also, bad road and weather condi-
tions increase the risk of RTA. Autonomous vehicles could

N e NS}

Figure 1: CaRINA test platform.

provide safer conditions in roads for individual or collective
use. They also could increase efficiency in freight transpor-
tation and provide some degree of independence to people
unable to drive.

Research in mobile robotics has reached significant progress
in the last 10 years. Part of them focus on autonomous
navigation, which is a fundamental task in the area [19].
Lately, several works have been improving on navigation in
outdoor environments. Competitions like DARPA Challen-
ges [6] and ELROB [3] have been pushing the state of the

art in autonomous vehicle control.

The most relevant results obtained in such competitions
combine information obtained from a large number of com-
plex sensors. Some approaches use five (or more) laser range
finders, video cameras, radar, differential GPS, and inertial
measurement units [6], [12]. Although there are several in-
teresting applications for such technology, the cost of such
systems is very high, which is certainly prohibitive to com-
mercial applications.

In this paper we propose a vision-based navigation appro-
ach for urban environments, based on a low cost platform.

,"’-1 ANNT | 1"‘.
o anvz

Image Blocks:
R,G,B, Entropy
H,S,V, Energy
YUV (avg,var)

Multiple ANN:
Road Segmentation
(Navigability Map)

Image Acquisition ‘

‘ Feature Extraction ‘ \ 4W|—-@5_

‘ State: SR (Straight Road Ahead) ‘

‘ FSM: State (Sequence of inputs) ‘

!

‘ Sequence of Recognized Templates ‘

Hidden Nodes
{

Template,

‘ Templata,
Template;.; -+ Steer Angle

Speed

..-=.=,._.
“wempgs =g @

\ Template,xry

78N AN i o

SRR e

Classifier

Navigability Map
Brighter: Navigable
Darker: Non Navigable

Road Geometry:
Template Match

‘ Navigation: Path Following & Obstacle Avoidance ‘

‘ Actions: Steering and Acceleration ‘

Figure 2: General outline of the autonomous navigation system.

Our system uses a single camera to acquire data from the
environment. It detects the navigable regions (roads), esti-
mates the more appropriate maneuver, acquires and trains
different levels of memory of the templates that should be
done in order to keep the vehicle in a safe path, and finally,
control steering and acceleration of the vehicle. Figure 1
presents our CaRINA test platform.

Our approach is based on two Artificial Neural Networks
(ANNs). The first one identifies navigable regions in which
a template-based algorithm classifies the image and identi-
fies the action that should be taken by CaRINA. The images
are acquired and then processed using ANNs that identifies
the road ahead of the vehicle. After that, a Finite State
Machine (FSM) is used to filter some input noise and re-
duce classification and/or control errors. In this work noise
is considered as variations in the road color, such as dirt
road (mud or dust), shadows, and depressions. After obtai-
ning the current state (template), which is the input of a
new ANN that works with levels of memory of the templa-
tes (LMT). This ANN aims to learn the driver’s behavior,
providing smoother steering and levels of speed in the same
way as the driver. We considered six levels of template me-
mory on the ANN searching to obtain the topology which
provides more reliable results.

A sequence of states associated with an action is learned by
the second ANN. States comes from situations identified by
the Templates and FSM, and are mapped into steering angle
and vehicle speed. Figure 2 shows a general outline of this
system.

2. RELATED WORKS

Autonomous Land Vehicle in a Neural Network (ALVINN)
[13] is an ANN based navigation system that calculates a
steer angle to keep an autonomous vehicle in the road li-
mits. In this work, the gray-scale levels of a 30 x 32 image
were used as the input of an ANN. In order to improve trai-
ning, the original road image and steering were generated,
allowing ALVINN to learn how to navigate in new roads.
The disadvantages of this work are the low resolution of a
30 x 32 image (gray-scale levels) and the high computational
time. The architecture has 960 input units fully connected
to the hidden layer to 4 units, also fully connected to 30 units
in output layer. Regarding that issue, this problem requires
real time decisions therefore this topology is not efficient.

Later, the EUREKA project Prometheus [7] for road-following
was successfully performed using image based solutions, which
provided trucks with an automatic driving system to re-
produce drivers in repetitious long driving situations. The
system also included a function to warn the driver in dange-
rous situations. A limitation of this project was an excessive
number of heuristics created by the authors to limit the false
alarms caused by shadows or discontinuities in the color of
the road surface.

In the work [8], an outdoor mobile robot learns avoiding
collisions by observing a human driver, the test platform is
a vehicle equipped with sensors (laser, GPS and IMU) that
produce a map of the local environment. This approach pre-
sents a method for automatically learning the parameters of

i

Segmented

Image %

Navigable Map

=
=
=
w
23]
FES
5

el
ol
non)

Classifier

(a)

Figure 3: Classifier structure (a), real image (b), image processing step (c) and template matching (d).

the control model. The input to the control model is a goal
point and a set of obstacles defined as points in the x-y plane
of the vehicle. Three different approaches (Random, Genetic
Algorithm (GA) and Simulated Annealing (SA)) were used
in the learning step. The GA and Random performed simi-
larly well. SA was worse than the other techniques. Also
the authors compared the randomly learned parameter set
with the principal component analysis, and observed than
the random generalized well. The issue of this approach is
the dependency of goal point and the set of obstacles, and
all the parameters were limited to a fixed range.

Chan et al. [5] shows an Intelligent Speed Adaptation and
Steering Control that allows the vehicle to anticipate and ne-

gotiate curves safely. This system uses Generic Self-Organizing

Fuzzy Neural Network (GenSoFNN-Yager) which include
the Yager inference scheme [11]. GenSoFNN-Yager has as
main feature their ability to induce from low-level percep-
tual information in form of fuzzy if-then rules. Results show
the robustness of the system in learning from example hu-
man driving negotiating new unseen roads. The autonomous
driver demonstrate that anticipation is not always sufficient.
Moreover, large variations in the distribution of the rule were
observed, which imply a high complexity of the system.

Shihavuddin et al. [14] approaches the path map generation
of an unknown environment using a proposed trapezoidal
approximation of road boundary. At first, a blind map of
the unknown environment is generated in computer, and
then the image of the unknown environment is captured by
the vehicle and sent to the computer using a RF transmit-
ter module. After that, the image is pre-processed and the
road boundaries are detected using the trapezoidal approxi-
mation algorithm. During this process, the vehicle operates
independently avoiding the obstacles. The issue with this
approach is the dependency of the camera tilt angle, because
the vehicle moves through of the trapezium and reaches the
next approximated trapezium having a previously tilt angle.

The work [10] focus on the task of lane following, where
a robot-car learns anticipatory driving from a human and
visual sensory data. During the learning steps the robot
associates visual information with human actions. This in-
formation is derived from the street lane boundary that is
detected in each image in real-time. In this work two mo-
dules were used, a reactive controller (RC) and a planner,
where the former generates maps short-term information to
a single steering control value, and the latter generates ac-

tion plans, i.e. sequences for steering and speed control.
The final steering command is a combination of planner and
RC output. The advantages of this approach are react to
upcoming events, cope with short lacks of sensory informa-
tion, and use these plans for making predictions about its
own state, which is useful for higher-level planning. Despite
many advantages, due to the inertia of the robot it is less
visible than what could be expected from the plotted signal.
Also the system is not able to predict future states.

Stein and Santos [18], proposes a method to compute the
steering of an autonomous robot, moving in a road-like en-
vironment. The proposed system used ANNs to learn beha-
viors based on examples from human driver, replicating and
sometimes even improving human-like behaviors. To vali-
date the created ANNS, real tests were performed and the
robot successfully completed several laps of the test circuit
showing good capacities for recovery and for generalization
with relatively small training data sets. One of the issues in
this work is the impossibility of validating network training
without actually testing it with the real robot.

Markelic et al. [9], proposes a system that learns driving
skills based on a human teacher. Driving School (DRIVSCO)
is implemented as a multi-threaded, parallel CPU/GPU ar-
chitecture in a real car and trained with real driving data
to generate steering and acceleration control for road follo-
wing. Besides, it uses an algorithm for detecting indepen-
dently moving objects (IMOs) for spotting obstacles with
stereo camera. A predicted action sequence is compared to
the driver actions and a warning is issued if they are dif-
fering too much (assistance system). The IMO detection
algorithm is more general in the sense that it will respond
not only to cars, but to any sufficiently large (11 x 11 pixels)
moving object. The steering prediction is very close to the
human signal, but the acceleration is less reliable.

3. PROPOSED METHOD

Our approach is composed by 4 steps. In the first step an
image is obtained and the road is identified using ANNs
(Figure 3 (c)). In the second step, a template matching
algorithm is used to identify the geometry of the road ahead
of the vehicle (straight line, soft turn, or hard turn). In
the third step, a FSM is used to filter noisy inputs and any
classification error. Finally, a template memory is used in
order to define the action that the vehicle should take to
keep on road. These steps will be described in the next
sub-sections.

Figure 4: Transition between 2 states with 2 inter-
mediate states.

Speed

: Hidden Nodes
1 [Template, = o}
n Template, ; s 7 u
P | Template,; / SteerAngle | °
u i . i
t u
8

w -

L emplate. vrar

Figure 5: Structure of the second ANN used to ge-
nerate steering and acceleration commands.

3.1 Image Processing Step

We adopted the proposed method of Shinzato [15], which
proposes to use ANNs to be applied into a road identifica-
tion task. Based on the results, a system composed by six
Multilayer Perceptron (MLP) ANNs was proposed to iden-
tify the navigable regions in urban environments (Figure 3
(a)). The real image can be seen on Figure 3 (b). The re-
sult of this ANNs output combination is a navigability map
(Figure 3 (c)). The brighter blocks are the more likely area
to be considered navigable. This step divides an image into
blocks of pixels and evaluates them as single units. The ad-
vantage of this approach is that one can train the ANNs to
identify different types of navigable and non-navigable regi-
ons (e.g. pavemented, non-pavemented roads, sidewalks).

Initially, the image processing step divides the image into
blocks of pixels and evaluates then as single units. Several
features are calculated for each block, such as: pixel attri-
butes like red, green, blue (RGB) average, image entropy
and others features obtained from this collection of pixels
(region block). In the grouping step, a frame with (MxN)
pixels resolution was sliced in groups with (KxK) pixels.
Suppose an image represented by a matrix I of size (MxN).
The element I(m,n) corresponds to the pixel in row m and
column n of image, where (0 <= m < M) and (0 <=n <
N). Therefore, group G(i,j) contains all the pixels I(m,n)
such that ((i*K) <= m < ((*K)+K)) and ((j*K) <= n
< ((J*K)+K)). This strategy has been used to reduce the
amount of data, allowing faster processing.

Once a block is processed, its attributes are used as inputs
of the ANNs. The ANNSs are used to classify the blocks con-
sidering their attributes (output 0 to non-navigable and 1
to navigable). Each ANN contains an input layer with the
neurons according to the image input features (see Table 1),
one hidden layer with five neurons, and the output layer has
only one neuron (binary classification). However, after the
training step, the ANN returns real values between 0 and 1,

as outputs. This real value can be interpreted as the clas-
sification certainty degree of one specific block. The main
difference between the six ANNs is the set of image attribu-
tes used as input. All these sets of attributes (see Table 1)
are calculated during the block-segmentation of the image.
The choice of these attributes was based on the results pre-
sented in the work [15].

Table 1: Input attributes of the ANNs (R, G, B =
red, green, blue components; H, S, V = hue, satu-
ration, value components; Y, U, V = Luminance,
average = av, normalized = norm, entropy = ent,
energy = en and variance = var).

ANNSs | Input attributes

ANNI1 | U av, V av, B norm av, H ent, G norm en
and H av

ANN2 | V av, H ent, G norm en, G av, U av, R av,
H av, B norm av, G norm av and Y ent
ANN3 | U av, B norm av, V av, B var, S av, H av,
G norm av and G norm ent

ANN4 | U av, V av, B norm av, H ent, G norm en
and H av

ANNS5 | V av, H ent, G norm en, G av, U av, R av,
H av, B norm av, G norm av and Y ent
ANNG6 | U av, B norm av, V av, B var, S av, H av,

G norm av and G norm ent

After obtaining the six outputs of the ANNSs referring to each
block, the classifier calculates the average of these values to
compose a single final output value. These values repre-
senting each block obtained from the original image form
together the navigability map matrix (Figure 3(c)). This
matrix is used to locate the most likely navigable region. It
is important to mention that the ANN is previously trained
using supervised examples of navigable and non-navigable
regions selected by the user one time on an initial image
frame. After that, the trained ANN is integrated into the
vehicle control system and used as the main source of infor-
mation to the autonomous navigation control system.

3.2 Template Matching Step

After obtaining the ANN classification, 7 different road tem-
plates are placed over the image in order to identify the road
geometry (some examples of these templates are presented
in Figures 6, 7 and 8). One of them identifies a straight road
ahead, two identify a straight road in the sideways, two iden-
tify soft turns, and two identify hard turns (e.g. a straight
road ahead Figure 3 (d)). Each template is composed by a
mask of 1s and 0s as proposed in [17]. The value of each
mask is multiplied by the correspondent value into the navi-
gability matrix (values obtained from the ANN classification
of the correspondent blocks of the image). The total score
for each template is the sum of products. The template that
obtains the higher score is selected as the best match of the
road geometry. Only one template can obtain a high score,
because we use probabilities as the decision criteria.

3.3 Finite State Machine Step

The FSM uses the result of the template matching step as
input, which carries out a classification for the road detected

in each captured frame. This classification is defined by the
template which best fits the matrix and its position. The
developed FSM is composed by 5 states (straight road, soft
turns left and right, and hard turns left and right) as shown
on Table 2.

Table 2: States of the FSM used for the experimen-
tal tests.

States Associated Action

SR Keep steering wheel at center position
SLT Smoothly turn the steering wheel to left
SRT Smoothly turn the steering wheel to right
LT Fully turn the steering wheel to left

RT Fully turn the steering wheel to right

Figure 4 presents a partial scheme of the developed FSM.
Transition ’a’ represents classification of an input as a tran-
sition in direction of State 2, and 'b’ classification as a tran-
sition in direction of State 1. Figure 4 represents a state
change of state 1 to state 2. For example, 'a’ represents a
straight road state and ’b’ soft turns left. To change the state
in the FSM there must happen three consecutive equal sta-
tes. In this work, we use the FSM with only 2 intermediate
transitions between the states and have produced reasonable
results. Detailed information can be seen in [17].

The full FSM was designed with 5 states, which is obvi-
ously more complex to represent, but the partial scheme
presented in Figure 4 still remains representative of the full
FSM scheme. A transition between the current states to
any other state occurs only after detecting a sequence of 'n
+ 1’ identical inputs leading to the new state, where 'n’ is
the established number of intermediate states. The number
of intermediate states varies according to the noise level in
the images and navigability matrix representing the road,
and also depends of the frame rate. In a system based on a
high image acquisition frame rate, more misclassified inputs
could be generated per time unit, so more intermediate sta-
tes can be needed to discard some of these bad/noisy inputs.
Environments with low level of input noise are associated to
a smaller number of intermediate states.

34 Template Memory Step

After obtaining the current state (template) by FSM, this
current template is used as input in the template memory
step. In this step, the levels of memory of the templa-
tes are stored in a queue, as {Template:, Templatei_1,

Template;—a, ..., Template;— N7} In this work, the Templates

represents the current template, Template:—1 the previous
template, Template;—2 one template before the previous.
This is done successively, until the number of template me-
mory (NTM) is reached, where ¢ represents the time.

In this step, a second ANN is used differently of the ANNs
used in the image processing step. The basic network struc-
ture (Figure 5) used is a feed-forward MLP, the activa-
tion function of the hidden neurons is the sigmoid func-
tion and the ANN learning is the resilient backpropagation
(RPROP). The inputs are represented by templates memory
and the outputs are the steer angle and speed.

4. EXPERIMENTAL RESULTS

The experiments were performed using CaRINA (Figure 1),
an electric vehicle capable of autonomous navigation in a
urban road, equipped with a VIDERE DSG video camera, a
ROBOTEQ AX2580 motor controller for steering control,
an ARDUINO DUEMILANOVE is a microcontroller bo-
ard used for vehicle speed control and a GARMIN 18X-5Hz
GPS. The GPS was used only to register the log of the vehi-
cle trajectories, and it was not used as input of the system.
The image acquisition resolution was set to (320 x 240) pi-
xels. The ANNSs of the image processing step were executed
using Fast Artificial Neural Network (FANN) [1], which is a
free open source library which implements MLP ANNs in C,
and the ANN in the template memory step was used Stutt-
gart Neural Network Simulator (SNNS) [2], which is also a
software simulator for ANNs. For the development of the
image acquisition, image processing and template matching
algorithm, we used the OpenCV [4] library.

The results are divided into three scenarios. The first one
shows an urban area without obstacles using only the stee-
ring control without template memory. The second scenario
shows an urban area with obstacles (e.g. people, traffic co-
nes) using the steering and speed control without template
memory. The third scenario shows an urban area without
obstacles, but uses the supervised learning (vehicle control
system capable of learn behaviors based on examples obtai-
ned from human driver).

=Google
&
e

Figure 10: GPS trajectories (Scenario 1).

The results of the first scenario are described in two expe-
riments performed with our vehicle!. In the first one, the
vehicle should follow the road pavement (asphalt surface),
including straight, soft turn and hard turn path segments.
In the second experiment the vehicle should navigate into a
narrow straight path segment, following a surface composed
by a red pavement (red bricks). Both trajectories can be
seen in Figure 10 (yellow lane - 1st Experiment and red lane
- 2nd Experiment). The first experiment is the longer path,
and the second one is the shorter and narrower straight path,
both described in terms of their absolute GPS coordinates.
In both cases the vehicle was able to keep itself in the road

'Experiment videos available in the Internet (Scenario 1):
1st. - http://www.youtube.com/watch?v=boJ_jRmtclU
2nd. - http://www.youtube.com/watch?v=aJd31XoL6vA/

Figure 7: Experimental results of Scenario 1 (first experiment). Original Image (a), (b), (c), (d) and (e).
Classification by ANNs (f), (g), (h), (i) and (j). Command output (k), (1), (m), (n) and (o).

@ o) © (@
(0 (5) () ()
Figure 8: Experimental results of Scenario 1 (second experiment). Original Image (a), (b), (c), (d) and (e).
Classification by ANNs (f), (g), (h), (i) and (j).

&)

Figure 9: Experimental results of Scenario 2. Original Image (a), (b), (c¢), (d) and (e). Classification by
ANNSs (f), (g), (h), (i) and (j). Command output (k), (1), (m), (n) and (o).

successfully, following the road path defined by the region
previously indicated and trained as the navigable surface.

In order to obtain a quantitative analysis of the system per-
formance, 30 representative frames of the defined states for
this problem have been manually classified and compared to
the outputs of the proposed algorithms. As shown in Table
3, satisfactory results were obtained (67.4% overall correct
classification result). Most errors are due to small varia-
tions in the classification, and occurred between neighbor
states/templates: left turn (LT) and soft left turn (SLT);
right turn (RT) and soft right turn (SRT).

Table 3: Steering command results from Scenario 1
(first experiment).

States | SR LT RT SLT SRT
SR 93.4% | 0.0% 0.0% 6.6% 0.0%
LT 20.0% | 53.4% | 0.0% 26.6% | 0.0%

RT 13.3% | 0.0% 83.4% | 0.0% 3.3%
SLT 46.6% | 0.0% 0.0% 53.4% | 0.0%
SRT 46.6% | 0.0% 0.0% 0.0% 53.4%

Figure 6 shows an example of the proposed identification
method that resulted in 15 total state transitions (ST) de-
tections (considering only the present frame), during a total
sequence of 60 frames. The proposed FSM reduced these 15
transitions to only 4 effective ST. One example of a wrong
frame discarded by FSM is showed in Figure 6 (c), where the
current state was kept. Even when traversing a crosswalk
the vehicle successfully keep moving in the correct direction.

Figure 7 presents an example of straight, soft left and right
turns, and hard left and right turns being accurately iden-
tified by our system, with successfully navigation inside the
safe region defined by the pavement paths (navigable regi-
ons). Figure 8 shows an example of a straight path being
accurately identified by our system, with successfully navi-
gation following the path defined by the red bricks surface.

L 4

Figure 12: GPS trajectory (Scenario 3).

The results of the second scenario were performed with the
CaRINA platform?. The vehicle should keep on the urban

*Experiment video available in the Internet (Scenario 2):

road, spotting of obstacles (e.g. people, traffic cones), inclu-
ding straight, soft turn and hard turn path segments. The
GPS trajectories using the vehicle can be seen in Figure 11.

Figure 9 shows in details the experiment of scenario 2, in-
cluding an example of straight, soft left and right turns,
and hard left and right turns being identified by our system,
performing successfully the navigation inside the safe region
defined by the urban path and the obstacles avoidance (Fi-
gure 9 (a), (b) and (c)).

The results of the third scenario also were performed with
the CaRINA platform [16]. The vehicle should keep on the
urban environment (road), replicating the human behavior
based on examples from human driver. The GPS trajectory
can be seen in Figure 12.

Table 4 shows the obtained values of the performed path by
CaRINA for supervised learning. In Table 4, we analyze six
LMT, which represent the architecture of the second ANN
used in our proposed system. The numbers of LMT column
represents the values that we tested randomly in order to
develop a well-defined architecture. Half, Equal and Dou-
ble shows the different architectures, for example, LMT =
3, where changes occur in the number of neurons in the in-
termediate layer of a MLP architecture RPROP (a learning
heuristic for supervised learning in feed-forward ANNs), tes-
ted the architectures: 3-1-2 (Half), 3-3-2 (Equal) and 3-6-2
(Double) (half the size of the ANN input layer equal the
size of the ANN input layer double the size (in neurons) of
the ANN input layer), obtaining the values of mean squared
error (MSE), epoch (optimal point of generalization (OPG),
i.e., minimum training error and capacity of maximum ge-
neralization) and the number of best ANN (because were
initialized 5 different random seeds).

Table 4: Best results from MSE (M), Epoch (E) and
ANN (A) for the six levels of template memory.

Table 5: Best initial values of MSE.

MSE

LMT Half Equal Double
3 1060.730 | 929.475 762.547
5 1004.350 | 825.228 606.680
8 858.441 | 662.772 | 463.422
10 847.994 | 622.916 | 472.747
15 714.645 | 467.323 693.573
20 603.171 463.863 | 1385.200

6 is defined as being the architecture 20-10-2 (error 3.7%),
but after analyzing the data on Table 4 of this architecture,
showed a high MSE (52.133) compared to other architectu-
res. Therefore, the architecture 15-30-2 is the best.

Table 6: MSE results for LMTs.

MSE
LMT Half Equal | Double
3 4.298% | 4.321% | 4.322%
5 5.121% | 5.118% | 5.114%
8 5.079% | 5.250% | 5.170%
10 5.774% | 6.053% | 5.829%
15 6.084% | 6.008% [5.909%
20 3.763% | 3.772% | 3.773%

The Figures 13 and 14 illustrate the steer angle and speed of
CaRINA using the architecture 15-30-2, showing the com-
parison between human driver and the ANN learned. Small
oscillations are present in the data ANN learned, since the
FSM used in the proposed system maintains the current
state during 2 intermediate transitions, resulting in a line-
arity of the data (the vehicle keeps on the road with steer
and constants speed).

LMT Half Equal Double

M E|A M E | A M E | A
3 45599 | 25 | 4 | 45.837 | 40 | 1 | 45.847 | 55| 3
5 51.441 | 45| 3 | 51.404 | 25 | 2 | 51.362 [25| 5
8 43.601 | 15| 1 | 45.067 | 60 | 2 | 44.381 [15| 1
10 48.969 | 15 | 3 | 51.334 | 55 [4 | 49.431 | 10| 5
15 43.481 | 60 | 5 | 42941 | 15| 5 | 42.233 | 20 | 4
20 52.133 [20 | 4 | 52.253 | 45 | 1 | 52.268 [50 | 2

After the analysis of data on Table 4, the architecture 15-
30-2 showed the lowest MSE for the epoch 20.

Table 5 presents the largest initial values of MSE for all
LMT, based on Table 4 that shows the lowest values of MSE.
Analyzing the best ANNs learned, reducing the MSE until
the OPG. The architectures (3-1-2, 5-2-2, 8-4-2, 10-5-2, 15-
7-2 and 20-40-2) showed the largest initial values of the MSE
in order a reduction of high MSE.

Table 6 shows the percentage of the MSE for all architectures
of the second ANN proposed, based on Tables 4 and 5. The
best architecture (15-30-2) is shown on Table 6, presenting
the approximately error 5.9%. The lowest MSE of the Table

http://www.youtube.com/watch?v=U2rRzNUPUS8Y/

I — tum

T e Mo

Steering (degrees)
——
—

sSpeed (m/s)

Time (seconds)

Figure 14: CaRINA speed - training data.

The Figures 15 and 16 illustrate two tests performed by Ca-
RINA obtained of the second ANN used in our proposed
system. The architecture 15-30-2 was used in our experi-
ments, showing the steer angle and speed for the test data.

Z \
U

15 - T - —HY

i
o
g
5
$ A
ER U L Test 1 [ANN]
'g V —Tes5t 2 [ANN)
&
505 — Ij I

0 v

L 28 51 76
5
Time (seconds)

Figure 15: CaRINA steering - results obtained.

42

40

35

30 4 [
25

el LI

15 1

Test1 (ANN)

Speed (mfs)

—Test 2 (ANN)

10

5

0
1 26 21 6

Time (seconds)

Figure 16: CaRINA speed - results obtained.

Figure 15 illustrates the steering performance of the ANN
trained with the RPROP algorithm. It shows a better per-
formance, with little oscillation as shown in Test 1 (the de-
gree of steering between -5 and 15 as learned by ANN). The
main difference when compared with Test 2 is small oscilla-
tion during the straight line used by CaRINA and it is quite
similar the learned by the ANN. Unlike Test 2, the degree
of steering is more than 15 in some parts.

The speed performance is shown on Figure 16 for the test
data. In this case, the speed for Test 1 was obtained by
ANN, showing a better performance when compared to Test
2, because it showed a better response to the learning of
ANN and also generalized the data to navigate the vehicle
on a safe path on the road unlike Test 2.

Experimental tests showed that the Test 1 generated as ANN
output a better performance in the robot (CaRINA) beha-
vior, as shown on Figures 15 and 16 (see Video?).

5. CONCLUSION AND FUTURE WORKS

Autonomous vehicle navigation is an important task in mo-
bile robotics. This paper presented a vision-based naviga-
tion system which can be trained to identify the road and

3Experiment video available in the Internet (Scenario 3):
http://www.youtube.com/watch?v=SxdEY4JavAo/

navigable regions using ANNs, template matching classifica-
tion, FSM and a template memory. Our approach was eva-
luated using an Electrical Vehicle (CaRINA) tested in urban
road following experiments. The vehicle was able to navi-
gate autonomously in this environments executing a road
following task, avoiding obstacles (e.g. people, traffic co-
nes), and replicating the human behavior. Our quantitative
analysis also obtained satisfactory results for the learning of
ANNSs with the respective architectures (LMT).

As future works, we plan to evaluate other classification
methods and decision making algorithms. We also are plan-
ning to integrate camera and LIDAR laser in order to better
deal with bumps and depressions in the road.

6. ACKNOWLEDGMENTS

The authors acknowledge the support granted by CNPq and
FAPESP to the INCT-SEC (National Institute of Science
and Technology - Critical Embedded Systems - Brazil), FA-
PESP doctoral grant (process 2009/11614-4), and Gustavo
Buzogany for the technical contributions.

7. REFERENCES

[1] Fast artificial neural network library (fann), 2010.
http://leenissen.dk/fann/, Access on 02 June.

[2] Stuttgart neural network simulator (snns), 2010.
www.ra.cs.uni-tuebingen.de/SNNS/, Access 20 Nov.

[3] European land-robot (elrob), 2011.
http://www.elrob.org/, Access on 18 May.

[4] G. Bradski and A. Kaehler. Learning OpenCV:
Computer Vision with the OpenCV Library. 2008.

[5] M. Chan, D. Partouche, and M. Pasquier. An
intelligent driving system for automatically
anticipating and negotiating road curves. Int. Conf. on
Intelligent Robots and Systems, pages 117-122, 2007.

[6] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and
G. Bradski. Self-supervised monocular road detection
in desert terrain. In G. Sukhatme, S. Schaal,

W. Burgard, and D. Fox, editors, In Proceedings of the
Robotics Science and Systems Conference, 2006.

[7] V. Graefe. Vision for intelligent road vehicles. IEEE
Symp. of Intell. Vehicles, pages 135-140, 1993.

[8] B. Hamner, S. Scherer, and S. Singh. Learning to
drive among obstacles. TROS, pages 2663—2669, 2006.

[9] 1. Markelic, A. Kjaer-Nielsen, K. Pauwels, L. B. W.
Jensen, N. Chumerin, A. Vidugiriene,

M. Tamosiunaite, A. Rotter, M. V. Hulle, N. Kruger,
and F. Worgotter. The driving school system:
Learning automated basic driving skills from a teacher
in a real car. Trans. on Intell. Transp. Systems, 2011.

[10] I. Markelic, T. Kulvicius, M. Tamosiunaite, and
F. Worgotter. Anticipatory driving for a robot-car
based on supervised learning. In Lecture Notes in
Computer Science: Anticipatory Behavior in Adaptive
Learning Systems, pages 267282, 2009.

[11] R. J. Oentaryo and M. Pasquier. Gensofnn-yager: A
novel hippocampus-like learning memory system
realizing yager inference. In International Joint
Conference on Neural Networks, pages 1684—1691.

[12] A. Petrovskaya and S. Thrun. Model based vehicle
tracking in urban environments. IEEFE International
Conference on Robotics and Automation, 2009.

[13] D. A. Pomerleau. ALVINN: An Autonomous Land
Vehicle In a Neural Network. Advances In Neural
Information Processing Systems, 1989.

[14] A. S. M. Shihavuddin, K. Ahmed, M. S. Munir, and
K. R. Ahmed. Road boundary detection by a remote
vehicle using radon transform for path map generation
of an unknown area. Int. Journal of Computer Science
and Network Security, 8(8):64-69, 2008.

[15] P. Y. Shinzato and D. F. Wolf. A road following
approach using artificial neural networks
combinations. Journal of Intelligent and Robotic
Systems, 62(3):527-546, 2010.

[16] J. R. Souza, G. Pessin, P. Y. Shinzato, F. S. Osério,
and D. F. Wolf. Vision-based autonomous navigation
using neural networks and templates in urban
environments. First Brazilian Conference on Critical
Embedded Systems (I CBSEC), pages 55-60, 2011.

[17] J. R. Souza, D. O. Sales, P. Y. Shinzato, F. S. Osério,
and D. F. Wolf. Template-based autonomous
navigation in urban environments. In 26th ACM
Symp. on Applied Computing, pages 13761381, 2011.

[18] P. S. Stein and V. Santos. Visual guidance of an
autonomous robot using machine learning. 7th IFAC
Symposium on Intelligent Autonomous Vehicles, 2010.

[19] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens,
A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny,
G. Hoffmann, K. Lau, C. Oakley, M. Palatucci,

V. Pratt, P. Stang, S. Strohband, C. Dupont, L. E.
Jendrossek, C. Koelen, C. Markey, C. Rummel, J. Van
Niekerk, E. Jensen, P. Alessandrini, G. Bradski,

B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and

P. Mahoney. Stanley, the robot that won the darpa
grand challenge. Journal of Field Robotics, 2006.

