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Abstract—Accurate position information of an agent (i.e. robot,
animal, or people) is a requirement to accomplish several tasks.
Some sensors like GPS provide global position estimation but
it is restricted to outdoor environments and has an inherent
imprecision of a few meters. In indoor spaces, other sensors
like lasers and cameras can be used for position estimation,
but they require landmarks (or maps) in the environment and
a fair amount of computation to process complex algorithms.
These sensors also have a limited field of view, which makes
the localization task harder. In the case of video cameras, the
variation of light is also a serious issue. Nowadays Wireless
Networks (WN) are widely available in indoor environments
and allow efficient global localization demanding relatively low
computing resources. Other advantages of this approach are
scalability, robustness, and independence of specific features of
the environment. However, the inherent instability in the wireless
signal does not allow its direct use for very accurate position
estimation. In this paper we evaluate the use of an Artificial
Neural Network (ANN) to improve the estimation of the position
of a mobile node in indoor environment using data provided by
wireless networks. Our approach uses the ANN capabilities of
learning and generalization to reduce the effect of the unstable
data, increasing the accuracy of the agent’s position. In order
to validate our approach several ANN topologies have been
evaluated in experimental tests performed with a mobile node
in an indoor space.

I. INTRODUCTION

Correctly estimating its own location is a prior assumption
to accomplish several tasks in autonomous mobile robotic area.
Also, knowledge about location can be used to track animals
and people (i.e. to track the movement of the people while
practicing sports). Sensors like GPS provide global position
estimation but it is restricted to outdoor environments and has
an inherent imprecision of few meters. The use of GPS is
quite common in outdoors as a primary source of position,
while more accurate estimation is obtained by fusion of other
sensors, like lasers and cameras [1], [2].

In indoor spaces, other sensors like lasers and cameras can
be used for pose estimation [3], [4], but they require landmarks
(or maps) in the environment and a fair amount of computation
to process complex algorithms. These sensors also have a
limited field of view, which makes the localization task harder.
In the case of video cameras, the variation of light is also

a serious issue. Another possibility is an odometer, which
provides useful information in some cases [5], [6] but it has
an incremental error that usually invalidates their use in real
systems.

Wireless Networks are widely available in indoor envi-
ronments and allow efficient global localization demanding
relatively low computing resources. Other advantages of this
approach are scalability, robustness, and independence of
specific features of the environment. However, the inherent
instability in the wireless signal does not allow its direct
use for accurate position estimation. One machine learning
technique that could reduce the instability of the signals of
the WN are Artificial Neural Networks, given its capability of
learning from examples, and generalization and adaptation of
the outputs. This is a method largely used in applications that
require approximation, prediction or classification [7].

The main objective of this paper is the evaluation of ANNs
to obtain the position of mobile nodes using measurements
from wireless devices (802.11b/g). The measurements from
the wireless network are Received Signal Strength Indication
(RSSI) and Link Quality Indicator (LQI). These values are
used as input of an ANN to learn the location without
any another information or any requirement of mathematical
approach. We evaluate several topologies of ANNs and also
evaluate a simple technique to reduce the error in the location
using average of multiples measurements from the wireless
network.

This paper has the following structure: Section II introduces
a short theoretical description and applications of artificial
neural networks and wireless networks. Section III presents
the methodology used to create and evaluate the experiments.
Section IV describes the evaluation of all performed experi-
ments. The last section presents the conclusion and the future
perspectives of the presented work.

II. THEORETICAL BACKGROUND

A. Artificial Neural Network

An Artificial Neural Network (ANN) is a collection of units
(neurons) connected by weighted links (synapses). Input and
output units receive and transfer signals from the environment



to the environment. Internal units are called hidden because
they do not have contact with the external environment [8].
The basic attributes of an ANN can be divided into topology
and neurodynamics. The topology determines the structure of
the network, i.e. the number of neurons and their intercon-
nectivity. The neurodynamics defines the functional properties
of the network, that is how it learns, recovers, combines
and compares new information with knowledge already stored
[9]. Mathematically, ANNs are universal approximators, that
perform mappings in multivariable functions spaces [10].

The ability to learn and generalize1 is one of the major
advantages of ANNs, which gives it a power far beyond the
simple direct mapping inputs and outputs.

Neural networks are widely used in applications that require
approximation, prediction or classification. The work [11]
presents an ANN able to perform the navigation of a robot in
a simulated two-dimensional environment. The ANN controls
the direction of the robot to areas with lower density of
occupation by vegetation, the inputs of ANN are the vegetation
densities observed and the output is the angle to which
the agent should move. [12] presents an ANN to perform
the navigation of a robot in a simulated three-dimensional
environment. The ANN inputs are information collected from
sensors (location, orientation, distance to obstacles) and the
outputs are the speed and angle to be applied in linear and
angular motors, respectively. Moreover, the work [13] presents
an ANN to classify navigable and non-navigable regions in
images, the ANN inputs are attributes of color, as average of
color channels and entropy. Other studies using ANNs can be
seen in [7], [14], [15].

In this paper, the development of the ANN was done with
the Stuttgart Neural Network Simulator (SNNS) [16]. The
SNNS is an environment to develop topologies and to train
ANNs which has a large number of learning algorithms, such
as backpropagation, quick propagation, resilient backpropaga-
tion, among others. The core system is developed in C and its
use can be made completely through command line, but also
has an interface developed in JAVA (JavaNNS). An application
package from SNNS, the SNNS2C, allows the conversion of
the ANN into a C code, which can be easily inserted into
another application.

B. Wireless Networks

In most cases, signals from wireless networks propagate
omnidirectionally. It could be directional depending on the
type of antenna. The power signal decreases related to the
distance from the server station. Using trilateration, and at least
3 server stations, we could use a simple calculation considering
RSSI to obtain the location, similar to GPS. But, unlike GPS,
the signal from wireless presents more instability and suffers
from more interferences [17], [18], [19].

In [20] it has been shown that absolute performance in
localization, using wireless networks, depends on the environ-
ment configuration. Hence, different approaches could work

1Generalize can be considered as the production of acceptable outputs for
inputs not presented during learning.

better in different environments, such as using different kinds
of signals or filters. Evaluations in large indoor sites (like a
building) introduce more difficulties in the localization due
to attenuation and reflection of the signals on the walls and
the different sources of interferences. Wireless localization
addressing localization inside a building can be found in [21]
and [22].

Another approach in localization is the use of a Wireless
Sensor Network (WSN). The main difference in this approach
is that in WSNs there are large numbers of small sensors which
extract information from the environment. The information
acquired by the sensors can be considered as a fingerprint.
It is an interesting solution, but it depends on many resources
which could make the system expensive. Existing work using
WSN to obtain localization can be found in [23] and [22].

Our approach uses only 4 access points to provide wireless
signals, which minimizes the number of resources. Also, the
localization is done inside a small area, like a room, not in
the entire building.

III. METHODOLOGY

As mentioned earlier, we have evaluated the use of an
Artificial Neural Network (ANN) to obtain the position of
a mobile node in indoor environment using data provided by
wireless network (IEEE 802.11b/g). Our approach uses the
ANN capabilities of learning and generalization to reduce the
effect of the unstable data (due to signal strength oscillation),
increasing accuracy of the agent’s position estimation.

The indoor environment used to obtain data and to deploy
the mobile node can be seen in the Fig. 1 and 2. The working
area of the mobile node2 is inside a room and is represented
as a Cartesian plane. There are 4 access points (APs), one in
each corner of the plane. The mobile node is located inside
the plane with one wireless card used to scan the networks
and signals provided by the APs. The data used to train the
ANN was collected in 8 readings from each marked point –
displacement of 90cm (Fig. 2). Given the plan with 270cm x
270cm, it means 16 points to read, resulting in 128 readings.

In order to validate our approach, several ANN topologies
have been evaluated in experimental tests performed with a
mobile node in this indoor environment. The inputs of the
ANN are the signals received by the mobile node antenna from
the 4 statically positioned APs. The values obtained from the
wireless networks are the Received Signal Strength Indication
(RSSI) and the Link Quality Indicator (LQI). These values are
obtained with the GNU/Linux command iwlist. As we use the
iwlist command, there is no need to establish a connection (or
login) with the different specific networks. The scan of the
networks without a connection provides enough information
to this evaluation. Without a connection, the system becomes
easier to use, more lightweight and flexible.

2The Fig. 2 shows a little robot inside the plane but to scan the WNs
and to obtain the data used as ANN input we used a mobile computer. The
GNU/Linux command iwlist used to scan the networks is not yet implemented
in the robot.



Fig. 1. Graphical representation of the working area. It represents an area
with 270cm x 270cm.

Fig. 2. Picture of the working area with the expected mobile node, similar
to the representation presented in Figure 1. The yellow rectangles show two
source of network signals (APs). Large arrow indicates the robot. Small arrows
indicate the plan marks (each 90cm).

RSSI is a metric of the signal strength or signal power
present in a received radio signal. Technically any device
with wireless communication functionality provides it to the
upper layers of the network stacks. The main advantage
of using RSSI is its low cost. Given that every wireless
device implements the possibility to deliver that value in its
circuitry, there is no need of additional hardware development
or adaptation. LQI is a metric that considers the RSSI and the
environment noise [17], [18], [19].

We have considered three different ANN input data and
input layer configurations. The first one considers only RSSI,
the second considers only LQI while the third considers both
RSSI and LQI. Also, we made evaluations with 8 different
hidden layer configurations, considering 4, 8, 12, 16, 20, 24, 28
and 32 neurons. As we use 4 APs, the inputs of the ANN use
one neuron for each network signal. The order is important,
and hence, the AP 1 was associated to neuron 1, AP 2 with

neuron 2 and so on. When the ANN has as an input only RSSI
or only LQI, there are 4 input neurons. When the ANN has
as an input RSSI and LQI, the input layer has 8 neurons.

The outputs of the network are two values, the coordinates
(x,y) of the receiving antenna in the plane, a.k.a. the mobile
node position. We train the ANN with the power signal of
each source antenna expecting to get the position of the mobile
node in the Cartesian plane. Therefore, after training the ANN,
we could use it to obtain the localization and to track the
displacement of the mobile node along a path.

The error is measured in centimeters, using the distance
formula (distance between two points), as show Eq. 1.

d =
√
(x2 − x1)2 + (y2 − y1)2 (1)

IV. EXPERIMENTS AND RESULTS

In the first step, we have evaluated the impact of using
RSSI alone, LQI alone and both measurements together. These
ANNs have also 8 different hidden layers, with 4, 8, 12, 16, 20,
24, 28 and 32 neurons. The result of training and validation
can be seen in Tables I, II and III. The bold value in the
tables indicates the best value (lower error) obtained. ANNs
are susceptible to random values used in the initialization of
the weights, so, we show in all tables the result of 5 different
initializations and ANN training and validation.

We run the ANN training for 200.000 cycles, doing valida-
tion each 1.000 cycles. After 200.000 training cycles we use
a script to find the cycle were the lower error occurred in the
validation set (Optimum Generalization Point - OGP). In this
way, Tables I, II and III show, beyond the MSE, the OGP of
the respective ANN validation set.

We can see in Table II that the topology with 4 hidden
neurons, using only RSSI as input, does not show learning
capabilities. The error, both in training and in validation
remains constant in this ANN for all random seeds used. For
all ANN topologies with 8 and more hidden neurons the results
appears to be more susceptible to the random seed used than
to the network topology. The MSE ranges from ≈ 8, 000 to
≈ 10, 000 in most topologies. However, two samples with
specific random seeds allowed to obtain MSEs smaller than
8,000. These ANNs were the ANN with 16 neurons in the
hidden layers using RSSI, random seed 5 and the ANN with
16 neurons in the hidden layers using LQI, random seed 3.

As the tables show the Mean Square Error (MSE), and being
this information not much human representative, we convert
the result of the error of the trained ANN in centimeters. The
error in cms can be seen in the Table IV. The results, in cms,
does not show any major difference. We can see in Table IV
that both the average error as the standard deviation differ by
less than 10%. Therefore, we can not guarantee that there is
a significant difference between using the one or the other
topology.

As we consider this error somewhat large we try to reduce
it using average of multiple readings of the wireless network
signals as ANN input. Hence, the average of multiples readings
of wireless networks were used as input of the ANN. We



TABLE I
RESULTS OF ANN TRAINING AND VALIDATION USING LQI.

Mean Square Error
ANN Topology Seed 1 Seed 2 Seed 3 Seed 4 Seed 5

Cycle with OGP 12,000 8,000 11,000 21,000 9,000
4x4x2 MSE Validation 12,765.10 9,931.66 9,761.12 10,087.30 9,961.20

MSE Training 8,774.41 6,436.16 6,486.81 6,451.71 6,386.72
Cycle with OGP 26,000 6,000 10,000 13,000 16,000

4x8x2 MSE Validation 8,052.01 10,177.60 10,455.70 9,335.31 10,146.70
MSE Training 3,214.54 4,038.38 3,557.03 3,476.81 3,919.17
Cycle with OGP 8,000 14,000 30,000 29,000 10,000

4x12x2 MSE Validation 10,173.60 9,223.82 9,031.10 8,192.70 9,510.75
MSE Training 2,096.11 2,241.99 2,510.17 2,501.75 1,870.38
Cycle with OGP 11,000 36,000 45,000 11,000 4,000

4x16x2 MSE Validation 10,267.00 9,152.31 7,675.02 10,390.70 9,733.44
MSE Training 1,798.24 2,052.72 1,903.77 2,758.26 1,270.88
Cycle with OGP 38,000 133,000 12,000 20,000 42,000

4x20x2 MSE Validation 8,503.22 8,892.63 9,564.22 8,690.54 9,771.28
MSE Training 1,360.20 3,238.05 1,661.50 725.15 3,262.58
Cycle with OGP 15,000 6,000 37,000 150,000 24,000

4x24x2 MSE Validation 8,257.35 10,654.60 9,012.88 8,603.57 9,758.70
MSE Training 1,236.62 706.17 1,178.45 2,858.17 1,227.23
Cycle with OGP 50,000 7,000 13,000 20,000 17,000

4x28x2 MSE Validation 8,623.52 10,407.40 8,417.83 8,570.47 9,849.23
MSE Training 1,814.08 1,360.59 556.01 2,192.64 2,620.35
Cycle with OGP 2,000 26,000 26,000 14,000 8,000

4x32x2 MSE Validation 10,174.30 8,986.58 10,273.70 10,684.90 10,210.20
MSE Training 655.64 1,385.76 2,196.86 989.09 897.50

TABLE II
RESULTS OF ANN TRAINING AND VALIDATION USING RSSI.

Mean Square Error
ANN Topology Seed 1 Seed 2 Seed 3 Seed 4 Seed 5

Cycle with OGP 1,000 1,000 1,000 1,000 1,000
4x4x2 MSE Validation 19,521.00 19,521.00 19,521.00 19,521.00 19,521.00

MSE Training 19,323.40 19,323.40 19,323.40 19,323.40 19,323.40
Cycle with OGP 2,000 3,000 2,000 4,000 1,000

4x8x2 MSE Validation 10,332.10 8,983.84 10,462.70 10,425.60 10,154.10
MSE Training 3,417.38 4,567.84 3,352.75 4,165.33 3,863.15
Cycle with OGP 5,000 3,000 5,000 8,000 3,000

4x12x2 MSE Validation 9,088.69 10,545.10 10,888.70 9,306.96 10,173.80
MSE Training 3,976.18 3,376.28 3,236.67 3,022.70 2,799.89
Cycle with OGP 7,000 3,000 16,000 5,000 28,000

4x16x2 MSE Validation 9,878.54 9,175.65 10,032.70 10,179.70 7,675.60
MSE Training 1,384.38 1,964.64 4,431.05 3,659.89 3,753.49
Cycle with OGP 10,000 20,000 3,000 1,000 5,000

4x20x2 MSE Validation 10,194.10 9,524.93 10,252.30 11,649,8 9,617.74
MSE Training 1,748.87 1,934.26 2,250.03 2,400.03 2,044.45
Cycle with OGP 1,000 14,000 1,000 4,000 17,000

4x24x2 MSE Validation 10,851.90 9,271.33 10,829.10 9,497.56 8,467.30
MSE Training 2,307.75 2,093.99 1,450.24 1,273.91 1,238.20
Cycle with OGP 7,000 36,000 3,000 3,000 7,000

4x28x2 MSE Validation 8,736.25 9,591.05 9,871.50 9,250.73 8,497.69
MSE Training 1,992.95 2,391.61 1,381.44 683.96 1,359.90
Cycle with OGP 2,000 1,000 6,000 18,000 2,000

4x32x2 MSE Validation 9,092.92 9,813.68 10,327.40 9,229.80 10,130.40
MSE Training 1,509.22 1,414.04 1,746.82 1,776.24 2,620.17

evaluate the average of 2, 4 and 6 readings of the wireless
network signals (scans of wireless signals). In this evaluation,
we use the best ANN topology chosen from the previous step.
The best topology was the ANN with 16 hidden neurons and
using as input LQI. We run also 5 times the training and
validation of the ANN using different random seeds. Table V
and Fig. 3 show the results, in centimeters, of the best ANNs.

We can see in Table V and in Fig. 3 that using as input

in the ANN the average of the multiple readings from the
wireless network, we could reduce the average error in the
ANN learning from 73.04cm (without using average of scan)
to 28.72cm (using average of 6 scans). It means a reduction of
60.68% in the average error. Also, it could reduce the standard
deviation from 49.06cm (without using average of scan) to
14.76cm (using average of 6 scans). It means a reduction of
69.91% in the standard deviation.



TABLE III
RESULTS OF ANN TRAINING AND VALIDATION USING RSSI AND LQI.

Mean Square Error
ANN Topology Seed 1 Seed 2 Seed 3 Seed 4 Seed 5

Cycle with OGP 3,000 6,000 14,000 9,000 3,000
8x4x2 MSE Validation 10,062.10 9,928.30 10,120.80 10,385.60 10,675.30

MSE Training 5,897.86 5,479.84 5,480.17 5,479.72 6,192.29
Cycle with OGP 5,000 2,000 3,000 1,000 2,000

8x8x2 MSE Validation 10,317.20 8,920.89 10,415.20 9,979.49 9,109.60
MSE Training 3,965.76 3,800.78 3,855.22 3,940.69 2,910.31
Cycle with OGP 2,000 4,000 1,000 19,000 1,000

8x12x2 MSE Validation 11,594.30 10,043.60 11,054.20 9,091.86 10,664.60
MSE Training 1,647.04 1,931.91 3,153.80 2,663.73 2,427.86
Cycle with OGP 7,000 1,000 5,000 4,000 2,000

8x16x2 MSE Validation 8,604.26 10,516.80 9,172.27 8,507.51 10,414.50
MSE Training 1,242.66 1,469.67 1,066.27 1,596.17 1,325.05
Cycle with OGP 5,000 1,000 5,000 3,000 5,000

8x20x2 MSE Validation 9,130.13 10,599.90 8,951.33 9,131.57 10,207.30
MSE Training 1,306.92 1,853.70 1,456.52 965.96 1,846.93
Cycle with OGP 1,000 1,000 1,000 1,000 1,000

8x24x2 MSE Validation 10,104.70 9,673.64 9,737.22 10,607.80 11,620.80
MSE Training 509.35 505.88 522.17 851.61 625.17
Cycle with OGP 1,000 2,000 2,000 4,000 1,000

8x28x2 MSE Validation 10,446.40 9,094.02 10,753.00 9,947.86 9,656.12
MSE Training 436.23 402.34 395.05 603.34 1,022.99
Cycle with OGP 5,000 1,000 2,000 1,000 2,000

8x32x2 MSE Validation 10,567.50 10,618.50 8,558.21 8,961.94 8,956.89
MSE Training 302.39 150.07 571.63 468.40 654.63

TABLE IV
RESULTS OF THE BEST ANNS USING DIFERENT INPUTS.

ANN Inputs
LQI RSSI LQI and RSSI

Average error (cm) 73.04 75.75 80.94
Standard deviation (cm) 49.06 44.63 44.85
Bigger error (cm) 187.57 197.47 197.49
Lower error (cm) 14.34 16.96 8.14

TABLE V
RESULTS OF THE ANNS USING THE AVERAGE OF MULTIPLES SCANS.

ANN Inputs
Unique Average Average Average

scan of 2 scans of 4 scans of 6 scans
Average error (cm) 73.04 60.10 48.82 28.72
Std. dev. (cm) 49.06 38.48 39.69 14.76
Bigger error (cm) 187.57 171.93 150.90 51.43
Lower error (cm) 14.34 3.06 3.11 5.88

We use the mobile node to traverse a path (and get the
track) in the environment, considering wireless scanning each
90cm x 90cm displacement. The paths can be seen in Fig. 4.
The results are not quite good yet, but Fig. 4(b) present results
significantly better than Fig. 4(a). We can see from Fig. 4 that
the tracked path improves with the use of averages.

V. CONCLUSIONS

Accurate position information of an agent (i.e. robot, ani-
mal, or people) is a requirement to accomplish several tasks.
Some sensors like GPS provide global position estimation but
it is restricted to outdoor environments and has an inherent
imprecision of few meters. In indoor spaces, other sensors

Fig. 3. Results, in centimeters, of the ANNs trained with average of multiples
scans. The graph show average error +/- standard deviation.

like lasers and cameras can be used for pose estimation, but
they require landmarks (or maps) in the environment and a
fair amount of computation to process complex algorithms.
These sensors also have a limited field of view, which makes
the localization task harder. In the case of video cameras, the
variation of light is also a serious issue. Nowadays Wireless
Networks are widely available in indoor environments and
could allow efficient global localization demanding relatively
low computing resources. However, the inherent instability in
the wireless signal does not allow its direct use for accurate
position estimation.

In this paper we have evaluated the use of an Artificial
Neural Network to obtain the position of a mobile node in



(a) (b)

Fig. 4. Paths using the best trained ANNs. (a) Just one scan in the ANN input. (b) Average of 6 scan in the ANN input. Red line: original path. Blue line:
ANN tracking.

indoor environment using data provided by wireless network.
We evaluate several topologies of ANNs. To further reduce the
error, we evaluated the use of average of multiples wireless
scanning, which allowed reducing radius error average in
60.68%. Finally, we used the ANN to get the current position
of a mobile node performing a path, in which we track the
robot with an average error of 28.72cm.

The main future work planned is to seek improvements in
the system to obtain, beyond the position, the orientation of
the mobile node. In this way we plan use another wireless
technologies, like Bluetooth and ZigBee and make evaluations
with more than 4 Access Points.
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[12] G. Pessin, F. S. Osório, A. Y. Hata, and D. F. Wolf, “Intelligent control
and evolutionary strategies applied to multirobotic systems,” in IEEE-
ICIT 2010 Int. Conf. on Industrial Technology, 2010, pp. 1427–1432.

[13] D. Sales, P. Shinzato, G. Pessin, F. Osório, and D. Wolf, “Vision-based
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