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Abstract. In this paper, we present an autonomous navigation system based on 
a finite state machine (FSM) learned by an artificial neural network (ANN) in 
an indoor navigation task. This system uses a kinect as the only sensor. In the 
first step, the ANN is trained to recognize the different specific environment 
configurations, identifying the different environment situations (states) based on 
the kinect detections. Then, a specific sequence of states and actions is 
generated for any route defined by the user, configuring a path in a topological 
like map. So, the robot becomes able to autonomously navigate through this 
environment, reaching the destination after going through a sequence of specific 
environment places, each place being identified by its local properties, as for 
example, straight path, path turning to left, path turning to right, bifurcations 
and path intersections. The experiments were performed with a Pioneer P3-AT 
robot equipped with a kinect sensor in order to validate and evaluate this 
approach. The proposed method demonstrated to be a promising approach to 
autonomous mobile robots navigation.  

Keywords: Mobile Robotics, Autonomous Navigation, Kinect, Artificial 
Neural Networks, Finite State Machine. 

1 Introduction 

AI techniques implementation on Autonomous Mobile Robots and Intelligent 
Vehicles has an important role on international scientific community [9][13][14]. One 
of the most desirable features for a mobile robot is the autonomous navigation 
capability. There are many known relevant works on this research field, as for 
example the Darpa Challenges (2004 and 2005 editions on desert and 2007 in Urban 
environment)[7][8] and ELROB [15][16]. 

Autonomous mobile robots usually perform three main tasks: localization, 
mapping/planning and navigation [17]. Localization task is related to estimate robot´s 
position in a well-known environment using its sensorial data. Mapping consists on 
creating an environment representation model, based on robot´s localization and 
sensorial data. Navigation is the capability to process environment information and 
act, moving safely through this environment. 



306 D. Sales et al. 

 

In order to an autonomously navigate into structured environments composed by 
streets or corridors, the robot must know its approximate position, the environment 
map and the path to be performed (source/destination). So, navigation in this 
environment consists on following a well-defined path, considering the available 
navigation area. 

The main focus of this work is the implementation of a Topological Autonomous 
Navigation System able to recognize specific features in a path on indoor 
environments (composed by corridors and intersections). This navigation system is 
intended for indoor service robots in several different tasks, from the simplest ones as 
carrying objects until critical ones as patrolling. The implemented system for these 
applications must be easy to configure and use. It must be also robust allowing the 
robot to both navigate and detect possible abnormalities. 

The proposed approach does not require a well-defined environment map, just a 
sketch representing the main elements, resulting in a simple path sight. Furthermore, 
this approach does not require an accurate robot´s pose estimation. The main goal is 
to make the robot navigate in an indoor structured environment deciding when and 
how to proceed straight, left or right, even when these three possibilities are detected 
simultaneously (intersections). 

The topological approach uses an ANN [19] to classify sensor data and a FSM to 
represent the steps sequence for each chosen path. The ANN learns all possible states, 
and a FSM generator is responsible to convert any possible path into a sequence of 
states. This way, the system combines this deliberative topological behavior with a 
simple reactive control for a safe navigation. 

The next topics of this paper are organized as follows: section 2 presents some 
realted works; section 3 presents the techniques and resources used for state detection; 
section 4 presents the experimental results; section 5 presents the conclusion and 
possible future works. 

2 Related Works 

Several approaches have been used for navigation, using many different sensors (for 
example laser, sonar, GPS, IMU, compass) singly or fused [9][17][18]. One of the 
most used approaches recently is the Vision-Based navigation [20]. This method uses 
video cameras as the main sensor. Cameras are very suitable for navigation and 
obstacle avoiding tasks due to its low weight and energy consumption [1]. 
Furthermore, one single image can provide many different types of information about 
the environment simultaneously. It is also possible to reduce costs by using cameras 
rather than other types of sensors [2]. The Vision-based approach implementation is 
already usual in navigation systems for structured or semi-structured environments 
[3][7][9][10][11]. These systems classify the image, with track segmentation for safe 
navigable area identification. 

Although these works present good results, the scope for a conventional camera is 
restricted, and many implementations demand camera data fusion with laser sensors 
(Sick Lidars, IBEO, Velodyne), radars or even special vision systems such 
omnidirectional cameras [7][8][9][18]. This fusion becomes necessary specially when 



 3D Vision-Based Autonomous Navigation System Using ANN and Kinect Sensor 307 

 

depth information is needed. This kind of information is not originally provided by a 
conventional camera.  

Is worth noting that fusion-based approaches are usually expensive, so the use of 
Kinect sensor can lead to lower cost solutions. Kinect is a low-cost 3D sensor 
developed by Microsoft for XBOX 360 videogame which allows the player to use its 
own body as the controller in games. It is composed by a RGB camera associated to 
an infrared transmitter and receiver allowing depth estimation of the environment 
elements. Since its sensorial advantages were found out, many independent researches 
were being held in order to explore this device features in applications from health to 
robotics [25]. The main advantage of this sensor is the capability of depth maps 
construction, allowing a very accurate distance estimation for the obstacles detected 
in front of the robot. 

In order to implement an autonomous navigation system, purely reactive 
approaches are not suitable. Immediate reaction to sensor captured data is not enough 
to ensure a correct robot control in a more complex path. A more robust system must 
be developed, providing sequence and context information that are absent in purely 
reactive models. 

In Robotics, FSM-based approaches [5] are widely used. FSMs are useful because 
the system can be easily described as a sequence of states (context changes). Inputs 
(sensors data) are considered to allow state changes and to define the adequate 
reaction for each state (motor action). The proposed system in this work is based on 
this idea, so the path is described as a FSM and the current state observed through 
captured sensor data processing. 

The use of a Machine Learning technique such ANN is a very interesting way of 
process sensorial data [6]. ANNs are robust to noise and imprecision on input data. 
They are also able to detect states and transitions between these states and very 
efficient to generalize knowledge. This way, this method is very useful for features 
detection e state recognizing. 

The association of ANNs to FSMs has been researched since the 90s 
[21][22][23][24], when the ANN models were developed and improved, occuping an 
important place on AI and Machine Learning Researches. Recently, some works were 
developed using the association of these techniques to robotics problems, from car 
parking [18] until robots and vehicles navigation in indoor and outdoor environments 
[4]. These applications have two main problems: the high cost of its main sensor 
(laser) and the low amount of environment information (bidimensional detection only, 
with a depth information of a planar cut). 

Thus, the proposed solution with kinect sensor shows extremely lower costs in 
addition to a more complete and accurate environment information, since 
tridimensional detection is performed simultaneously to conventional image capture. 

3 System Overview 

The proposed system is composed by three main steps. The first one is the ANN 
training in order to recognize all possible states (features) using previously collected 
environment data. The second one is the FSM Generation for any chosen path.  



308 D. Sales et al. 

 

The third step is the autonomous navigation combining this deliberative control 
(topological path planning) with a reative control to keep the robot aligned. Figure 1 
shows the system setup and navigation overview. 

 

Fig. 1. System overview 

3.1 ANN Training  

This step consists on training the ANN to efficiently recognize all possible situations 
in a specific environment. ANN inputs are obtained from sensorial data, and the 
output is the detected class (state). For the environment used in this work, eight 
classes were defined (they are better described on next section). The dataset is created 
saving a “log” of collected input data moving the robot through the environment. The 
adopted learning algorithm is supervised, so a specialist must “manually” classify this 
data before ANN training, forming the input/output pairs. Several topologies were 
tested, and the best results were obtained from a feed-forward MLP, with 632 neurons 
on input layer, 316 neurons on hidden layer and 8 neurons on output layer. Figure 2 
shows a simple graphic representation of this MLP. 

Kinect captures are stored on a 640x480 matrix (one element per pixel), and each 
value is the distance between the sensor and the object represented in that pixel. For 
navigation purposes, there is no need to use all this 307200 points (this could also 
make ANN training impracticable due to the high ammount of input neurons). This 
way, an interest zone on Kinect´s capture is selected, in which the information is 
enough for state detection. 

Kinect sensor has a very interesting property: each line of the depth matrix can be 
compared to a standard laser scan. This way, it is possible to say that a single kinect 
data capture provides the same data amount than 480 consecutive laser scans.This is 
another great advantage of using Kinect, high amount of available data for each single 
scan. An interesting way to minimize the effects of noisy inputs is to rely on data 
redundancy. This can be done processing various lines of the depth matrix for state 
detection. As mentioned earlier, it is impracticable to use all the 480 lines of 
information as inputs for the ANN, so an “interest area” must be defined. 

For this work, 80 lines of depth matrix were selected, the correspondent pixels are 
represented at Figure 3. The mean of each column is calculated, so the result is one 
line only with the mean information, similar to a conventional laser scan. This line is 
used as the ANN input. 
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                     Fig. 2. ANN Topology                  Fig. 3. Interest area on captured kinect´s frame 

Each output neuron is associated to one of the 8 implemented states. The ANN is 
trained once, and must be able to work for any chosen path.  

3.2 FSM Generation  

Once the topological map for the environment is known, it is easy to establish a route 
between two points of this map, manually or with an algorithm. 

Every route can be seen as a sequence of steps (states), so it is trivial to generate a 
FSM to represent this path. A single algorithm converts any possible path into a 
sequence of states and expected actions (also considering that one state can have more 
than one associated action). This way, after path selection the FSM is stored on 
system to be used by control unit.  

3.3  Navigation Control 

The hybrid control combines the deliberative control obtained from FSM-based 
topological navigation with a reactive control which must keep the robot into its 
expected route, avoiding collisions. 

The Topological Navigation allows the robot to follow its planned path and also 
know its approximate position, but doesn´t controls the robot “into” every situation 
(state). When the robot is in a corridor (“straight state”), a reactive control is activated 
to keep the robot centered and aligned in this corridor. This is the main benefit of this 
hybrid control: take advantage of deliberative model for path control and 
simultaneously guarantee a safe navigation with reactive control. 

For this implementation, it is assumed that robot´s initial position is always known, 
as the topological map also. The current position is estimated based on current state 
detection.  

In this approach it isn´t necessary to estimate the robot´s exact position, it “knows” 
its approximate position based on current state and there is a reactive control 
responsible for keeping it safe. 
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Input data processing makes it possible to determine if the robot still at the same 
state (part of the path) or if a context change is needed. State transitions must occur 
only with the detected state is compatible with next expected state (this information is 
related to the stored FSM). Figure 4 shows the navigation control flowchart.  

 

Fig. 4. Navigation control flowchart 

4 Experiments and Results 

Experiments were carried out in a real environment using a Pioneer P3-AT robot 
equipped with a dual-core computer for processing and Kinect as the only sensor. 

The indoor environment used in the tests was represented with 8 states, illustrated 
at Figure 5. The created states are: “straight path”, “left turn”, “right turn”, “left and 
right turns”, “left turn and straight”, “right turn and straight”, “blocked” and 
“intersection”. 

 

Fig. 5. Possible situaions on environment 
 

The implemented ANN was designed and trained with Stuttgart Neural Network 
Simulator (SNNS), and then converted to C language with SNNS2C tool to be 
integrated with the robot´s control unit. 

The ANN training database was collected after controlling the robot manually 
through the environment in several angles and positions, and then sliced into the 8 
classes. At this step, about 180 examples were collected for each class, resulting in a 
database with 1421 input/output pairs, used for supervised learning. 

The training algorithm used was Resilient Propagation (R-Prop). This algorithm is 
achieving great results for feed-forward networks in many applications due to its good 
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training time and convergence. Training parameters were set up as follows: δ0 = 0.1, 
δmax = 50, α = 5.0 and number of epochs = 1000. 

Five different topologies were tested, with different number of hidden layer 
neurons and number of hidden layers. The tests were held with 16, 80 and 316 
neurons on hidden layer. These amounts were considered after empirical tests. The 
input layer is composed by 632 neurons (vector with the mean of the 80 lines of depth 
matrix), and output layer is composed by 8 neurons, 1 neuron for each possible class. 

A great variation on training times was observed. With 1000 epochs, the training 
time for 632-16-8 net was 20 minutes, 2 hours for 632-80-8 net, and 8 hours for 632-
316-8 approximately. 

ANN validation was done with stratified 5-fold cross-validation method. This way, 
5 train and test sets were generated, with 80-20 proportion on data (80% used for 
training and 20% for test, with same proportion of elements from the 8 class on the 
datasets). The networks with best results were 632-316-8 and 632-80-80-8, with 
92,2% and 92% accuracy respectively, as can be observed at Table 1. The main 
difference between these networks is the training time: 8 hours for the first one versus 
2 hours for the second one. 

Table 1. ANN Accuracy after 1000 training cicles  

 

The confusion matrix for partition 2 in 632-316-8 net is shown next, on Figure 6. It 
is possible to note that error per class is close to zero, which means that very few 
classification errors occur. 

 

Fig. 6. Train confusion matrix (a) test confusion matrix (b) 
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Despite the excellent results considering the accuracy mean, a 100% safe 
navigation is guaranteed only if no errors occur in state detection. As a 100% 
accuracy is not achieved with the ANN, something must be done to guarantee that no 
unexpected state changes occur due to a wrong classification. This way, a “filter” was 
implemented, removing possible oscillations resulting from classification errors. This 
means that a state transition will occur only after some consecutive detections of the 
expected state, indicating confidence on transition detection. 

After testing and validating the ANN, it was implemented on the real robot, 
recognizing features for a specific indoor environment. Figure 7 shows a successful 
classification of the “left turn and straight” state. The frame on the left is a graphic 
representation of the depth matrix, and the frame on the right is a “real” frame 
captured from kinect. 

 

Fig. 7. State “left turn and straight” classification 

5 Conclusion 

Excellent results were achieved, with high accuracy level for the ANN individually, 
and 100% accuracy on navigation task after filter implementation on all experiments 
carried out. This shows that the association of ANN and FSM is a very suitable 
approach for autonomous robotic navigation.  

This system is very flexible, as it can be re-trained to recognize new situations, 
settings and features, and also use and combine other sensorial systems. 

Kinect was presented as a very suitable sensor for features detection on indoor 
environmets, allowing the development of robots with low-cost 3D vision-based 
navigation systems. 

The main challenge for future works is to apply this same methodology for 
autonomous outdoor navigation, using other sensorial systems (also fusing sensors), 
as kinect is not designed for outdoor environments. 
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