
 
 

 

  

 
Abstract—In this paper, we present an autonomous 

navigation system based on a finite state machine (FSM) 
combined with an artificial neural network (ANN) in an indoor 
patrolling robot. In the first step, the ANN is trained to 
recognize the different specific environment configurations, 
identifying the different robot situations (states) based on laser 
detections. Then, a program generates the expected sequence of 
states and actions for a specific route defined by the user, 
configuring a path in a topological like map. So, the robot 
becomes able to autonomously navigate through this 
environment, reaching the destination after going through a 
sequence of specific environment places, each place being 
identified by its local properties, as for example, straight path, 
path turning to left, path turning to right, bifurcations and 
path intersections. The experiments were performed with a 
Pioneer P3-AT robot equipped with a 180º Sick Lidar and a in 
a Patrolling task in order to validate and evaluate this 
approach. The proposed method demonstrated to be a 
promising approach to autonomous mobile robots navigation. 

I. INTRODUCTION 
HE application of Artificial Intelligence techniques to 
Autonomous Mobile Robots and Intelligent Vehicles 

have an important role in the international scientific robotics 
community [3][4][5]. One of the most desirable features in a 
mobile robot is the autonomous navigation capability. There 
are many important and well known works in this domain, as 
for example the Darpa Challenge (2004 and 2005 Grand 
Challenges at desert and 2007 Urban Challenge) [14][15] 
and the annual ELROB initiative [6][7], two of the most 
visible projects in this field of research. 

Autonomous mobile robots usually execute three main 
tasks: localization, mapping, and navigation [8]. The 
localization task is related to estimating the robot’s position 
in a known environment, using its sensors data. Mapping is 
responsible for creating a model to represent the 
environment based on robot’s localization and sensors data. 
Navigation is the robot’s capability to obtain information 
about the environment through its sensors, process it, and 
act, moving safely through this environment. 

In order to develop an Intelligent Autonomous Robot, 
capable of navigating into structured environments 
composed by lobbies and rooms, one can assume that the 
robot must know its approximate localization, the environ-
ment map and the path to be followed (origin/destination). 
 
 

Navigation in this environment consists basically to follow a 
well-defined path, based on a previously well-defined map 
of the environment, and also considering its sensors data [1]. 

In this paper we focus on the topological navigation task, 
following a path in an indoor environment executing a 
patrolling task. The typical application of the proposed 
system is an indoor service robot which can autonomously 
move around, monitoring and detecting abnormal situations 
(e.g. intrusions, spots of fire). Indoor patrolling tasks are an 
important research challenge among the main working 
groups (WG1) of the Brazilian National Institute of Science 
and Technology on Embedded Critical Systems (INCT-
SEC) [Ref-site-inct]. In order to develop such applications, 
the system should be easy to configure and use, with a quick 
setup of the environment map and patrolling task, and also, 
it can be robust in order to allow the robot to to move around 
and to detect abnormalities. 

Our approach does not require a well-defined metric map 
of the environment, only a “sketch” representing the main 
components/elements describing a rough view of the 
environment. Moreover, our approach does not require 
knowing precisely the robot’s position in the environment. 
Our main goal was to make the robot autonomously navigate 
through an indoor environment, executing a standard 
patrolling task. The robot is able to recognize some key-
points in the environment and decide when/how to proceed 
in order to go straight, turn left or right, even when all these 
possibilities are detected simultaneously (e.g. intersections). 

Our topological navigation approach uses an Artificial 
Neural Network [17] to classify the data obtained from 
sensors, and a FSM to represent the sequence of steps 
according to the chosen path. The ANN learns all possible 
states, and a FSM generator converts a single path into a 
sequence of these states. So, the system combines this 
deliberative topological navigation with a simple reactive 
control allowing the robot to safely navigate through the 
environment, and simultaneously patrol. 

The next topics of this papers are organized as follows: 
Section 2 presents a review of some important related works; 
Section 3 presents the techniques and features used to 
identify the current state and actions, used to move the robot 
through the environment; Section 4 shows the experimental 
results obtained from tests in the indoor environment; 
Section V presents the conclusion and future works. 
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II. RELATED WORKS 
Many different approaches were developed for navigation, 

using different types of sensors (e.g. laser, sonar, GPS, IMU, 
compass, cameras), individually or grouped [3][8][9]. If the 
environment map and/or robot’s localization is unknown, 
usually only a reactive navigation is possible. 

In order to implement our autonomous navigation system, 
a simple reactive system was not adequate, since the 
immediate reaction to the information provided by the 
sensorial system is not enough to guarantee the correct 
mobile robot control when following a complex path. A 
more robust control system should be implemented 
providing the sense of sequence and context which is absent 
in purely reactive models. 

In Robotics, Finite State Machine (FSM) [10] based 
approaches are often used [11][12], as for example, the 
“Situated Automata” and the “Reactive Deliberation 
Architecture”. FSMs are useful because the system can be 
easily described as a sequence of states (context changes), 
taking into account: inputs (sensors) that allows changing 
from one state (situation) to another one, and also defining 
for each state a specific action (motor action) associated to 
it. So for each state and state change, the robot is able to 
react properly. We chose to implement our control system 
based on this main idea that the mobile robot control system 
can be described by a FSM, using as inputs the route 
detection information obtained from sensors. 

The use of a machine learning method such Artificial 
Neural Networks (ANNs) showed to be an interesting way to 
process the sensors data, identifying and classifying the 
states (current and transitions), and determining which 
actions must be taken. [2] 

ANNs are tolerant to noise and input data imprecision, and 
are also able to identify the states and transitions between 
the states. ANNS are also very efficient in generalizing its 
knowledge and adjusting its outputs to many inputs, even 
when some inputs were not explicitly taught to the net 
(generalization capability). This way, ANNs are a very 
useful tool for path features classification and state 
detection. 

The association of ANN and FSM is not an entirely new 
proposal, since this type of approach have being discussed 
and studied since the 90s [21][22][23][24], when the ANN 
models were developed and matured, occupying an 
important place in Artificial Intelligence and Machine 
Learning researches, but few works applied this concept to 
solve robotic problems. 

Recent researches were developed combining FSM and 
ANN in robotic problems (autonomous vehicles) [18]. These 
works, however, were focused in a specific application: 
autonomous vehicle parking control. Little was done to 
evaluate the possibilities of extending this work to other 
applications. 

On the other hand, some other recent works were 
developed focusing in road detection and classification using 
image processing and computer vision algorithms, allowing 

robotic systems (autonomous vehicles) to identify the route 
pavement and also to detect straight paths and turning paths 
[19][20]. The problem with this approach is that sometimes 
we need a higher level of decision making, as for example in 
a road intersection, where we need to consider the road 
detection information combined with a more sophisticated 
navigation plan. 

In a previous work [1] we proposed a static pre-defined 
FSM combined with a vision-based sensorial method for an 
indoor robot’s navigation in a structured environment, but 
only a reactive control was implemented and the FSM was 
defined by hand and hard coded into the system. The FSM 
was used to allow the system to previously detect the 90º 
turns, and act even when the camera was not detecting the 
track anymore. 

III. SYSTEM OVERVIEW 
The developed system is composed by three main stages. 

The first one is to train the system to recognize all possible 
states (situations) using data collected previously from the 
environment. The second one is to generate the FSM for a 
specific planned path, and the last one is to autonomously 
navigate combining this deliberative control (topological 
path plan) with a reactive control to keep the robot in the 
center of the track. Figure 1 illustrates the sequence of steps 
performed by the system before the navigation. 

 

 
A.  Path Classification 
This step consists in training the ANN to accurately 

recognize all possible situations (5 states). The inputs of the 
ANN are the data received from the sensors, and the outputs 
are the classified road states, classified into straight path, 
road turn to left, road turn to right, road intersection and 
bifurcation. The database is generated saving the log of 
collected data in a run through the track. As the network 
must have a supervised learning, a specialist must classify 
this data before the ANN training. The developed ANN is a 
multilayer feed-forward net with 3 layers. It has 20 neurons 
on input layer, 20 neurons on hidden layer, and 3 neurons on 
output layer, as shown of Figure 2. 

 
Fig. 1.  System Setup Overview 



 
 

 
Each input neuron corresponds to a different laser beam, 

in the range between 0 and 180º (Figure 3). The output is a 
binary representation of each road recognized state. The 
ANN must be trained just once and works for every possible 
path in the map. 

 
B.  FSM Generation 
Once the topological map is available for an indoor 

environment, it is easy to determine a route between two 
points of this map. 

Every route can be seen as a sequence of steps (states), so 
it is trivial to generate a FSM for a defined path. A program 
converts any possible path of the map into a sequence of 
states and expected actions (it considers that one state can 
lead to more than one action, as shown next). So, the system 
select one desired path, and the FSM is saved to be read and 
used by the control unit. 

C. Navigation Control 
The hybrid control developed combines the deliberative 

control obtained from the FSM approach for topological 
navigation, with a reactive control in order to avoid the walls 
and to alert for human presence, performing its patrolling 
task. 

The topological navigation allows the robot to follow the 
path and know its approximate location on it, but does not 
control the navigation inside every state. For example, when 
the robot is following a straight path, a reactive control is 
used to maintain the robot in the center of the road. That is 
why the hybrid control model was adopted, allowing the 
integration of a topological navigation (deliberative) with a 
reactive control. 

 

The sensor processed data is used to know if the robot is 
still inside the current state (road segment) or if a context 
change is needed. A state change only occurs when the 
detected data is compatible with the next expected state. 

There are five possible states, and nine possible actions, as 
described on Table 1. Every state has at least one associated 
action (intersection and bifurcation states has more than 
one), once the robot can choose one of them among the 
different possible paths connected with these situations. 

 

 
 
While the robot is performing 90º turns, the sensorial 

system must be momentarily turned off, in order to avoid 
wrong data processing and classification during the 
operation. If the robot detects human presence, the 
navigation control must be momentarily paused, until the 
path becomes free. Figure 4 illustrates the navigation control 
flowchart. 

 

IV. EXPERIMENTS AND RESULTS 
Initial experiments were realized on Player/Stage 

environment, with a map which simulates a standard indoor 
situation, with 90º turns, straight paths, and intersections. 
This map required only four states and seven possible 
actions, so the initial ANN had two neurons on output layer. 
Fig. 5 shows the simulated robot performing the autonomous 
navigation in this environment, and a video of the state 
detection through the simulated path is available at 
[http://www.youtube.com/watch?v=J1utmdcDZXw or 
http://bit.ly/eLXx2f ] 

 
 

Fig. 4.  Navigation control flowchart

TABLE I 
POSSIBLE ACTIONS FOR EACH STATE 

State Related Actions 

Straight Go forward with reactive control 

Right Turn Right 

Left 
 

Turn Left 

Intersection Go forward / Turn right / Turn left 

Bifurcation Turn Right / Turn Left 

 
Fig. 3.  Laser beams taken as inputs for the ANN

 
Fig. 2.  Designed ANN Topology 



 
 

 
Fig. 6 presents the laser scan data obtained in two 

different situations, and Fig.7 presents two actions being 
performed by the simulated robot for these situations. 

 

 

After this initial step, we validated the approach 
performing some experiments using a Pioneer P3-AT robot 
equipped with a 180º Sick Lidar (Fig 8), in a patrolling task 
through an indoor environment (a lobby with many adjacent 
rooms). The robot must autonomously navigate through this 
lobby, reaching specific pre-determined points, avoiding 
obstacles, with a FSM as specified on Table 1. 

 

 
In both experiments the ANN was implemented using 

Stuttgart Neural Network Simulator (SNNS) [13], so the 
trained ANN was converted to C language, using SNSS2C 
tool, and integrated with the robot control program. 

The collected data to generate the database for ANN 
training was taken after manually control the robot through 
the map in many different angles and positions. 

The ANN architecture is defined as follows: feed-forward 
multilayer perceptron network with twenty input neurons, 
three hidden layers with ten neurons each and a 3 neuron 
output layer (2 neurons only on first experiment). All 
activation functions were defined as Act_Logistic function 
of SNNS [13] that applies sigmoid logistic. 

The log with laser data was saved with current state 
codification after every laser scanning. At this step, we 
generated 5429 input/output pairs for ANN training 
(supervised learning), and 250 pairs for validation. 

This input/output pairs were necessary because training 
algorithm chosen for this network was Resilient Back-
Propagation (Rprop)[16], which is a supervised learning 
algorithm that needs pairs with inputs/desired outputs. 

Training parameters were defined as: δ0 = 0.1, δMax = 
50, α = 4.0 and number of epochs = 500. The error per 
output was very close to 0 (Error < 0.02). Figure 9 contains 
the error graph of the ANN training. 

This algorithm have been achieving good results for feed-
forward networks for many applications comparing to other 
training algorithms in convergence and training time. The 
main difference of this algorithm is that it takes into account 
only the sign of the partial derivative over all patterns (not 
the magnitude), and acts independently on each "weight". 

 
Fig. 8.  Pioneer P3-AT robot with Sick Lidar used in experiments 

 
a) Robot in a corridor with corresponding  

laser scan area (in blue) 

 
b) Robot in a corner with corresponding  

laser scan area (in blue) 
 

Fig. 7 – Robot in straight path and right turn states 

 

 
Fig. 6 – Laser data taken for two different states.  

Straight (0 0) and Right (0 1) 

Fig. 5.  Simulated robot navigating through the environment 



 
 

 
Many different routes were tested, using different 

sequences of states and actions, and the robot performed all 
of them as expected, following correctly the pre-specified 
path (topological route). 

The initial position and topological map of the 
environment are always known, and the actual position, 
estimated with laser data (current state). The exact position 
is not necessary, because a reactive control is responsible for 
the navigation inside every state. 

Fig 10, 11, 12 and 13 illustrates the robot performing four 
different actions. A video of some interesting parts of the 
performed paths is available at 
[http://www.youtube.com/watch?v=faCEN9-SIao  or 
http://bit.ly/fe05SK ]. 

In order to execute the patrolling task, a parallel system 
was developed. It uses a FLIR thermal camera for human 
detection. The frames captured by the camera are processed 
using OpenCV in order to determine if a human is at the 
lobby. If a human is detected, the alert state is activated. 

Fig 14. contains the original frame taken from FLIR 
camera in this situation, and Fig 15 contains the processed 
frame, with the alert state active. 

A video of this system working is available at: 
[http://www.youtube.com/watch?v=1MNXZkoUKuM or 
http://bit.ly/gpjJvP ]. 

 

 

 

 

 
Fig. 14.  Original frame taken from FLIR camera 

 
Fig. 13.  Robot in a Straight Path State 

 
Fig. 12.  Robot in a Turn Right State

 
Fig. 11.  Robot in a Intersection State 

 
Fig. 10.  Robot Before a Turn Right State 

 
 

Fig. 9.  ANN training error graph 



 
 

 
This system is also useful for the navigation task, because 

human presence could affect the laser data classification, so 
when a human is detected the robot momentarily stops the 
navigation task while the alert state is active. 

V. CONCLUSION AND FUTURE WORKS 
The implemented method obtained very good results, with 

100% accuracy on classifying the track and driving through 
the expected route in all experiments carried out, showing 
that the association of ANN and FSM is a very convenient 
approach for mobile robotic navigation. 

The system can be retrained to recognize more situations 
and also it can use and combine many other sensors, 
allowing its implementation on mobile robots both in indoor 
and outdoor environments. The FSM can be used not only to 
patrolling tasks but also in many other applications, such 
driving in urban environments for example, so the proposed 
method also demonstrated to be flexible in order to be easily 
adapted to other situations. 

On the other hand, a poor ANN training or a high level of 
noisy inputs could lead to wrong classification and 
inadequate state changes, so we expect to solve this problem 
using a more robust ANN, and combining more sensors in 
order to increase the context detection and avoid fast state 
changes. 
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Fig. 15.  Processed frame with alert state indicated 


