
 
 

 

 

 

Abstract — This paper presents the development of a 
perception system for indoor environments to allow autonomous 
navigation for surveillance mobile robots. The system is 
composed by two parts. The first part is a reactive navigation 
system in which a mobile robot moves avoiding obstacles in 
environment, using the distance sensor Kinect. The second part of 
this system uses a artificial neural network (ANN) to recognize 
different configurations of the environment, for example, path 
ahead, left path, right path and intersections. The ANN is trained 
using data captured by the Kinect sensor in indoor environments. 
This way, the robot becomes able to perform a topological 
navigation combining internal reactive behavior to avoid 
obstacles and the ANN to locate the robot in the environment, in 
a deliberative behavior. The topological map is represented by a 
graph which represents the configuration of the environment, 
where the hallways (path ahead) are the edges and locations (left 
path and intersection, for example) are the vertices. The system 
also works in the dark, which is a great advantage 
for surveillance systems. The experiments were performed with a 
Pioneer P3-AT robot equipped with a Kinect sensor in order to 
validate and evaluate this approach. The proposed method 
demonstrated to be a promising approach to autonomous mobile 
robots navigation. 

I. INTRODUCTION 
UTONOMOUS mobile robots have been assuming an 
important role along with modern society. A relevant type 

of autonomous mobile robots is directed to the surveillance 
and indoor safety tasks. Besides being able to navigate and 
avoid obstacles, this particular kind of robot must perform 
monitoring tasks, for example, intruder’s detection. 

For the development of autonomous mobile robots, several 
aspects must be taken into consideration, such as the type of 
application and the basic robot platform and sensors adopted, 
which compose the robot’s hardware [1] [2]. Furthermore, a 
very important component of a robot consists of its control and 
navigation system, which is the software of the robotic system 
[3]. 

Sensors are used to collect information about the robot and 
the environment. The intelligent control deals with three main 
problems in mobile robotics: the mapping of the environment, 
localization and navigation of the robot [4]. A robotic system 
requires an environment map (the mapping) to plan its route 

and navigate through it, and information about its position on 
the map (the localization) in order to navigate from its current 
location to any other location represented in the environment 
map. 

In this context, an interesting point to study is the possibility 
of creating autonomous mobile robots at a lower cost and 
compatible with the various applications currently available on 
the market [5] [6]. The use of Kinect sensor may represent a 
significant reduction of a robot costs, as this sensor has been 
showing that it can replace with large advantage the use of 
other sensors, including very expensive laser sensors, like the 
Hokuyo laser [7]. 

Although robotics has been evolving for decades, most of 
the existing indoor surveillance robots are not autonomous and 
reliable yet. Also, in most cases they are not commercial 
applications. Therefore, we want to propose methods which 
can be applied to different robotic solutions and that allow the 
creation of autonomous mobile robots with appropriate cost 
and great autonomy, ensuring that they can be applied to 
different problems and tasks. 

This paper presents the partial results of the development of 
an environment perception system, composed by two 
subsystems responsible for: (I) autonomous mobile robots’ 
navigation for monitoring and surveillance tasks in indoor 
environments, (II) global localization of the robot in an 
environment represented by a topological map (see Fig. 1). 
The integration of both subsystems is in progress. 

The complete system is a robot directed to vigilant use on a 
closed structured environment, for example a storehouse. The 
environment can be characterized by classrooms and hallways 
and by the presence of several static obstacles (furniture, 
materials, general objects). The robot must navigate in the 
environment, being able to avoid collisions and damage. 
 

 
Fig. 1 – Example of a topological map of an indoor environment represented 

by a graph. 
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The next topics of this paper are organized as follows: 
Section II presents a review of some important related works; 
Section III presents an overview of the system development; 
Section IV presents results obtained from tests in the indoor 
environments of subsystems; Section V shows the conclusion 
and future works. 

II. RELATED WORKS 
Some important reasons for the development of security 

vigilance robots in indoor environments can be related to 
bringing security to the human vigilant, providing accessibility 
in harmful and inaccessible places to humans and even 
executing tedious jobs. Although the creation of surveillance 
robots to indoor environments is not a totally new application 
[8], this area of research has been increasing [9] [10] [11], 
allowing a growth in security applications for indoor robots. 

Besides the commercial robots, there are many robots used 
for research in mobile robotics safety. Some examples are the 
Pioneer and Seekur, manufactured by MobileRobots1, and the 
SRV, from Surveyor Corporation2. Researches involving these 
robots, though, still need to earn enough maturity to enable 
commercial products to employ their technology, doing justice 
to the robotics goals of contributing to the human safety and 
comfort. 

Among the objectives of this work is the development of a 
system that must navigate autonomously and safely in an 
indoor environment. In order to accomplish this, it is necessary 
to consider some methods for the navigable regions 
recognition and to avoid collisions with the environmental 
elements. 

Several approaches have been used for navigation using 
different types of sensors (eg. laser, sonar, GPS, IMU, 
compass), either individually or combined [4] [12] [13]. One 
of the most used approaches is the computer vision-based 
navigation [14], a method that uses video cameras as the main 
sensor. The cameras have proved to be very suitable for tasks 
requiring navigation and obstacle avoidance due to its low 
weight and power consumption [15]. Furthermore, an image 
can provide many different types of information about the 
environment at the same time without the need to work with 
the merging of various different sensors. By using cameras 
rather than other types of sensors, it is also possible to reduce 
costs [16]. 

The implementation of computer vision-based approaches is 
already common in navigation systems working into structured 
or semi-structured environments [17] [18] [12] [19] [20]. 
These systems classify the image by segmenting the region of 
track and identifying the available path area in front of the 
vehicle, indicating a safe area for navigation. 

 
1 MobileRobots – Web: http://www.mobilerobots.com/ 
2 Surveyor Corporation – Web: http://www.surveyor.com/ 

Although the solutions mentioned are performing well, the 
field of view of a conventional camera is quite narrow, and 
many implementations require the merging of data with laser 
sensors (eg. Sick LIDAR, Ibeo and Velodyne), radar and/or 
special vision systems, such as omnidirectional cameras [18] 
[12] [13]. This fusion becomes necessary especially when one 
wants to process data related to the depth, which is a kind of 
information not originally obtained by a conventional camera. 
In this context, the use of a sensor as Kinect enables the 
development of low-cost solutions compared with melting 
methods of sensors. 

Kinect is a low-cost 3D sensor developed by Microsoft3 for 
the XBOX 360 console which allows the player to use his own 
body as the game controller. It consists of an RGB camera 
associated with an infrared transmitter and receiver, which 
permits to estimate the distance of the elements taken from the 
environment. The main advantage of the Kinect sensor is the 
possibility of building depth maps, which provides a fairly 
accurate estimation of the distance of different kinds of 
obstacles detected in front of the robot. the The depth map 
provided by Kinect is a 632 x 480 pixels grayscale image in 
which each pixel stores the distance from the scene elements 
to the sensor. 

Due to the use of infrared, the sensor is able to create the 
depth map even at environments with total absence of light. 
Once its potential as a sensor was detected, several 
independent studies have emerged in order to exploit the 
advantages of this equipment in other applications, ranging 
from healthcare to robotics [5] [6] [7]. 

In the work [21], a topological navigation system based on 
artificial neural network and finite automaton is presented. In 
this work, a robot must move by an indoor environment with a 
known topological map, represented by a finite automaton, 
which describes the locations and actions the robot should 
take. To set the current context and the robot’s location, the 
system uses a trained artificial neural network (ANN) on data 
from a laser sensor to recognize indoor environment situations, 
such as open doors to right, left corridors and intersections. 

The input data for the ANN used for classification is 
captured by the laser-based distance sensor Sick LIDAR 
(Light Detection and Ranging). The disadvantage of this 
application is the high cost of the main sensor used, a laser 
sensor that offers only the depth information for a planar cut 
(detection in two dimensions). The solution using Kinect 
offers, in addition to extremely lower cost, more complete and 
accurate information about the environment, since a 
tridimensional detection is carried out besides the conventional 
image processing. 

 
3 Microsoft Corporation – Web: http://www.microsoft.com/  
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III. SYSTEM OVERVIEW

The system in development is composed 
Each of these parts were built and teste
systems in order to validate the method
system (I) gets information from the sens
from Kinect sensor) to create a map for loc
map is created to make the robot move in
while avoiding collisions with obstac
subsystem (II) applies image processi
intelligence techniques over the Kinect sen
the environment settings, and then context
the robot within the topological map during
proposed approach combines the syste
topological navigation reactive control w
allow the robot to safety navigate through
and simultaneously patrol. 

A. Reactive Anti-Collision System 
The reactive behavior is the one in whic

information form sensors and reacts by gen
to the actuators. Using the depth map gene
OpenCV library [22] and Kinect, a reactive
was developed to make the robot move i
avoiding collisions ahead. 

To perform obstacles detection, portion
analyzed (depth map) to define which are
robot. The image is divided into five verti
three (left, front and right) are analyzed by
order to determine the absolute minimu
distances between sensor and elements (o
environment. At this moment, an analysi
characterize the current situation accordin
values found for each section. When the m
a section is less than 60 cm then it is consid
is facing an obstacle.  

We defined 8 situations (described in F
commands given to the robot: FRONT, R
STOP. For the first command, FRONT, a
pre-defined forward. The other two con
LEFT generate a predetermined angular ve
robot turns on its axis to the RIGHT and L
The last command sets the zero speed. 

 The FRONT command is executed wh
the situation shown in Fig. 2(a), which is 
obstacles (considering the minimum dista
situations of Fig. 2(b) and Fig. 2(c) the com
the robot is LEFT, since there are obstacl
center section of depth map. The RIG
executed when there are obstacles to the lef
and ahead the robot, as shown in Fig. 2(
situations described in Fig. 2(f) (obst
(obstacles on the sides) and (h) (obstacle

W 
by two main parts. 

ed in two separate 
ds. The perception 
sor (3D depth map 
cal navigation. This 

nto the environment 
cles. The second 
ing and artificial 

nsor data to classify 
tualize (i.e., locate) 

g navigation. So, the 
em (I), a simple 

with system (II), to 
h the environment, 

ch a robot receives 
nerating commands 
erated by using the 
e navigation system 
in the environment 

ns of the image are 
e very close to the 
ical sections, where 
y pixel intensity in 
um and maximum 
or obstacles) of the 
is is performed to 
ng to the distance 

minimum distance of 
dered that the robot 

Fig. 2) and 4 speed 
RIGHT, LEFT and 
a linear velocity is 

ntrols, RIGHT and 
elocity at which the 
LEFT, respectively. 

hen the robot faces 
completely free of 

ance of 60 cm). In 
mmand executed by 
les to the right and 
GHT command is 
ft only or to the left 
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B. Corridors Recognition System
Networks 

The second part (subsystem)
system is a classifying system trai
possible situations of an indoo
collected previously with Kinect 
the construction and evaluation of
 During the navigation, a topol
available to enable the robot to
knowing on which edge or vertice
 

Fig. 2 – Situations in depth map of the rea
color image represent obstacle that 

We developed a classification s
networks implemented with JavaN
simulates the ANN. The system m
map of the indoor environment (ch
open doors) to classify the image
situations are: “path ahead”, “left 
right path”, “path ahead and lef
“blocked path” and “intersecti
situations to the topological ma
ahead” situation to an edge in the
vertices. 

The data used for the artificial 
subsequently for classifying are 
from Kinect. Each attribute from 
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resolution of the depth map. Th
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Fig. 3 – Situations of an indoor enviro

 

IV. EXPERIMENTS AND RESU

To test the system implemented, 
conducted in a real environment using a Pi
connected to a computer, which was re
processing tasks and the reception of data
single sensor device. The tests were pe
environments with lights on and off, in or
system's potential for both environmen
operation of subsystems (I) and (II) is prese

Fig. 4 (a) shows the reactive system (I) i
and (c) show the commands to be followed
also the minimum and maximum distances
the depth image. In the situation depic
distance measured in the left section is eq
than 60 cm), therefore the command give
"RIGHT". 

As expected, similar results were 
performed in dark environments, since th
does not depend on ambient lighting. 

Subsystem (II) uses an artificial neural n
the environment configuration in some pre
To gather the training data for the n
approximately 1400 depth images, while o
remotely. The network training itself wa
various network topologies, in order to perm
best configuration - the one with the low
chosen topology has 632 entries, 316 neu
layer and 8 neurons in the output layer. 

After the training, tests in real environme
still using teleoperation, but this time runnin
data captured in real time, the classifier sho
the situations faced by the robot within the
implementation provided very good result
92% accuracy on classification. 
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(c) 
Fig. 4 – Robotic system during execution 

robotic system; (b) the color image pro
provided by K

The classification program run 
presents the color image captured 
5 (b) shows the depth map capture
situation is classified as "path a
robot is in a corridor with a door t

 

 

 

 

in a lighted environment. (a) the of 
vided by Kinect; (c) depth image 
Kinect. 

is shown in Fig. 5. Fig. 5 (a) 
by the RGB camera and Fig. 

ed by Kinect. In this case, the 
ahead and left", because the 
o its left. 
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(b) 

Fig. 5 – Robotic system using ANN during execution. (a) the color image; (b) 
depth image provided by Kinect. 

V. CONCLUSION AND FUTURE WORKS 
This paper has presented the preliminar results of the 

construction of a surveillance system. Two subsystems were 
developed. The reaction system was effective to provide a safe 
navigation for the robot and the classification system for 
indoor situations has shown very good results (92% of 
accuracy using the ANN classifier).  

This work contributes for the development of intelligent 
control and navigation systems for autonomous mobile robots, 
which is a very relevant topic to the national and international 
research contexts. The system can be retrained to recognize 
additional situations and, besides patrolling tasks, can be 
applied to many other purposes, such as the exploration of 
unknown locations.  

Furthermore, both subsystems presented in this paper will 
be integrated as components of a complete surveillance 
system. Another work in progress is development of the 
human detection subsystem, which will use images captured 
by a thermal camera (see Fig. 6 (a) and Fig. 6 (b)) and the 
Kinect sensors (see Fig. 7). 

 

 
(a) 

 
(b) 

Fig. 6 – Human recognition using a thermal camera. (a) original thermal 
image; (b) the segmentation image of a human. 

 

 
Fig. 7 – Human detection using the Kinect sensor.  
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