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Abstract—This paper presents the platform and system 

architecture of an intelligent vehicle, presenting the control 
system modules allowing the vehicle to navigate autonomously. 
Our research group has been developed works on autonomous 
navigation and driver assistance systems, using CaRINA I 
platform to experiments and validation. Our platform includes 
mechanical vehicle adaptations and the development of an 
embedded software architecture, and its practical 
implementation. This paper addresses in details the sensing and 
acting infrastructure. Several experimental tests have been 
carried out to evaluate both platform and proposed algorithms. 
 

Index Terms—Autonomous vehicle, driving assistance, urban 
environments, robot platform and software architecture. 
 

I. INTRODUCTION 
uman driving errors are a major cause of car accidents on 
roads. These mistakes are caused by a series of in-car 

distractions, such as using mobile phones, eating while 
driving, or more seriously faults like drunk driving or abuse of 
high speeds. People often get injured or even die due to road 
traffic collisions. Based on use of sensors and actuators to 
detect and avoid dangerous situations, autonomous vehicles 
could provide safer conditions in roads. They could also 
improve the efficiency with freight transportation and traffic 
flow in large cities, and also to provide transportation to 
physically handicapped or visually impaired people.  

Researches in autonomous vehicles have achieved 
significant results over the last years. Competitions, like the 
DARPA Grand [1] and Urban [2] Challenges and ELROB [3] 
have been pushing the state of the art in autonomous vehicle 
research area. In these competitions, some research groups 
stood out due to the fact that they have developed robotic 
platforms able to behave like as a human conducted car in 
several scenarios and conditions. 

On this way, a robotic platform which can operate on urban 
environment and highways is desired by research groups that 
work with topics related to autonomous vehicles. This 
aspiration is easily explained by the many possible 
applications of this platform, and also by the necessity to carry 
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out experiments on real situations in order to validate new 
intelligent robotic techniques and algorithms. This article aims 
to present details about the platform developed by LRM Lab. 
named CaRINA I. Also, we describe a brief overview of 
works performed by our team that have used this platform to 
conduct experiments of intelligent vehicle navigation. This 
paper is organized as follow. The next section describes the 
structure of hardware and software of the CaRINA I vehicular 
robotic platform. The Section III presents and summarizes 
previous works that our lab has implemented in the last two 
years, all of which are related with several subtopics of 
autonomous vehicles research, like obstacle avoidance, road 
recognition, path planning and driving assistance. At section 
IV the ongoing and future works is addressed, where we 
introduce a newer robotic platform under development, 
beyond other ongoing works like automatic parking, planning 
and vehicle control. Our final remarks are presented in the 
sequence in the last Section. 

II. VEHICLE AND SYSTEM 
In this section we describe the main characteristics of the 

robotic platform CaRINA I, as their hardware resources 
involved in the processes of perception, action and control. 
Aspects of software are also presented, as the system 
architecture and the development frameworks. 
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Fig. 1. The vehicular robotic platform called CaRINA I 
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A. Hardware 
In order to serve as a platform for research in autonomous 

vehicles, in August 2010 the Mobile Robotics Lab - LRM - 
acquired a small electric utility vehicle model, Carryall 232 
manufactured by the company Clubcar [4]. This vehicle 
choice was determined by a set of factors like behavior similar 
to a passenger car in terms of kinematic and dynamic aspects, 
easiness to carry out the mechanical modifications to turn it 
into a robotic platform, and greater flexibility and security in 
performing experimental tests - given the reduced size and 
weight. Furthermore, we can highlight the low environmental 
impact due to electric propulsion. 

Initially mechanical and electronic vehicle changes were 
made to allow computational control of the steering wheel, 
acceleration and braking systems. All these changes also 
intended to preserve the original driving and handling vehicle 
characteristics. 

The steering system (Fig.2) comprises a Bosch DC motor 
that connects with the steering wheel through a coupling 
mechanism consisting of pulleys and belts. A lever allows that 
steering system can operate in manual mode or pulled by the 
engine. This set includes an encoder HEDS 5700 Series 
Hewlett Packard 512 ppr (pulses per revolution) [5], which 
guarantee the feedback to the control system. Switches fitted 
in the track rod sends signals when the system reaches the end 
of the course of steering, allowing the controller to detect the 
limit and stop the engine. The motor rotation direction control, 
the determination of the actual angular position of the steering 
wheel (obtained from the readings of the signals from the 
encoder), and the limit switch stroke, are performed by a 
RoboteQ controller AX2850 [6] that can communicate with 
the main computer using a Serial/USB port. 

The vehicle speed control is determined by a system 
designed by the car manufacturer that maps the throttle pedal 
position, represented by a variation in voltage, into necessary 
controls to car electric motor. Some characteristics of this 
controller took us to consecutive failed attempts to generate 
this signal artificially. The best result was obtained using an 
analog potentiometer equivalent to the same mapping of the 
native system, but which was electronically isolated from the 
entire car system. Thus, we constructed an electromechanical 
device that uses Arduino Duemillenove kit and servo 
mechanism to adjust the position of the potentiometer 

responsible for varying the voltage supplied to the controller 
(Fig. 3). 
 For the braking system a linear actuator from LINAK LA12 
200N [7] was mechanically coupled in parallel with the brake 
system of the vehicle. When triggered, the actuator tension 
part of the system, reproducing the behavior of the driver by 
pressing the brake pedal. A second RoboteQ channel is used to 
control this actuator. 

The platform includes supporting bases and structures built 
especially for the installation of lasers, cameras and other 
sensors. In the CaRINA I front it has two Sick LMS 291 lasers 
[8], one mounted aligned in parallel to the ground and the 
other pitch down, pointing at the region just ahead the vehicle. 
A bracket installed on the roof of the vehicle allows the 
installation of different types of video cameras and adjusting 
its position, allowing the possibility of using monocular or 
stereo cameras, as the ones from Videre [9]. At the rear, two 
lasers houses supports Hokuyos UTM-30LX [10] which 
beams cover both side areas on the rear of the vehicle (Fig. 4). 
Additional sensors supplement the available resources of 
perception, namely: a GPS receiver and inertial drive (IMU) 
model MTI-G XSens [11], a Revolution GS True North 
compass [12] and another series HEDS 5700 encoder mounted 
on the ground wheel, responsible for providing data used to 
compute the odometry. 

B. Frameworks 
Widespread used by the scientific community, the software 

platform Player/Stage consists of a development framework 
that offers several features like client/server model, that allows 
the user to run applications remotely over a TCP/IP network, 
simulated environments, libraries that encode algorithms of 
localization, mapping and control. 

In order to use the Player/Stage platform, a plugin for the 
CaRINA I was specially developed to serve as driver and 
allow receiving commands from the framework which are 
properly mapped to the corresponding command controls for 

Fig. 2.  CaRINA I steering system. In details: (1) motor, (2) coupling system 
pulley, (3) steering system component, (4) digital encoder, (5) coupling 
detection switch, (6) coupling handspike, (7) RoboteQ motor controller and 
(8) limit switches. 

 
Fig. 3. Throttle controller device. At right, the inside view with highlights to 
Arduino and mechanical coupling between servo motor and potentiometer. 

 
Fig. 4. CaRINA’s perception planes and sensing areas: horizontal laser plane 
(blue), pitch down laser plane (red), rear and lateral areas by hokuyo (green) 
and camera view (purple). 
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vehicle control system. This module also incorporates the 
vehicle kinematic features according to Ackerman’s model, 
providing correspondence and coherence among odometer and 
speed data provided by the framework and what is being done 
by the vehicle. It is noteworthy that even this approach does 
not eliminate the typical problems of imprecision in estimating 
the pose of the vehicle based solely on data from odometry. 

Recognizing the Player software limitations in face of the 
computational demand to develop an autonomous vehicle 
system, we decided work with another software base besides 
Player, named ROS – Robotic Operating System. Although 
called operating system, this platform is a distributed and 
service-oriented middleware developed by Willow Garage in 
conjunction with the international community. One of our 
aims to adopt this system is that it can allows us to design the 
software components in modular and interchangeable manner, 
as well as, allowing our software components to be executed 
in a distributed system, balancing the computational require-
ments at different processing elements and PCs. 

C. Modeling and Simulation 
Although important, the realization of practical experiments 

to validate the algorithms and techniques under development 
can be a dangerous activity if performed without a degree of 
certainty and reliability considered acceptable. In this sense, 
simulation tools allow to conduct preliminary tests to evaluate 
the system response in scenarios very similar to the 
application domain. 

In addition to the mathematical modeling of kinematic 
aspects of the vehicle, were also created 2D and 3D models 
that incorporate the geometrical and physical CaRINA I 
characteristics, allowing more realistic simulations with Stage 
and Gazebo simulators, which are both compatible with the 
Player and ROS (Fig. 5).

D. System architecture 
The Autonomous Vehicle Control System should provide a 

series of basic and advanced functionalities. Autonomous 
navigation or even driver assistance (ADAS - Advanced 
Driver Assistance Systems) while conducting a vehicle into 
urban environment, requires a system which can recognize 
some elements like traffic signs, pedestrians and other 
vehicles. Also, correct localization keeping the vehicle in the 
road, making safely overtaking maneuvers, as well as 
respecting what determines the traffic laws [13]. The 
development of a system with these skills is a complex task, 

requiring the use of different techniques simultaneously 
coordinated at a higher level in order to provide consistency 
and robustness. 

Inspired by [14] [15], we arrived to our reference 
architecture with hierarchical and hybrid features, as well as, 
being able to merge functional and behavioral aspects. In 
Figure 6 we present a schematic diagram of this architecture, 
with details of some of its main modules and interconnections. 
Encapsulating the device drivers and their communication 
channels, specific modules operate in the interface of software 
systems, allowing for the physical command of steering, 
acceleration and braking of the vehicle. Interacting directly 
with them, the control subsystem is responsible for 
accommodating the reactive and deliberative behaviors 
governing the vehicle within its local perception.  

Modules of perception are responsible for acquiring and 
providing sensory data into richer forms of representation, and 
also in structured form, allowing the simple, fast and reliable 
identification of relevant aspects in the car scenario (urban 
environment). The combination of information takes place by 
merging data on a subsequent layer or level which is 
responsible for feature extraction and detection of structural 
elements of the environment. Tasks such as obstacle detection, 
localization and identification of navigable regions are 
performed by modules at this level, the results being stored in 
a representative model of the local surrounding environment. 
Finally, a subsystem backup is needed to maintain critical 
aspects of security, operations and records of decisions taken 
by the system (log), remote monitoring and storage of raw 
data allowing more thorough analysis, post-processing or even 
the creation of databases for simulation. It is noteworthy that 
some of these elements, especially the higher level, are still 
under development. 

III. RECENT RESEARCH EFFORTS UNDER LRM 
In this research area, the LRM try to cover the main aspects 

related to autonomous vehicles in urban environments. Our 
main objectives include: develop driver assistance systems, 
autonomous control and navigation, machine learning and 
vision systems approaches applied to intelligent vechicles, and 
convoy control and management. 

Both the development of robotic platform and the different 
investigations of these themes were conducted in the last two 

 
Fig. 5. CaRINA’s model. The 3D vehicle model view and his coordinate 
frames system. Fig. 6. CaRINA’s System Architecture. Modules: Sensing (blue), fusion and 

feature extraction (red), high level judge (green), behaviors in different levels 
(orange), actuation drivers (purple) and backward system guard (light gray). 
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years at the LRM Lab. Several experiments were carry out 
using CaRINA I, in order to validate the proposed architecture 
and implementations, and some of the results are shown 
below. Although the description below of each approach and 
obtained results is relatively short, a detailed description of the 
techniques, algorithms, and results, can be found in the 
references presented together with this text. 

A. Obstacle detection and Driving assistance 
For both autonomous navigation and driver assistance 

system, precise and robust obstacle detection is fundamental, 
generating alerts and guaranteeing a safe navigation. 

Among the desired features for a system that helps the 
driver to know about obstacles are low rates of false positive 
(avoid undesired warnings and situation judgment mistakes). 
In other words, it is necessary to differentiate which of 
detected elements can really be dangerous, related to the 
vehicle estimated trajectory.  

In a first implementation of an ADAS approach (driver 
assistance), the sensors information fusion from 2D laser scans 
(single laser beam plane), GPS receiver, and compass, through 
an intelligent adaptive algorithm, combines these data to 
create an attention region. The system differentiates potential 
harmful objects of real dangerous obstacles near to the vehicle 
[16] from normal obstacles that are located around the vehicle 
but outside of the planned trajectory. As expected, in the tests 
conducted using real situations and sensors acquired data, 
demonstrated that proposed approach allowed a significantly 
reduction in the number of false alarms of possible collisions. 

The obstacle avoidance was also addressed in [17], but 
instead of using a laser based sensor, it was adopted a stereo 
camera based approach. Initially, a stereo image pair was 
processed by a semi-global stereo method in order to obtain 
the disparity map (depth map). This map is then converted into 
a 3D point cloud representation based on the extrinsic 
parameters of the stereo camera. Understanding that, the major 
points present in the cloud refer to flat regions (as the ground), 
we used a RANSAC paradigm to extract a plane model from 
the point cloud. This plane also tends to refer to a navigable 
region (flat), then the algorithm checks the distance of each 
other point to the estimated plane and classify them as non-
obstacles (near the plane) or obstacles (far away from the 
plane). Although this technique has been used by many works 
as mentioned in [18] [19] it is subjected to some limitations, 
for example (i) plane is not appropriated to model curved 
terrains; (ii) there is no guarantee that the estimated plane 
refers to the navigable region. 

Due to the known limitations of plane based technique, 
another method for better obstacle detection was sought. 
Proposed by [20], the “cone based” method analyzes the 
points’ dispersion according to a conical projection. Limited 
upper and below by a threshold, any giving point that belong 
to own projection is considered compatible. The algorithm 
premise is, if two points are compatibles they belong to an 
obstacle. This method yields great results however its main 
limitation is the computational costs. To tackle this issue a 
GPU implementation is under developing and the preliminary 

tests demonstrated that the method can achieve a computing 
time of 18 milliseconds on average. These results are not yet 
published, but they are very encouraging.  

B. Terrain reconstruction and road detection 
The road recognition ability, also known as “lane 

detection”, “road detection” and “road following”, is one of 
the very desirable skills adopted to improve autonomous 
vehicles systems. Using a sweeping 2D laser scanner (planar 
scan) mounted in a pitch down view is possible to reconstruct 
the terrain surface ahead the vehicle and identify the road by 
features extraction and classification from raw data. For each 
obtained scan, resultant points sets represent the intersection 
between laser and terrain planes (slices). Knowing the laser 
angle and vehicle pose along the trajectory, is possible to build 
a tridimensional representation of terrain shape by integrating 
over time the successive points sets. 

In [21] [22] an approach based on Artificial Neural 
Networks and Support Vector Machines was used to extract 
features from topographic outlines and classify them into 
navigable (almost flat) and non-navigable regions (non-
flat/with obstacles). A small size mobile robot was used in 
these experiments. Adapting this idea to vehicle navigation 
into urban context, our approach adopted a morphological 
outline analysis of the resulting point set to identify the curbs 
position and its distances from the vehicle. This information 
was used by the navigation controller to keep the vehicle in 
the lane with a safety and constant distance to the curbs. The 
Figure 7 presents an example of the road classification into 
navigable (center) and non-navigable (border) areas. 

On the other hand, visual based recognition systems have 
been developed by many research groups since the early 
1980s, such as [23] [24] [25]. One of the most representative 
works in this area is the NAVLAB project [25] with ALVINN 
system [26]. According to [27], this approach only works on 
straight or slightly curved roads. Also, according to [27], the 
major problem of ALVINN is the lack of ability to learn 
features which would allow the system to drive on road types 
other than that on which it was trained. Some other approaches 
like [28] make suppositions to adapt the system and solve 
these problems. However, these suppositions have no 

 
Fig. 7. Laser Data: Detecting navigable (white zone) and non-navigable (red 
zone) regions in the laser scan of a road. The dots (green) represent the 
vehicle pose during navigation and data capture, based on GPS and IMU. 
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guaranties to work well in real urban environments. 
Some previous works presented by our group, proposes a 

visual road detection system that uses multiple ANNs 
(Artificial Neural Networks) in order to improve the 
robustness. A detailed description of these works can be found 
in [29] [30]. A set of multiple ANNs learns to recognize colors 
and textures from sub-images instead of using all the road 
appearance like ALVINN does. In our system, each ANN 
receives different image features as input. Features like 
averages, entropy, energy and variance from differrents color 
channels (RGB, HSV, YUV), obtained from sub-images are 
presented as inputs to the ANNs. In the final step of the 
algorithm, we combine a set of ANNs outputs to generate one 
single classification for each sub-image. Other important 
detail about this classification system is that it provides a 
confidence factor for each sub-image classification that can be 
used by the control system (confidence in the region 
classification as navigable/road or non-navigable/obstacle). 
Unlike [28], our system does not need to be retrained all the 
time because the generalization capacity of our system is 
better than theirs. Therefore, our system does not require 
making assumptions about the location of the road in the 
image. A more recent work [31] incorporates a method that 
estimates the height of the horizon line in image in order to 
improve the classification of images and make the system 
faster. 

Another approach developed by our group is use of a stereo 
vision system in order to improve the classification of the 
machine learning techniques. This system has been used in the 
task of road recognition, once we can obtain depth information 
from the acquired stereo image, separating the ground from 
the obstacles. The main idea of these works consists of 
incorporating the disparity information as input of Machine 
Learning techniques.  More details about this can be founded 
in [32] and [33]. The use of the disparity map information 
contributed in decreasing the false positives, i.e., when the 
camera “sees” an obstacle the ANN classifies this region of 
image as "non-road" with a high degree of confidence. 

C. Automatic learning 
One of our research purposes as a group is to develop an 

autonomous navigation system capable of learning from the 
human driver experience of vehicle conduction. Several works 
are under development to tackle with this problem. 

Using the vision system, mentioned in subsection B above, 
to identify the navigable area [29], the proposed approach 
applied a template matching algorithm [34] on the image, 
evaluating the degree of matching of binary masks on the 
classified images. We evaluated five masks, which correspond 
to the following maneuvers: go forward (straight line), turn 
left/right (soft and hard curve to left/right). In the first 
experiments, CaRINA I was able to avoid the road border, 
keeping the vehicle on the road/lane and performing curves, 
along a path of approximately 300m [35]. The same algorithm 
has been improved and again validated, now in urban 
environments on the presence of obstacles. In this second 
group of experiments CaRINA I was able to avoid people and 

other vehicles; keeping it in the road [36]. 
Other more advanced work, integrated the navigation 

algorithms with information obtained from the GPS and 
digital compass, enabling the autonomous navigation to follow 
a predetermined path, and at the same time, respecting the 
limits of the navigable area and avoiding obstacles. 
Combining the approaches presented in [35] and [37], 
information of GPS, compass and of the image processing 
were used together as inputs of an ANN whose outputs 
determined the controls of steering and speed of the vehicle. 
Several tests were performed in small trajectories [38], and 
after some improvements, the vehicle performed a path of 
approximately 1.1 km using uniquely as reference a total of 6 
(six) GPS points defining the path. The results have shown 
that CaRINA I was able to identify and stay in the navigable 
area, besides the crossing of roundabouts, which was done 
successfully. Even when a virtual straight path, defined by the 
alignment between the vehicle local GPS position and the 
destination position, passed through and over sidewalks, 
flower beds and grass fields, in all those situations CaRINA I 
followed the perfect trajectory. All over the path the vehicle 
remained on the road and reached the destination without 
bumping or scraping the sidewalk border (border of the road). 
A more complete analysis of the integration of these vision 
algorithms and autonomous navigation methods using 
supervised learning was described in [39]. 

IV. ONGOING AND FUTURE WORKS 
After the maturity gained by our research group along of all 

these projects, including the aspects that adapted a commercial 
platform (Carryall Electric Vehicle) into a robotic platform 
(CaRINA I), we started the mechanical changes in a 
commercial vehicle of FIAT (Palio Weekend Adventure) in 
the end of 2011. This platform was called CARINA II. This 
new platform will explore more advanced techniques for 
autonomous navigation in urban environments, in order to 
achieve a fully autonomous commercial robotic platform. 

A new work using autonomous navigation and learning by 
imitation now tries, through a second ANN, to learn and relate 
the visual perception with the controls of steering and speed of 
a human driver. Preliminary tests demonstrate the ability of 
the ANN to replicate the driver behavior on the same 
situations, but not all the maneuvers were performed properly 
[40]. A new methodology for capturing information and pre-
processing the data is under development. 

The group has worked in the integration of the existing 
elements described previously to operate as a single system. 
Interfaces are standardized to make them compatible with the 
both CaRINA platforms. Other initiatives related to automatic 
parking, planning and control of trajectories are topics covered 
in Master dissertations and Doctoral thesis within our research 
group. 

V. FINAL REMARKS 
This paper have described the CaRINA I platform design 

and implementation, in terms of hardware and software. This 
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research project, supported by the INCT-SEC and developed 
at LRM Lab., was divided into different development stages, 
ranging from the design of the electromechanical aspects of 
the vehicle, the vehicle control system architecture, the deve-
lopment of software components and modules, the adoption of 
simulation tools and robotics supporting software, and finally 
the proposed implementations, experiments and results . 

The CaRINA I project represents one of the most important 
Brazilian initiatives in this domain of research, among other 
few initiatives in this country that also develop autonomous 
and/or automated vehicles (e.g. CADU-UFMG, Drive4U- 
UNIFEI, VERO-CTI/CenPRA, and Project SENA-USP 
EESC/ICMC). The CaRINA I was the first completely 
autonomous vehicle developed at USP, which also demonstra-
ted in practical experiments several intelligent behaviors based 
on computer vision, sensor fusion and GPS based navigation.  

A new platform, CaRINA II, is under development, and the 
know-how obtained during the development of this first 
autonomous platform is now being transferred to this new 
project. 
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