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Abstract— The development of autonomous vehicles is a
highly relevant research topic in mobile robotics. Road recog-
nition using visual information is an important capability
for autonomous navigation in urban environments. Over the
last three decades, a large number of visual road recognition
approaches have been appeared in the literature. This paper
proposes a novel visual road detection system based on multiple
artificial neural networks that can identify the road based on
color and texture. Several features are used as inputs of the
artificial neural network such as: average, entropy, energy and
variance from different color channels (RGB, HSV, YUV). As a
result, our system is able to estimate the classification and the
confidence factor of each part of the environment detected by
the camera. Experimental tests have been performed in several
situations in order to validate the proposed approach.

I. INTRODUCTION

Visual road recognition, also known as “lane detection”,
“road detection” and “road following”, is one of the desirable
skills to improve autonomous vehicles systems. As a result,
visual road recognition systems have been developed by
many research groups since the early 1980s, such as [1] [2]
[3]. Details about these and others works can be found in
several surveys [4] [5] [6] [7].

Most work developed before the last decade was based on
certain assumptions about specific features of the road, such
as lane markings [8] [9], geometric models [10] and road
boundaries [11]. These systems have limitations and in most
cases they showed satisfactory results only in autonomous
driving on paved, structured and well-maintained roads.
Furthermore they required favorable conditions of weather
and traffic. Autonomous driving on unpaved or unstructured
roads, and adverse conditions have also been well-studied
in the last decade [12] [13] [14] [15]. We can highlight
developed systems for the DARPA Grand Challenge [16]
like focusing on desert roads.

One of the most representative works in this area is
the NAVLAB project [3]. Systems known as ALVINN,
MANIAC and RALPH were also developed by the same
research group. Among these systems, the most relevant
reference for this paper are ALVINN and MANIAC because
they are also based on artificial neural networks (ANN) for
road recognition.
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The idea of ALVINN [17] consists of monitoring a hu-
man driver in order to learn the steering of wheels while
driving on roads on varying conditions. This system, after
several upgrades, was able to travel on single-lane paved
and unpaved roads and multi-lane lined and unlined roads
at speeds of up to 55 mph. However, it is important to
emphasize that this system was designed and tested to drive
on well-maintained roads like highways under favorable
traffic conditions. Beyond those limitations, the learning step
takes a few minutes [17] and the authors mention that when
is necessary a retraining then this is a shortcoming [18].
According to [19], the major problem of ALVINN is the lack
of ability to learn features which would allow the system to
drive on road types other than that on which it was trained.

In order to improve the autonomous control, MANIAC
(Multiple ALVINN Networks In Autonomous Control) [19]
has been developed. In this system, several ALVINN net-
works must be trained separately on their respective roads
types that are expected to be encountered during driving.
Then the MANIAC system must be trained using stored ex-
emplars from the ALVINN training runs. If a new ALVINN
network is added to the system, MANIAC must be retrained.
Both systems trained properly, ALVINN and MANIAC, can
handle non-homogeneous roads in various lighting condi-
tions. However, this approach only works on straight or
slightly curved roads [12].

Other group that developed visual road recognition based
on ANN was the Intelligent Systems Division of the National
Institute of Standards and Technology [20]. They developed
a system that make use of a dynamically trained ANN
to distinguish between areas of road and nonroad. This
approach is capable of dealing with nonhomogeneous road
appearance if the nonhomogeneity is accurately represented
in the training data. In order to generate training data, three
regions from image were labeled as road and three others
regions as nonroad, i.e., the authors made assumptions about
the location of the road in the image, which causes problems
in certain traffic situations. Additionally, this system works
with the RGB color channel that suffers a lot of influence
in the presence of shadows and lighting changes in the
environment. A later work [21] proposed dynamic location
of regions labeled as road in order to avoid these problems.
However, under shadows situations, the new system becomes
less accurate than the previous one because the dynamic lo-
cation does not incorporate the road with shadow information
in the training database.

In this work, we present a visual road detection system that
uses multiple ANN, similar to MANIAC, in order to improve
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the robustness. However, our ANN learns colors and textures
from sub-images instead of all road appearance like ALVINN
does. In our system, each ANN receives different image
features as input. Features like averages, entropy, energy
and variance from differents color channels (RGB, HSV,
YUV) from sub-images. In the final step of the algorithm,
we combine a set of ANN’s outputs to generate only one
classification for each sub-image. Also, we estimate the
height of the horizon line in image in order to improve
the classification of all image. Another detail about this
classification is that it provides a confidence factor for each
sub-image classification that can be used by any control
system. Unlike [20], our system does not need to be retrained
all the time because the generalization capacity of our system
is better than theirs. Therefore, our system does not require
to make assumptions about the location of the road in the
image.

II. SYSTEM DESCRIPTION

The system’s goal is to identify the road region on an
image obtained by a video camera attached to a vehicle. To
accomplish this task, our system is divided into four stages
composed by different algorithms and parameters. The first
stage, called Features Generation, transforms the image into
set of sub-images and generates image features for each one.
These features are used in the second and third stages called
Road Identification and Horizon Identification to detect
the road and the horizon line respectively. After that, into
the last stage called Combination, our system combines the
two identifiers results to provide a matrix that is the final
“Visual Navigation Map” (VNMap). A control algorithm
uses VNMap in order to control the vehicle autonomously.
After executing an action, the system captures another image
from the environment and returns to the first stage. The Fig. 1
shows how the system works.

Get 
Image

Features Generator
Image

Sub-images 
with features

Control
Algorithm

Final VNMap

Action
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Identifier

Horizon
Identifier

combine
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Fig. 1. The System Architecture: Given an image, it is transformed
into a set of sub-images that will be separately classified by two types
of identification. Combining all outputs from road and horizon Identifiers,
our system provides the VNMap that is used by a control algorithm.

A. Features Generation

This stage transforms an image into a set of sub-images
and generates image-features for each of them. More specif-
ically, an image I with size of (M×N) pixels is decomposed
in many sub-images with (K×K) pixels, as shows Fig. 2(a)
which is transformed into Fig. 2(b). This subdivision is
described as follows: The element I(m,n) corresponds to
the pixel in row m and column n of the image, where
(0 ≤ m < M) and (0 ≤ n < N). Therefore, sub-image (i, j) is
represented by group G(i, j) that contains all pixels I(m,n)
such that (iK ≤ m < (iK +K)) and ( jK ≤ n < ( jK +K)).

For each group, many image features are generated. These
features will be used by road and horizon identifiers that
determine whether the group, or sub-image, belongs to a
particular class or not. If the sub-image is classified as
belonging to a specific class, e.g. road class, then all pixels
from that group are considered as belonging to the same
class. Fig.2(c) shows sub-images belonging to road class
painted in red. This strategy has been used to reduce the
amount of data, allowing faster processing and obtaining
information like texture from sub-images.

(a) (b) (c)

Fig. 2. In features generation stage, the image (a) is transformed into a
set of sub-images, each one represented by a square in image (b). After the
classification, we can obtain results like (c), where all pixels from a square
receive the same classification. Red squares were classified as belonging to
road class.

In this work, an image feature is a statistical measure
computed for a group of pixels considering a specific color
channel. We used the following statistical measures: mean,
entropy, variance and energy. These measures can be associ-
ated with some channel from four different color spaces in
order to define a feature: RGB, HSV, YUV and normalized
RGB. The normalized RGB is composed by (R/(R+G+B)),
(G/(R+G+B)), (B/(R+G+B)). The Table I shows all
the combinations of statistical measures with color channels
calculated by our system. The choice of these attributes was
based on a feature selection method based on ANN and a
previous work [22].

TABLE I
FEATURES CALCULATED BY OUR SYSTEM. NOTE THAT RN, GN, BN

ARE RGB CHANNELS NORMALIZED.

Measure Channels from several color spaces
R G B H S V Y U RN GN BN

Mean × × × × × × × × ×
Entropy × × × × ×
Variance × ×
Energy × ×

B. Road and Horizon Identification

An identifier is responsible for classifying a sub-image as
belonging or not to a specific class. It is composed by several
different ANN, as shows Fig. 3. Each ANN uses some, not
all, features generated by the previous stage as input. In other
words, these ANN are distinguished by the combination of
features used as input. The Section III will explain the ANN
used here in more detail.

Our system uses two identifiers, one to detect road and
other to detect horizon line. The major difference between
these identifiers are the features and training database used
by its ANN. Fig. 4 shows for the same image the difference
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Fig. 3. An identifier is composed by multiple ANN. After combining
all ANN outputs, is generated the classification for one sub-image. The
classifications from all sub-images compose a Map that will be used by the
system.

between the training data. Pictures (b) and (c) show sub-
images with classification 1 (detected) painted in red and
sub-images with classification 0 (not detected) painted in
blue. This classification was manually defined in order to
generate training database for both identifiers.

(a) (b) (c)

Fig. 4. Differences between training databases of identifiers, image (a)
is original image, image (b) is classification for road training database and
image (c) is classification for horizon training database. The pixels painted
of red represent patterns that identifier must returns value “1”. Pixels painted
of blue represents patterns thar identifier must return “0”.

The Road Identifier detects sub-images that represent
road regions from image. In this stage, all the ANNs of the
road identifier classifies each sub-image, and return a value
ranging from 0 to 1. The classification of a sub-image is
average of the results of all ANN outputs. After classifying
all sub-images from an image, this stage generates a matrix
Map of real numbers where Map(i, j) is the classification
of sub-image G(i, j). Fig. 5 shows a sample of an image
classified by this identifier, where the right image shows
the VNMap in gray-scale - black represents non-road class,
white represents road class and the gray represents the
intermediate values.

Classification

Fig. 5. Results from a classification sample from road identifier. Black
represents non-road class, white represents road class and the gray represents
the intermediate values.

The Horizon Identifier distinguishes sub-images above
the horizon line from sub-images below it, as shows Fig. 6.
This stage is similar to Road Identification but it uses
different features, number of ANN and training database.
After generating Map, it calculates the height of horizon
line as follows:

height =
X
2 +Y

W
, (1)

where X is how many sub-images were classified with
score higher than threshold1 and less than threshold2, Y
is how many sub-images were classified with score higher
than threshold2 and finally, W is the number of sub-images
(columns) in one line of Map. These threshold values
were defined empirically, where (0 < threshold1 < thresh-
old2 < 1). This helps the system to distinguish X - that
represents sub-images above horizon with low confidence -
from Y - that represents sub-images above horizon with high
confidence.

Classification

Fig. 6. Results from a classification sample from horizon identifier. Black
represents non-sky class, white represents sky class and the gray represents
the intermediate values.

After determining the position of the horizon, at the last
stage our system updates the classification of all sub-images
above the horizon line to zero in VNmap generated by Road
Identification, as shows Fig. 7. This procedure improves the
classification system and this VNmap can be used by some
control algorithm. In order to improve system performance,
we recommend the execution of the horizon identifier first, so
that only the sub-images below horizon line will be submitted
to the road identifier.

Fig. 7. Results from combination of classification from horizon identifier
and road identifier. Note that the uncertainty above horizon was eliminated
causing classification improvement.

III. ARTIFICIAL NEURAL NETWORK

The ANN used in our system consist of a multilayer per-
ceptron (MLP) [23], which is a feedforward neural network
model that maps sets of input data into specific outputs. We
use the resilient propagation technique [24], which estimates
the weights based on the amount of error in the output
compared to the expected results.
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The ANN topology consists in, basically, two layers,
where the hidden layer has five neurons and the output layer
has only one neuron, as shows the Fig. 8. We chose this
topology based on previous evaluation [22]. The ANN was
trained to return value 1.0 when receives patterns belonging
to a determined class and to return 0.0 when receives patterns
that does not belong to class. The input layer depends on
features chosen for each ANN instance. Since the number of
neurons is small, the training time is also reduced enabling
the instantiation of multiple ANN.

Feature 1

Feature 2

...

Feature (m-1)

Feature m

r

Sub-image

0 ≤r≤ 1

Number of neurons 
constant

Fig. 8. ANN topology: The ANN uses some features, not all, to classify
the sub-image between belonging to a class or not. The output is a real
value ranging from 0.0 to 1.0, where if the value is closer to 1 then greater
will be the confidence factor about belonging to class. If the value is closer
to 0 then greater will be the confidence factor about not belonging.

Regarding ANN convergence evaluation, two metrics are
frequently used: “MSE” and “Error Rate”. The MSE is
“Mean-Square Error” and usually the training step stops
when the “MSE” converges to zero or some acceptable value.
However, a small mean-square error does not necessarily
imply good generalization [24]. Also this metric does not
provide how many patterns are missclassified, i.e., if the error
is higher for some patterns or if the error is evenly spread
for all patterns. Other way of evaluating the convergence is
checking how many patterns were missclassified, or “Error
Rate”. The problem of using this criteria is how to define
an adequate threshold value to interpret the ANN output, i.e,
given an ANN output varying from 0 to 1, determine whether
this output belongs or not to the class being assessed.

In our work, in order to evaluate the convergence we
propose a method that assigns a weight to the classification
error, and compute a score for the ANN. More specifically,
a greater weight is assigned to an ANN output with error
of 0.1 than to output with error of 0.2. Therefore, a high
score indicates few large errors or several small errors. The
Equation 2 shows how to calculate the score:

score =

1
N∗p(0)

(
hmax
∑

i=0
h(i)∗ p(i)

)
+1

2.0
, (2)

where N is the number of evaluated patterns, h(i) is the
number of classifications with error varying from i

hmax to
(i+1)
hmax , hmax is the size of h() and finally, p() is the weight
function. The value hmax determines a precision for the
interpretation of ANN’s output. In other words, for instance,
if hmax= 10 then the output that has real value ranging from
0 to 1 will be divided into 10 classes of errors, one class for

errors between 0 and 0.1, other class for errors between 0.1
and 0.2, and so on. Also, each class is directly related to
a weight. To simplify the handling of the score, the weight
always ranges from -1 to 1, thus the score ranges from 0 to
1. Where score = 1 means that all ANN outputs are correct.
Therefore, the training step runs until score converges to 1
or some acceptable value.

IV. EXPERIMENTS AND RESULTS

In order to validate the proposed system, several exper-
iments were perfomed. Our setup for the experiments was
a car equipped with an A610 Canon digital camera. The
image resolution was (320×240) pixels. The car and camera
were used only for data collection. In order to execute the
experiments with ANNs, we used a Fast Artificial Neural
Network (FANN) which is a C library for neural networks.
The OpenCV library has been used in the image acquisition
and to visualize the processed results from our system. The
sub-image size used was K = 10, so each image has 768
sub-images.

Our system uses ten ANN during execution, six to road
identification and the remaining four to horizon identifi-
cation. In the training step, each ANN are trained five
times until 5000 cycles for that our system select one with
best score. In other words, our system selects 10 from 50
created ANN. The used hmax has value equals “10” and
weight function p() used was a linear function. The road
identification uses only three sets of features as input, two
ANN are instantiated for each set resulting six ANN. The
sets of features used are:

• Mean of U, V, H and Normalized B; Entropy of H;
Energy of Normalized G.

• Mean of V, G, U, R, H, Normalized B, Normalized G;
Entropy of H and Y; Energy of Normalized G.

• Mean of U, Normalized B, V, S, H, Normalized G;
Variance of B; Entropy of Normalized G.

The horizon identification uses four sets of features as input
for ANN. The features sets used are:

• Mean of R, B and H; Entropy of V.
• Mean of R and H; Entropy of H and V.
• Mean of B; Entropy of S and V; Energy of S
• Mean of B; Entropy of V; Energy of S; Variance of S.
Several paths traversed by the vehicle were recorded

using a video camera. These paths are composed by road,
sidewalks, parking, buildings, and vegetation. Also, some
stretchs presents adverse conditions such as dirt, traces of
other vehicles and shadows (Fig. 9). Altogether, data were
collected from eight scenarios. For each one, it was created
a training database and an evaluating database. Also, we
combined elements from these eight training data into a
single database, and elements from the eight evaluating data
into another single database. Thus, we tested the system with
nine databases.

A. Evaluation using score

Score is a hit rate measure that varies from 0 to 1. In order
to compare this method with another metrics well known,
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Fig. 9. Samples of scenarios used in this work. Note the occurrence of
shadows and how the colors of road changes in different lighting conditions.

we transforms the score into “error measure” calculating
(1−score). The graphic from Fig. 10 shows the performance
of our system in a boxplot format. Each column represents
results from one evaluating database. To generate each col-
umn, the system was independently evaluated for each image
from the same scenario. Among all image results, column
shows minimun, quartile of 25%, median in blue, quartile of
75% and maximun.

Fig. 10. Each column represents our system results from one evaluating
database. Also, each column shows minimun, quartile of 25%, median in
blue, quartile of 75% and maximun. The most important result that shows
robustness of our system is the ninth column. This column shows that our
system classifies different scenarios with good precision.

In general, the results were satisfactory. Except for the
third scenario, all the medians were lower than 0.05 and
based on analysis of quartiles, most of the images were
classified with an error less than 0.1. The most important
result that shows robustness of our system is the ninth
column, because it represents the system performance for
a database consisting of patterns of various scenarios under
different conditions. Fig. 11 shows some results from the

system trained with the database 9. We can see that our sys-
tem has higher performance in different traffic and weather
conditions, also different environments.

Fig. 11. Samples of results from our system when it is trained with database
9. This database has patterns from many different scenarios in different
weather and traffic conditions. Our system was capable to differ road of
non-road pixels. Also, in order to improve the classification, the green line
shows where the system estimates the line horizon. All pixels above horizon
line was non-road.

B. Comparison

We evaluate our system with 3 error metrics described
in this paper, “MSE”, “Error Rate” and “1 - score”. We
compared our results with the ANN described in [21] that
uses only one ANN with 26 input neurons composed by a
RGB binary (24 features) and normalized position of sub-
image (2 features). Table II shows the comparison between
our system and theirs for each database.

The ANN from [21] was better than our system in all
evaluations when the system was trained and evaluated with
patterns from the same scenery (database 1 to 8). However,
when systems were trained with database 9, that contains
patterns from all scenarios, our system was much better
than theirs, since their ANN failed to learn. We can see
this clearly in the column “Error Rate” where [21] ANN
missclassified 99.7%. In other words, their system is better
than our system for short paths. For longer paths or paths
where the light conditions changes, our system is better
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because their system must be retrained over the path. The
retraining is only possible if the system makes assumptions
about the location of the road in the image, which can cause
problems in certain traffic situations, or if the road is located
using other sensors. For our vision system, these assumptions
are not necessary.

TABLE II
TABLE OF ERRORS: COMPARISON BETWEEN OUR SYSTEM AND [21]

FROM NIST THAT ALSO USING ANN.

Scenery MSE Error Rate 1− score
LRM NIST LRM NIST LRM NIST

Data 1 0.032 0.026 0.106 0.038 0.061 0.030
Data 2 0.023 0.017 0.071 0.029 0.046 0.022
Data 3 0.075 0.042 0.253 0.071 0.131 0.055
Data 4 0.018 0.035 0.047 0.039 0.031 0.035
Data 5 0.022 0.022 0.062 0.041 0.043 0.031
Data 6 0.021 0.010 0.051 0.016 0.035 0.013
Data 7 0.020 0.026 0.050 0.058 0.032 0.041
Data 8 0.020 0.017 0.044 0.032 0.031 0.023
Data 9 0.045 0.248 0.118 0.997 0.074 0.449

V. CONCLUSION

Visual road recognition is one of the desirable skills to
improve autonomous vehicles systems. We presented a visual
road detection system that uses multiple ANN. Our ANN
is capable to learn colors and textures instead of totally
road appearance. Also, our training evaluation method is a
more adequate assessment to the proposed problem, since
many classifications with low degree of certainty lead to low
score. Our system was compared with another system and
it performed better for longer paths with sudden lighthing
condition changes. Finally, the system classification provides
confidence factor for each sub-image. This information can
be used by a control algorithm.

In general, the results obtained in the experiments were
relevant, since the system reached good classification results
when the training step obtains good score. Furthermore, the
set of features presented in this paper can be used in different
road types and weather conditions. It may be possible to get
a better classification if we add a preprocessing to reduce
the influences of the shadows in the image and maybe use
more ANN in the system. As a future work, we plan to
integrate it with other visual systems like lane detection in
order to improve the system in urban scenarios. We also plan
to integrate our approach with laser mapping in order to make
conditions to retrain the ANN without human intervention
and without making assumptions about the image. Finally,
as the system classifies each block independently, we intend
to improve the processing efficience using a GPU.
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