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Abstract. This work addresses the evolution of an Artificial Neural
Network (ANN) to assist in the problem of indoor robotic localization.
The localization system is based on information obtained from Wireless
Networks. The signal strength of several wireless nodes are used as in-
put in an ANN to measure the position of one robot in a space (as in a
Cartesian plane). The proposed system has been evaluated with several
changes in the evolution process and in the ANN settings seeking to ob-
tain the most efficient configuration. Results show that slight variations
in the parameters lead to a huge difference on the evolution process and
therefore in the accuracy of the robot position.

1 Introduction

Mobile robot navigation is one of the most fundamental and challenging direc-
tions in mobile robot’s research field and it has received great attention in recent
years [5]. Intelligent navigation often depends on mapping schemes which turns
out on depending on the localization scheme. For indoor or outdoor environ-
ments the mapping and localization schemes have their own features. Thereby,
localization is a key problem in mobile robotics and it plays a pivotal role in
various successful mobile robot systems [12].

This paper describes an investigation on the evolution of a system for indoor
location using signal strength from wireless networks. The signal strength of
several wireless nodes are used as input in the ANN in order to measure the
position of one robot in an indoor space. Our main focus in this work is to report
findings which corroborate the use of evolutionary computation techniques to
create intelligent systems.

In indoor spaces, sensors like lasers and cameras might be used for pose
estimation [9], but they require landmarks (or maps) in the environment and a



fair amount of computation to process complex algorithms. These sensors also
have a limited field of vision, which makes harder the localization task. In the
case of video cameras, the variation of light is also a serious issue. Another
commonly used sensor is the encoder, which provides odometry. Odometry is an
useful source of information in some cases [7] but it has an incremental error
that usually invalidates its use in real systems.

Wireless Networks (WNs) are widely available in indoor environments and
might allow efficient global localization while requiring relatively low comput-
ing resources. Other advantages of this technology are that it may provide high
degrees of scalability and robustness. However, the inherent instability of the
wireless signal does not allow it to be used directly for accurate position esti-
mation. One machine learning technique that could reduce the instability of the
signals of the WN is the Artificial Neural Networks; due to its capacity to learn
from examples, as well as the generalization and adaptation of the outputs [8].

In [2], it has been shown that obtaining an absolute performance in local-
ization, by means of a WN, depends on the environmental configuration. This
means that different approaches are required for different environments, such as
using different kinds of signals and filters. Evaluations in large indoor areas (like
a building) present specific difficulties not always the same as in small indoor
areas (like a room). These difficulties are related to the problem of attenuation
and reflection of the signals on the walls and the different sources of interfer-
ences. The use of wireless network to address the problem of localization inside
a building can be seen in [4, 6]. Another approach for localization uses Wireless
Sensor Network (WSN) where a large number of small sensors are used to pick up
information from the environment. The information acquired by the sensors can
be regarded as a fingerprint [11]. The drawback of the canonical WSN approach
is that, as it requires a huge number of resources, it could make the system more
expensive.

This paper has the following structure: Section 2 outlines the methodology
that is employed to set up and to evaluate the experiments. Section 3 describes
all the evaluations that have been carried out. The final section makes some con-
cluding comments and examines the future perspectives of this area of research.

2 Methodology

The indoor localization system uses an evolved Artificial Neural Network4. The
inputs of the ANN are signals strength measurements from wireless networks
(802.11b/g) received by the robot5 from 8 statically positioned Access Points
(AP) as shown in Fig. 1(a) and 1(b).

The evolution of the ANN is carried out using data collected by the robot.
We use the robot inside the working area (Fig. 1(b)) and collected 3 minutes
readings (i.e. ≈180 readings) at each marked point. With a displacement of

4 Source-code and data files used to train the ANN are available in goo.gl/vfXN2
5 Although we have used the humanoid robot NAO, the proposed methodology may

be applied to any kind of device with wireless capabilities.



(a) (b)

Fig. 1. (a) Graphical representation of the working area – It represents an area of
180 cm by 180 cm. (b) Picture of the working area with the robot, similar to what is
represented in Figure 1(a). Each small cross are placed 60 cm long.

60 cm, mapping out a plane of 180 cm by 180 cm, it means 16 points to read
resulting in ≈2880 readings altogether.

The signal obtained from the WN is the Received Signal Strength Indication
(RSSI). This value is obtained with the aid of the GNU/Linux command iwlist
(used as iwlist <interface> scanning). As we use the iwlist command, there
is no need to establish a connection (or login) with different specific networks.
The scan of the networks, without a connection, provides enough information
for this evaluation. Without a connection, the system becomes easier to use,
more lightweight and flexible. Furthermore, as the robot NAO has an operating
system based on GNU/Linux, this approach may be generalized to any other
GNU/Linux based system.

Our approach relies on the ANN learning and generalization capabilities in an
attempt to reduce the effect of unstable data (due to signal strength oscillation),
and increase the accuracy of the position estimation of the robot. However, as
the values obtained from the reading of the APs are quite unstable, we improve
the learning capability using the noise filter proposed in [10]. The behaviour of
the noise filter can seen in Fig. 2(a), where two lines represent scanning of one
AP in a period of time. The red line shows the raw value and the black line
shows how the median filter removes some of the noise. Although it generates a
delay of 8 seconds in acquiring the new position it was shown in [10] that the
accuracy turns out to be widely better.

The number of neurons in the input layer is equivalent to the number of
available APs – as we use 8 APs, the inputs of the ANN use one neuron for each
network signal. The order is important, and hence, AP 1 was linked to neuron
1, AP 2 with neuron 2 and so on. The outputs of the network are two values,
i.e. the coordinates (x, y). We measure the output errors by using the Euclidean
distance, as shown in Eq. 1. The value d is the error (distance, in centimetres),



(a) (b)

Fig. 2. (a) Sample of filter behaviour – The red line shows the raw value from one
of the access points. The black line shows how the median filter removes some of the
noise. (b) Example of ANN topology.

(x1, y1) are the expected values from the ANN validation set and (x2, y2) are
the obtained value while using the ANN.

d =
√

(x2 − x1)2 + (y2 − y1)2 (1)

2.1 Evolutionary Localization

As we seek to evaluate ANN characteristics and also the evolution process, we
started with a simple ANN topology as it can be seen in Fig. 2(b). We evaluate
changes in the ANN topology and in the role of the transfer function. Further-
more, as the evolution is carried out using Particle Swarm Optimization (PSO)
[1, 3] we evaluate several aspects that influence the search efficiency in the PSO.
These aspects are related to confidence models, neighbourhood topology, and
inertia among others.

We use PSO to evolve two different structures. In the first one, we use the
PSO to evolve just the ANN weights. In the second, we evolve the ANN weights
plus the slope of the transfer function. As an example, the ANN in Fig. 2(b) has
80 connections plus 10 weights for bias, hence, the PSO particle has 90 positions
(i.e. it is an vector with 90 positions). For the slope, we consider its use just in
the hidden layer, and it is the same value for all neurons. Hence, it adds only
one more value to the PSO particle.

The PSO is a stochastic optimization technique, inspired by social behaviour
of bird flocking and fish schooling [1, 3]. The optimization process occurs in
two different ways simultaneously: through cooperation (group learning) and
competition (individual learning) among particles (individuals) from a swarm
(population). It shares many concepts with evolutionary computation techniques



such as Genetic Algorithms (GA), where there is an initial population (where
each individual represents a possible solution) and a fitness function (whose value
represents how far an individual is to an expected solution). However, unlike
GA, PSO has no explicit concepts of evolution operators such as crossover or
mutation. In the PSO, there is a swarm of randomly created particles. On each
algorithm iteration, each particle is updated following: (i) the best population
fitness; (ii) the best fitness found by the particle (considering past generations of
the particle). Each particle has a position x (or a position vector) and a velocity
v (or velocity vector). The position represents a solution for the problem and
the velocity defines the particles displacement direction weight.

New particle’s position is given by Eq. 2. Where xi
k is the position of particle

i at instant k and vik is particle’s i velocity at k moment. Particle’s velocity is
updated according to Eq. 3.

xi
k+1 = xi

k + vik+1 (2)

vik+1 = w · vik + c1 · r1(pbest− xi
k) + c2 · r2(gbest− xi

k) (3)

On Eq. 3, vik is the particle actual velocity, w represents a particle inertia
parameter, pbest is the best position among all positions found by the individual
(particle best), gbest is the best position among all positions found by the group
(group best), c1 and c2 are trust parameters, r1 and r2 are random numbers
between 0 and 1. Parameters (w, c1, c2, r1 e r2) are detailed in the sequence.

The velocity is the optimization’s process guide parameter [3] and reflects
both particle’s individual knowledge and group knowledge. Individual knowl-
edge is known as Cognitive Component while group knowledge is known as Social
Component. Velocity consists of a three-term sum: (i) Previous speed: utilized
as a displacement direction memory and can be seen as a parameter that avoids
drastic direction changes; (ii) Cognitive Component: directs the individual to
their best position found so far (i.e. memory of the particle); (iii) Social Com-
ponent: directs the individual to the best particle in the group.

Parameters c1 and c2 (confidence or trust) are used to define individual or so-
cial tendency importance. Default PSO works with static and equal trust values
(c1=c2), which means that the group experience and the individual experience
are equally important (called Full Model). When parameter c1 is zero and pa-
rameter c2 is higher than zero, PSO uses only group information (called Social
Model). When parameter c2 is zero and parameter c1 is higher than zero, PSO
uses only particle’s information, disregarding group experience (called Cognitive
Model). Random value introduction (r1 and r2) on velocity adjustment allows
PSO to explore on a better way the search space [3]. Inertia parameter aims
to balance local or global search. As the value approximates to 1.0, search gets
close to global while lower values allow local search. Usually this value is between
0.4 and 0.9. Some authors suggest its linear decay, but they warn that it is not
always the best solution. Most parameters are problem-dependent [3, 13].



3 Results

This section describes the four steps that were carried out to perform the evalu-
ations, considering changes in the ANN and PSO techniques. As a first step we
sought to evaluate the impact of using different range values in the initializa-
tion of PSO’s velocity and position. Furthermore we evaluate how the number
of generations and the swarm size impact the evolution.

Table 1(a) shows the evaluation set related to swarm size and the number of
generations. Table 1(b) shows the evaluation set for weights of connections (i.e.
position) and velocity parameters in the PSO.

Table 1. First evaluation set performed with the PSO.

(a) (b)
Generations Swarm Size Velocity Position

200 500 1000 {-2.0;2.0} {-5.0;5.0} {-20.0;20.0}
500 E1 E2 E3 {-2.0;2.0} A1 A2 A3
1000 E4 E5 E6 {-5.0;5.0} A4 A5 A6
2000 E7 E8 E9 {-20.0;20.0} A7 A8 A9

We performed 25 runs for each parameter set, considering different random
seeds on each initialization. The results can be seen in Fig. 3. We can see in
Fig. 3(a) that more generations and bigger swarm size provides better results
(E9). However, even using swarm size equal to 1,000 and number of generations
equal to 2,000 the evolution process was not reaching learning stabilization (the
learning curve still have slightly improvements).

In Fig. 3(b) we can see that the two sets that obtained the best (lower
error) results considering the range of position and velocity are A8 and A2. Both
use positions between {-5.0;5.0} but have different velocities range. We can see
that although A8 has the lowest minimum error it has the biggest dispersion
among all. The A2 set has the lowest median and a minimum error close to A8.
Although, considering the graph scale (2 cm), all results are not much different.
Thereafter, to the next steps, we maintain the set A2 in the PSO. However,
given that the evolution process was not reaching complete stabilization, we
extrapolate E9 with 10k generations instead of 2k.

As a second step, we wanted to understand the behaviour of the PSO evolving
the ANN considering confidence models, the inertia and the role of the transfer
function. Table 2 shows the evaluated parameter set. Linear and Logistic are the
two types of transfer function used in the ANN hidden layer.

We can see that results (Fig. 4) using the Cognitive Model or the Social
Model were worse than using the Full Model. The four best sets are {Fi3, Fi5,
Fo3, Fo5}. We can see that the sets with Logistic Transfer Function obtained
best results near to 15 cm while the sets with Linear Transfer Function obtained
best results near to 45 cm. In these sets, we can also see that when inertia was
used as 0.3 we have better results than using inertia equal to 0.5 or 0.7. It makes
sense due to the fact that lower the inertia better the local search (fine tuning).
Hence, the best parameter set which we maintain to next steps is Fo3.



(a)

(b)

Fig. 3. (a) Results using different swarm size and number of generation (Table 1(a)).
(b) Results using different initialization in PSO position and velocity (Table 1(b)). The
graphs are in different scales. The x axes represent the error in centimetres.

Table 2. Second evaluation set performed with the PSO (inertia and confidence mod-
els) and the ANN (transfer function).

Inertia Full Social Cognitive
Linear Logistic Linear Logistic Linear Logistic

0.3 Fi3 Fo3 Si3 So3 Ci3 Co3
0.5 Fi5 Fo5 Si5 So5 Ci5 Co5
0.7 Fi7 Fo7 Si7 So7 Ci7 Co7

Fo3 set uses Logistic Transfer Function with a slope of 0.02. We also had a
different PSO evolving the slope, however, the results when we leave the PSO to
evolve the slope were similar to the use of the pre-defined value. Of course, the
finding of slope equal to 0.02 was not trivial as it was encountered analysing the
output of the sum of the hidden layers. Such a situation may encourage the use
of the PSO in order to find the slope of the Transfer Function. We also performed
some evaluations taking into account linear decay of the inertia value, but the
results were not better than the currently configuration.

In the third step, we sought to evaluate the impact of using different PSO
neighbourhood topologies (NT). PSO NT are related to the choice of the best
particle to follow. In the star model, all particles follow the best among all.
Nevertheless, it may sometimes be more susceptible to local minima. Others NT
may be less susceptible to local minima, where the particle does not to follow
the global best but the best of some subpopulation. It, in general, also increases
the diversity.

We have evaluated 4 different types of NT. Fig. 5(a) shows its results. V1
is the star model while V2, V3 and V4 are models with subpopulations. V2
and V3 use respectively 2 and 4 subpopulations (2 and 4 groups of neighbours).



Fig. 4. Results using different PSO confidence models and inertia, as show in Table 2.
We show the sets where the average error were lower than 80 cm – 8 of 18 sets. The x
axis represents the error in centimetres.

V4 uses also 4 neighbours but the best particle to follow is the average among
the two best in the subpopulations. Upon this results (Fig. 5(a)), we performed
a statistical test to verify its significance. Using t-test among all sets they are
accepted as equivalent (using 95% of confidence). It means that, for this problem,
the use of different NT does not substantially affect the results.

(a)

(b)

Fig. 5. (a) Results using different PSO neighbourhood topology. (b) Results using
different number of neurons in the ANN hidden layer. The graphs are in different
scales. The x axes represent the error in centimetres.

The final step was the evaluation of the number of neurons in the hidden
layer. We evaluate the use of 2, 4, 8, 12 and 16 neurons. Results can be seen
in Fig. 5(b). We can see that using 2 and 4 neurons, the results are quite bad.
Using 8 and 12 neurons they have good minimum errors but high dispersion.
The ANN with 16 neurons presents the lowest error and the more homogeneous
results. Statistical analyses (t-test) upon N12 and N16 shows that, with 95% of
confidence, they are not accepted as equivalent (p-value of 0.013), i.e., the use
of 16 neurons does improve the system.



(a) (b)

Fig. 6. Histogram of the localization error using the best acquired ANN. (a) Using 10k
generation in the PSO. (b) Using 100k generation in the PSO. The x axes represent
the error in centimetres.

Fig. 7. Section of the plane (Fig. 1(a)) with expected and obtained values for 4 coor-
dinates. The black dots are the expected value; diamonds show the obtained values.
Each colour represents a different position. Axes x and y are in centimetres.

After the evaluation of the number of neurons in the hidden layer, we per-
formed a new evaluation considering the best set found so far but running the
evolutionary process for 100k generations instead of 10k. Results can be seen
in Fig. 6. The data shown in Fig. 6(a) and 6(b) presents an average error and
standard deviation, respectively, of (14.6, 18.4) and (10.2, 14.4), i.e. running
the PSO for 100k generations allowed us to decrease the average error in more
≈30%. We can see that Fig. 6(a) has less results in the first class (0 to 5 cm)
and a bigger tail than Fig. 6(b). Statistical evaluation using the Mann-Whitney
test (as it is a non normal distribution) showed p-value equal to 1.517e−11 (not
accepted as equivalent using 95% of confidence). Fig. 7 shows a section of the
plane (Fig. 1(a)) with expected and obtained values for 4 positions, using the
best aquired ANN. For all positions in the evaluated plane, 86% of the errors
are below 20 cm.

4 Conclusion and Future Work

In this paper we have shown an investigation addressing the evolution and the use
of an ANN to assist in the problem of indoor localization by using data gathered



from WNs. Upon the data obtained from the WN we employed a median noise
filter as shown in [10]. We evaluated several PSO and ANN settings. Results
showed that the use of transfer function in the ANN along with the PSO Full
model allowed us to decrease the average error from ≈45 cm to ≈15 cm. Also,
we might see that the use PSO neighbourhood topology did not allow us to have
any significant improvement. Finally, the system could be improved using larger
number of neurons in the hidden layer and larger number of generations, leading
to an average error of ≈10 cm.

Future work may include an investigation to improve the local search, since
even using a huge number of generations we still have a slightly decreasing er-
ror. Further, we are considering the other two approaches, that is, the compari-
son with others Evolutionary Techniques and a comparison with classical ANN
learning algorithms. This is to verify the accuracy and efficiency of the proposed
techniques.
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