
  
Abstract— This paper demonstrates a method for global 

localization of autonomous mobile robots based on the creation of 
visual memory maps, through detection and description of 
reference points from captured images, associated to odometer 
data in a specific environment. The proposed procedure, coupled 
with specific knowledge of the environment, allows for 
localization to be achieved through the pairing of these 
memorized features with the scene being observed in real time. 
Experiments are conducted to show the effectiveness of the 
proposed method for the localization of mobile robots in indoor 
environments. The results are analyzed and navigation 
alternatives and possible future refinements are discussed. 

 
 

Index Terms—Mobile Robots, Computer Vision, Feature 
Extraction, Robot Vision Systems  
 

I. INTRODUCTION 
With the development of novel methods and the 

improvement of computer power, research on the field of 
mobile robots has grown over the years, aiming to create 
practical solutions by the use of autonomous mobile robots. 
The intersection between Mobile Robotics and Computer 
Vision is also a fertile area of research, for which there are 
several approaches. This paper is included in these particular 
areas of interest, and proposes a method aimed at enabling a 
robot to locate itself using a single monocular camera as the 
main sensor, through extraction of general visual features. The 
task for which the system was tested is an indoor robot 
patrolling system through a pre-defined route. We show that 
good localization accuracy can be achieved through the 
feature extraction method chosen, coupled with specific 
knowledge about the nature of the environment. 

Global localization is one of the most important aspects to 
be considered in Mobile Robotics [1]. The challenges of 
global localization are frequently denoted by the kidnapped 
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robot problem. [2], in which a robot is initialized or 
repositioned at an arbitrary point of the environment, in an 
arbitrary pose. This is not an uncommon situation in practical 
robotics tasks, and solutions to this problem relate to a robot’s 
ability to recover from possible failures in maintaining its 
localization known. Thus, this kind of analysis is of broad 
importance. 

   The video camera, the main sensor used in this work, was 
chosen for its low cost (relative to other sensors), its 
ubiquitous nature and the richness of the visual information 
provided. The feature detection and description method used 
also allows for robust image signature generation and recall 
that is resistant or invariant to a number of image 
deformations. Vision is also the main sense used by humans to 
locate themselves, and this also allows for an immediate 
analogy. In fact, some works attempting to understand and 
model human visual recognition, identification and memory 
show that humans detect robust global image features and 
properties much like what many computer based feature 
extraction algorithms do [3]. 

Many varieties exist of feature extraction methods in 
Computer Vision, like those based on detection of corners [4], 
contours [5] or high level features [6]. The chosen method for 
this particular problem is SURF [7], which is itself inspired by 
and generally improves upon SIFT [8]. These methods are 
called scale-space based feature extractors. Features acquired 
this way will be matched between images from the memory 
map and the images the robot is currently observing. By 
knowing the odometry associated to the memorized images, 
the robot can estimate his current position. 

The memory map described is based upon the VSRR (View 
Sequenced Route Representation), a visual representation 
proposed by Matsumoto [9], shown on Figure 1. In the VSRR, 
a recording run is executed by the robot while it is being 
manually operated by a human being. During this run, the 
guided robot captures images from the environment at fixed 
intervals, and the images are associated with the robots current 
odometric data (the robot’s position and orientation). Later, 
when the robot is activated without being aware of its position 
or bearing, it is capable of pairing the most similar perspective 
(the criterion for deciding this may be choosing the image 
which yields the most matches, or the one whose features are 
spatially closer to the original in pixels, as will be discussed 
later) from the images in the memory map with the image 
seen, and so calculate its approximated localization relative to 
the memorized scene.  
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Fig. 1.  The VSRR, taken as presented in [9]. It consists of the route 
representation generated by a recording run of the environment, which 
enables an autonomous run. This work focuses on localization in the 
autonomous run. 

 
There is an intrinsic odometry error in this estimated 

measurement, but the localization is relative to the images, not 
the origin of the run. Because of this, what’s important in this 
case is that the visual information is accurate, so that it can be 
used during navigation to mitigate the odometry error, 
allowing the robot to retrace the memorized course. The 
aspect of navigation will not be covered in this paper. 

Localization itself occurs through matching of SURF 
signatures (a signature is the collective of features obtained 
from a given frame). SURF’s recognition algorithm 
specializes in matching features for the same scene elements 
even when subject to a great variety of image deformities and 
changes, such as changes in scale, rotation, lighting, 
perspective, affine deformation, partial occlusion and noise. 
Even though it is a very robust method, preliminary tests have 
shown that images from the same scene, although they are 
recognized from a variety of perspectives, when observed 
from similar points of view, yield more positive SURF feature 
matches than when the same scene is observed through 
slightly more different points of view. This is an important 
fact to this work, because when navigating indoor areas like, 
for example, a straight corridor, a robot is bound to observe 
the same feature for a while, from many different perspectives. 
The scene will be recognized from most perspectives, but the 
perspective most faithful to the original will offer more 
matches. So the best candidate for position is normally the 
feature with the most matches. In this work we also propose 
an improvement to this criterion, based on comparisons 
between signature positions within the image. This shows that 
context information can be used in tandem with general 

feature matching methods to allow for better performance 
through specialization. In the case of ties, the immediate 
neighbors of the candidate images in the memory map are 
analyzed. This is done because the best candidate image is 
more likely to have the best neighbors as well.  

Section II of this paper will describe the proposed approach 
in greater detail, and section III will describe the experiments 
and tests run and show the acquired results. Section IV 
discusses the proposed project and draws conclusion based on 
the work done. 
 

II. DESCRIPTION OF THE PROPOSED METHOD 
 

We now present the hardware and software resources used in 
this work, as well as the methodology applied. For the 
development of the proposed work, a Pioneer 3-AT robot was 
used. The developed systems makes heavy use of the OpenCV 
Computer Vision library (2.3 version), the Player robot 
software platform (3.0.2 version) and the OpenSURF 
(27/05/2010 build) implementation of the SURF feature 
detector and descriptor method. 

 

A. The Test Platform 
The chosen robot for the system testing is the Pioneer 3-AT, 

developed and produced by MobileRobots Inc. It is versatile 
and robust, the Pioneer series being one among the most 
popular mobile robots used in research. A computer can be 
embedded in the robot, communication between the two 
occurring through a serial bus. This robot also has extensive 
software support, with Player drivers implemented for many 
of the robot’s sensors and actuators.  

B. The Feature Detector and Descriptor 
 So that robust and distinct reference points can be extracted 
from an image, a scale-space based detector-descriptor method 
was used. The choice of method was not arbitrary, but the 
choice was based on the Best alternative for the task. Image 
correlation methods are commonly used for this kind of task, 
but are not as resistant to changes. Corner detectors such as 
FAST [10] are not reliable under changes in scale, and scale 
variance is an essential aspect of indoor environments 
navigation tasks. The SURF (Speeded Up Robust Features) 
detector-descriptor method was considered the most adequate 
option. A good detector should be repeatable (yield the same 
results from different images despite possible changes), while 
the descriptor must offer distinctive interest point descriptions 
that can be later univocally associated with other features. 

When compared to other similar feature detection and 
description methods that use scale-space, SURF offers good 
performance regarding matching results. Also importantly, an 
aspect at which SURF frequently outperforms other methods 
of its kind is in the speed of processing in terms of both 
feature extraction and features matched per second [11]. As 
the present work proposes to evaluate relatively large amounts 
of image data, and aims to be usable in practical monitoring 
and patrolling tasks, this is a determinant factor, since most of 
the feature processing will be done during execution time. 
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Other comparative works [12] also demonstrate that SURF has 
similar positive matching rates compared to methods such as 
SIFT, with a bigger tendency to be affected by variations in 
rotation (roll). This is not a very relevant issue for the 
proposed applications and chosen environment, because 
navigation in indoor areas occurs mostly through plain terrain. 
This in turn, makes for rotational perspective variance on the 
normal axis relatively to the robot’s camera to be minimal, so 
it can be outright neglected. In fact, a modification has been 
introduced to the SURF method to reflect this. The step in 
feature detection that guarantees rotation invariance is 
bypassed, and this improves the method’s performance. This 
variant is known as Upright-SURF, or U-SURF [7]. It 
provides an increase in speed, and for this particular case, 
false positives can be avoided. 

Methods like SURF and SIFT are relatively new, and an 
active field of research. Therefore, more recent alternatives in 
detector-descriptor methods exist, like CenSurE [13], but 
further comparisons are needed before they can be proven 
superior to SURF, while SURF remains a more established 
option.  
   

C. The Recording Run 
 Having established the method of feature detection, the 
robot can perform the recording run through the determined 
path. The robot was guided with a joystick during the 
recording. While traversing the path, the robot took pictures of 
the environment at a rate of one image per second. The density 
of the memory map generated by this frequency of capture 
was deemed enough for the results required, and the average 
distance between two adjacent images in the memorized 
image database is 5 cm. Simultaneously to the image capture, 
odometric information was recorded onto a log file, 
specifically the robot’s position (x,y) and rotation (z) 
parameters, taken in reference to the coordinate where the 
robot started executing (where x, y and z are zero). The 
association between the ordered images and the odometry 
where each of them was taken yields a topological map of the 
environment. Figure 2 shows examples of images taken during 
the recording run and used in the tests. 

Following this recording, a program able to extract features 
from the image database through SURF was created. The 
SURF signatures of every image from the database was 
obtained and saved, so that they would not need to be 
recalculated during run-time. The SURF signature used with 
the descriptor was the 64 bits variety; the 128 bits variety 
demands further processing and does not provide significant 
improvement in description results. The resolution for all 
images used is 640x480. Resolution plays an important role in 
scale-space methods since they operate by downscaling 
images to search for features present in all scales (which are 
resistant to changes in scale). 

D. Global Localization   
 Experiments for this work focused on the global 
localization algorithm. To test the proposed technique, the 
robot was initialized in a random point within the recorded 
path, without further information regarding its localization. 
The frame collection constituting the memory map and base of 

reference involved a 20 meters path through a corridor and a 
small office room. Two different criteria were used to 
determine which of the memorized images corresponded more 
accurately to the currently observed image. The first criterion 
tested to select the best image was to choose the image which 
yielded the most SURF matches. The reasoning behind this is 
that closer perspectives generate better matching and so more 
pairs of features. The second criterion was to measure the 
average distance in pixels between the paired features from 
each image and choose the signatures that are spatially closer. 
The reasoning for this method was that signatures whose 
feature positions are on average similar when taken relative to 
their respective images are more likely to have originated from 
close perspectives. To evaluate the spatial closeness between 
images, only the Y axis was taken into account. This is 
because most of the movement during the recording run 
occurred in the direction normal to the camera, which affects 
positioning of features in the Y axis the most. In a practical 
navigation algorithm, the same technique can be applied to the 
X axis to avoid angular deviation.  The experiments were 
executed considering both criteria. In both cases, the rule 
adopted to settle ties was to consider the results obtained by 
the candidates’ neighbors, with the preferred image having the 
best neighbors.     
   

III. RESULTS 
 

The accuracy of global localization yielded positive results, 
and when the robot was put in a position inside the memory 
map it’s position could be estimated with good precision. We 
expect the precision in these results is enough in most 
practical cases for self-localization in robots performing most 
indoor tasks such as security patrolling. Even in indoor 
environments with few evident characteristics which make it 
difficult for the SURF method to acquire distinct features, 
results were accurate with few false positives. We expect that 
coupling these results with simple methods of determining 
movement through observation of optical flow [14] or visual 
odometry [15] techniques would result in great improvements, 
but even in its current uninformed state the localization can be 
used in practice. Both criteria for determining the best image 
pair (the regular SURF counting of the number of matches and 
the method proposed here of spatial proximity between 
features in different images) can be used for localization, and 
the coupling of these two criteria is also expected to improve 
results. In the criterion where the raw number of matches is 
counted, sometimes scenes with very few features would yield 
matches with many features across many images, a possible 
problem with the description of that particular feature. In these 
cases, we determined that a single feature with many matches 
in different places should not be counted. Other techniques 
such as navigation by odometry or an extra lateral camera 
would be beneficial in practice in this kind of situation where 
the camera captures particularly plain images.  
 The computer used to process the data was an Intel Core 2 
Duo de 2.20GHz with 2GB of RAM. In this configuration, the 
association between images, including loading the images 
onto the memory required in average 415 ms to resolve. 
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Fig. 2.  Captured frames in different points of the paths used on the 
tests, showing the different types and profiles of scenery the robot 
found in the runs. 

 

 
Fig. 3.  This montage shows 3 results of the SURF matching algorithm, 
with paired images being presented side by side, and the horizontal lines 
across the images showing the matching pairs of features. 

 
In the experiments, the matching was tested on two sets of 

image data. Each data set was composed of around 250 images 
each, covering a distance of 20 meters. The main attribute that 
was measured was the estimated frontal distance (the 
movement of the robot relative to the axis normal to the plane 
of the camera). The measured error pertains to this distance, 
and angular deviations were ignored for the purpose of the 
experiment.  The localization error on the run using the first 
criterion to determine the best image was of 27.82 cm, with a 
standard deviation of 47.43 cm. The localization error using 
the second criterion was of 16.26 cm, and the respective 
standard deviation was 25.13 cm.  

 As expected, images taken from the same scenes but in 
different perspectives, for instance in a corridor, present a 
gradual change in the number of matches. This effect is 
noticeable on Figure 3. Closer perspectives generally yield 
more matches. Also, closer perspectives yield matches that 
have a smaller offset in the Y axis (this can be perceived in the 
images since the lines are more horizontal on the closer 
perspectives). 

Figure 4 shows an example of matches for 3 different 
observed images. Each line corresponds to the matching 
results for each of the 3 test images being compared to all 
other images taken in the recording run and stored in the 
database. For each case, it can be seen that the number of 
matches is greater in the most accurate image, and also in its 
neighborhood. 

SURF is a method developed to detect the same features 
even from different perspectives. Taking the limitations of the 
method and the context of the intended application into 
account, we could devise methods for electing the image 
closest to an observed image, even from a database of highly 
similar images with relatively few features. 

 

 
Fig. 4.  This graph shows the number of SURF matches (vertical axis) 
when applying the method comparing 3 different images to every 
image representing a route through a corridor, shown here sequentially 
by consecutive image index (horizontal axis). Each line represents the 
matches of all images in the route relatively to a different observed 
image. The best match in each case is marked with the circular dot. 

 

IV. CONCLUSION 
 

This work shows how global localization can be acquired 
by a simple method using a popular method for detection and 
description of features. Usually localization is done through 
the use of range sensors. Omni directional cameras and stereo 
camera setups can synergize well with scale-space detectors 
[16], but their cost makes them prohibitive or difficult to use 
in everyday appliances or commercially viable robotic 
systems. They also provide an overhead in processing costs. A 
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monocular camera does not directly provide depth 
information, but this paper shows that explicit knowledge of 
depth is not always necessary for localization, although depth 
information is implicitly estimated through the best image 
choice criteria.  

The approach using the straightforward criteria of 
considering the most matches generated good results. 
Considering context information about the environment (like 
the fact that the average position of features on the Y axis 
changes with perspective changes) allowed us to come up with 
a new criterion to deciding which the best image is. The new 
criterion resulted in better results in the sets of data used in the 
experiments, both in a lower average error and lower standard 
deviation of the error. Both sets presented outliers, matches 
that were nowhere near the target (less so with the second 
criteria). Clear outliers and bigger errors can be fixed during 
navigation by predicting probabilistic methods and multiple 
iterations of the localization algorithm, to increase certainty 
about the estimated information. The tests were performed in 
indoor environments with good results, and results show the 
possibility of the system’s practical use in cases where the 
precision obtained is enough for the desired task. In future 
works, both criteria used can be merged, which is expected to 
improve results. From the results, we estimate the match count 
criterion can be used for coarse, more general localization, 
since it is more effective in different scenes, while the Y axis 
offset criterion can be used to refine localization results, since 
it performed better than the match count in fine adjustments, 
when images were very close, but not as well when the scenes 
are more distinct. 

Another positive aspect of the method demonstrated in this 
work is that there is no requirement that the robot be in motion 
for the localization to work. While optical flow, visual 
odometry and Structure from Motion [17] methods require the 
robot to move, the proposed method can achieve localization 
from a still pose, using one single frame. 

In practical circumstances requiring further precision and 
maintenance of localization (local localization), probabilistic 
methods like Bayesian filters [1] can be applied during 
navigation to increase certainty regarding the robot’s 
knowledge of its own position.  
Among medium and long term objectives for future works we 
intend to develop Monocular SLAM [18] based upon an 
extension of the methods described here to recognize and 
determine relative camera position. This would allow the robot 
not to be restricted to a pre-defined route specified in the 
recording run, but being able to map the environment and 
navigate simultaneously. 
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