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Abstract— Visual navigation is an important research field
in robotics because of the low cost of cameras and the high
performance that is usually achieved by visual navigation
systems. Pixel classification as a road pixel or a non-road pixel is
a task that can be well performed by Artificial Neural Networks.
In the case of real-time instances of the image classification
problem, as when applied to autonomous vehicles navigation,
it is interesting to achieve the best possible execution time.
Hardware implementations of these systems can achieve fast
execution times but the floating-point implementation of Neural
Networks are commonly complex and resource-intensive. This
work presents the implementation and analysis of a fixed-point
Neural Network Ensemble for image classification. The system
is composed by six fixed-point Neural Networks verified with
cross-validation technique, using some proposed voting schemes
and analyzed considering the execution time, precision, memory
consumption and accuracy for hardware implementation. The
results show that the fixed-point implementation is faster, con-
sumes less memory and has an acceptable precision compared
to the floating-point implementation. This fact suggests that
the fixed point implementation should be used in systems that
need a fast execution time. Some questions about ensembles
and voting have to be reviewed for fixed-point Neural Network
Ensembles.

I. INTRODUCTION

Visual navigation is a important and largely used method
to do robotic navigation. There are important works in
robotics that use visual information for navigation as the cars
that participated of DARPA Grand Challenge and DARPA
Urban Challenge [1][2]. Considering robotic platforms that
are being researched recently, a considerable number of
them are critical embedded systems as autonomous vehicles,
autonomous airplanes, autonomous robots that dismantle
bombs and save buried people. These robots need navigation
systems that work in real-time, which in this case means, that
give an accurate response in an acceptable execution time.

There are many ways to use visual information for robotic
navigation. One way to do it is classifying which pixel (or
group of pixels) of an image represents regions where the
robot can navigate without problems, and which represents
regions that the robot cannot use for navigation. Fast re-
sponse time and generalization are important features for a
classifier that will be included in a visual navigation system
and this work’s chosen classifiers are the Artificial Neural
Networks.

Artificial Neural Networks (ANNs) are computational
structures inspired by human brain. These structures, as the
human brain, are able to do pattern recognition, that means,

receive a pattern signal and assign it to one of a prescribed
number of classes [3]. ANNs perform pattern recognition
after a training phase. A group of training patterns, composed
by inputs and their desired output, is presented to the network
repeatedly and by a learning process. This learning process
modifies network’s weights and the structure learns about
the problem. After that, a new pattern is presented to the
network and the structure is able to classify that pattern with
an accuracy rate higher than before. Some tasks are complex
and the final recognition result can be increased by using
a group of networks to classify the same data instead of
only one network. The groups of Neural Networks are called
Neural Network Ensembles (NNEs) [4]. Running a group of
networks is a device borrowed from fault-tolerant computing
and is based on the fact that each network will make
generalization errors on different subsets of the input space
lowering the probability of recognition error compared to a
single network [4]. There are many ways to gather the results
and turn them into a final result, each one recommended to
be used for a different situation.

After training, the response time of the networks is al-
most instantaneous and this feature is important for visual
navigation systems. An alternative to decrease even more
the response time is to implement the ANNs or NNEs
in hardware, also known as Hardware Neural Networks
(HNNs) [5]. Usually ANNs use floating-point arithmetic for
training and for execution but the hardware implementation
of floating-point operations is very expensive considering
resources consumption and execution time. The alternative
in this case is to implement the network using fixed-point
arithmetic. This alternative will result in a final hardware
that needs a lower chip area but the accuracy of the result
depends on how the fixed-point arithmetic is implemented
and the number of representation bits.

Hardware implementation of ANNs can be faster and
consume less area and power compared to networks that run
on general purpose computers. This fact, together with the
natural parallelism of Neural Networks, justifies the research
area of HNN. Despite of it, general purpose computers are
getting more powerful and software development is being
done without thinking about hardware because it is easier and
faster. The related works presented here are about HHNs and
ANN for robotics separately, it is very difficult to find works
about HNN implemented for robotic applications and even
more difficult to find fixed-point networks for this purpose



with a deep analysis of the fixed-point arithmetic usage
impact.

The work presented in [6] implemented a fixed-point
neural network to shape recognition. This network was
applied on a robotic arm system and the problem is that
the fixed-point implementation was not well described. The
results showed that hardware implementation was fast but
was not really compared to other results. Some works present
fixed-point neural network implementations in hardware and
software [7][8][9]. These works present good results but they
only consider the network implementation, or the application
is not directly related to robotics. Neural Networks are
widely used in robotics [10], and have many hardware
implementations [5] but it is difficult to find works that put
together hardware Neural Networks and robotic applications.

This work implements a visual navigation system the uses
ANNS and NNEs as classifiers based on previous work
[11]. Cited previous work found some relevant features
of an image for its pixels classification, proposed ANN
architectures and parameters, and used NNEs but didn’t use
the recommended consensus scheme to decide the collective
classification by vote [12][13]. This work implements ANNs
and ENNs considering the same image features but exploring
different architectures, parameters and voting schemes for the
NNE results, and also implements the same ANNs and ENNs
in fixed-point arithmetic to evaluate the precision, execution
time, memory consumption and accuracy. The final result
will be consider for the future hardware implementation of
the system.

II. METHOD

This work’s development method works as follows: first
the visual navigation system was implemented again and
the NNEs proposed were tested with different multi-layer
perceptron feed-forward network [3] architectures. After
that, new voting schemes were implemented and the final
recognition results’ precision were compared. Finally the
best ANN and NNE were re-implemented using fixed-point
arithmetic and the results were compared to the results of
floating-point version considering precision, execution time,
memory consumption and accuracy. In order to verify the
hardware consumption of a floating-point unit, nine different
Nios II processors were configured on a Altera’s Cyclone II
FPGA [14] and their resource consumption were compared.

A. Visual Navigation System

The visual navigation system described in this subsection
is proposed in [11]. This system is partially described in
this paper only with respect to the points that are relevant
to this work, and any other necessary information about the
system can be found in [11]. Visual navigation systems use
an image of the environment as an input and the output can
be, for example, an image with its pixels classified, a set
of actions that will be executed by the robot or a map that
is being constructed or corrected. The system proposed in
[11] takes an image of the environment divided in blocks of
pixels as an input and the output is the same image with the

pixels blocks classified as road or non-road pixels. With this
information the robot can correct its position to hit only the
road pixels on the image, what means that he stays on the
road.

Fig. 1. Classification System Diagram

Figure 1 is a diagram that represents the classification
system. First the user, in this case representing the specialist,
classifies parts of the image as road pixels (red ones) an parts
of the image as non-road pixels (blue ones). After that, the
image features for each block of pixels are generated and
the database of input-output pairs (that is necessary for the
ANNs training algorithm) is created from the classified pixels
with the following sets of image features proposed in [11]:

• First Set: U Mean, V Mean, B normalized Mean, H
Entropy, G normalized Energy and H Mean.

• Second Set: V Mean, H Entropy, G normalized Energy,
G Mean, U Mean, R Mean, H Mean, B normalized
Mean, G normalized Mean e Y Entropy.

• Third Set: U Mean, B normalized Mean, V Mean, B
Variance, S Mean, H Mean, G normalized Mean, G
normalized Entropy.

Each set of image features is used to create the database
that was used for a pair of networks, resulting in this case on
a classifier (NNE) composed by six ANNs. After training, the
system works receiving an image, generating image features
and classifying it. The output of the system use grayscale
values where the non-road pixels (0) are black, road pixels
(1) are white. The intermediate pixels generated by average
voting scheme use gray values proportional to the distance
to the base pixels.

The activation function of each layer is not described in
[11] but considering the possible results, a sigmoid function
or a sigmoid symmetric function can be used. In this work
two activation functions were considered to the output, and
the hidden layers used only sigmoid symmetric function. For
training and testing the cross-validation strategy [4] was used
considering about 80% of the input-output pairs for training



and the other 20% for validation. Training stopping criteria
considered 5000 epochs.

One of the important questions about NNEs is how to
gather the classifiers outputs into a single output. There are
some proposed methods to perform this task and some of
them are described in sec. II.B.. Use the mean, as proposed
in [11], can be a good choice but in this case the choice was
not justified and this fact suggests that other voting schemes
should be tested.

B. Voting Schemes for NNEs

Neural Network Ensembles have considerable advantages
compared to a single network. Considering that selecting the
weights of a Neural Network is an optimization problem
with many local minima and that these weights are initialized
randomly, different networks make errors on different parts
of the input space. As each network makes generalization
errors on different subsets of the input space, the decision
produced by the ensemble is less susceptible to errors than
the decision of an individual network [4]. Another important
fact is that, when one network fails the others can be used
as well creating a fault-tolerant system.

Despite its advantages, NNEs implementation also has
some problems. One of these problems is how to turn the
results of a group of networks into a single result as correctly
as possible. There are some methods (voting schemes) which
were analyzed and investigated to solve this problem and
each one achieved better results in specific situations. To
choose what methods were going to be tested in this work
the future hardware implementation of the system was con-
sidered and consequently the mathematically simple methods
had advantages. The chosen methods are:

• Accuracy by agreement (Plurality voting): if more net-
works agree in the classification the chance that the
classification is accurate increases [15].

• Average: use the average of the outputs[15].
• Majority voting rule: chooses the classification made

by more than half the networks. When there is no
agreement among more than half the networks, the
result is considered an error[4].

Classification tasks commonly achieved better results with
plurality voting or majority voting while simple averaging or
weighted averaging are more suitable for regression tasks
[12][13]. Therefore these two methods suggested in the
literature should be compared to the average method that
was chosen in [11].

C. Fixed-Point Implementation

ANNs in this work were implemented using FANN library
[16]. In this case the choice is based on two important
features of this library: (i) the library is implemented in C
language and has a very low execution time for training and
use; (ii) the networks can be saved and used after training in
fixed-point arithmetic. The second feature is specially inter-
esting for this work. There a many ways to implement fixed-
point in ANNs, and a lot o things to consider. This section
describes the FANN decisions to fixed-point implementation.

As mentioned in [16] the main questions about the fixed-
point implementation are: what functionalities of the library
should be implemented in fixed point and what should be
done when overflow occurs. The training functionalities of
the library were not implemented in fixed point because
generally the training phase is done offline by a personal
computer with a floating-point unit inside the processor.
After training the weights are static and is possible to make
one check that will guarantee that an overflow will never
occur.

There are several ways to check the weights and guarantee
that overflow will not be a problem. The chosen strategy
consists of a verification, during the training phase, that
will generate the configuration parameters for the fixed-point
execution of the network. The decimal point is positioned
when the weights of the trained ANN are being saved with
fixed-point weights. This procedure will result in a higher
precision and less ANNs will fail the check that ensures that
an overflow will not occur. To decide the number of bits on
the fractional part of the number that are necessary to avoid
overflow (t), considering y = bits(x) where y is the number
of bits used to represent the integer part of x, the algorithm
executes the following calculus for wi weight and xi input:

t +bits(wi)+ t +bits(xi) = (1)
t +bits(wi)+ t +0 = (2)

2t +bits(wi) (3)

The number of bits (nbits) needed for the activation func-
tion operation is calculated by eq. 4:

nbits = 2t +bits(wn+1

n

∑
i=0

wixi)+1 (4)

Using described strategy the fixed-point network was
implemented in FANN library. The consequences of using
fixed-point arithmetic are described in the next section to-
gether with the other results of this work.

III. RESULTS AND ANALYSIS

The first results of the new implementation are related
to ANN architecture. The activation functions had a similar
behavior but when sigmoid symmetric is used and the non-
road output value is changed from 0 to −1 the MSE during
the training phase grows significantly. Consequently the
activation function chosen was sigmoid symmetric and the
values for road and non-road pixels are 1 and 0 respectively
due to test results. The sigmoid activation function also
achieved high MSEs.

After choosing the activation function, the networks were
implemented and their performance were compared. The
training time increases significantly with more than one layer
and the MSE doesn’t justify the use of more than one
layer. With 12 neurons on the hidden layer the networks
achieved the lower MSE (fig. 2) and the training time was
not significantly increased. This result contrast to presented
results from [11]. The number of epochs needed to achieve a



Fig. 2. Neural Net MSE according to the number of neurons in the hidden layer

acceptable MSE also changed from [11]. With the networks
configured in this work only 1500 epochs are required, not
5000 (fig. 2).

Separately analyzing the six networks results for the
validation sets, generated with 20% of the initial data avail-
able, the results were good as expected. The best precision
achieved is 60% of the 12-neuron hidden layer network. It is
also important to say that the best results were achieved using
the First set of image features (defined in section II.A.). The
other two sets of features were not sufficient for the networks
alone to classify correctly more than 50% of the images. This
results are curious because the networks with 5 neurons on
one hidden layer achieved precision of 94% in [11]. These
results indicate that some other network parameters were
changed and not described or that the FIT parameter [11]
is considerably different compared to the MSE considering
that the MSE of the best network was 0.023.

In order to improve the ANNs’ results accuracy the
ensemble was implemented with six networks containing one
hidden layer with five neurons. The three voting techniques
chosen, and presented in section III.B., were evaluated. The
results are shown in table I and, as expected after reading
[4][12][13][15], the other techniques achieved a better result
than the Average. In case of only two classes, the majority
voting and the Accuracy By Agreement achieved the same
results.

TABLE I
VOTING TECHNIQUES COMPARISON

Classifier Accuracy
Network 1 Hidden Layer of 12 neurons 60%

Ensemble Voting Average 40,17%
Ensemble Voting Majority/ABA 65%

After choosing the best networks and the best voting
technique for this work’s NNE, the networks were evaluated
in fixed-point implementation. All networks in this work are

fully connected, so the number of weights per network are:
• 35 weights for the First Features Set Networks: 6 inputs

x 5 hidden neurons + 5 hidden neurons x 1 output.
• 55 weights for the Second Features Set Networks: 10

inputs x 5 hidden neurons + 5 hidden neurons x 1
output.

• 45 weights for the Third Features Set Networks: 8 inputs
x 5 hidden neurons + 5 hidden neurons x 1 output.

The ensemble’s total number of weights is 270. If these
floating-point weights are stored on 32-bits, the total amount
of memory that is necessary to store the ensemble weights is
8640 bits. The fixed-point implementation of FANN stores
the same numbers considering two integer parts: one of
14 bits and the other of about 8 bits. This implementation
saves 10 bits per weight. This value seems very low but
some embedded systems based on microcontrollers have only
2Kb of memory for the entire system. It is also important
to remember that if you use only integer numbers, it is
not necessary to have a Floating-Point Unit (FPU) that
implements the floating-point number operations. To show
exactly how much hardware is consumed to implement a
floating-point unit, many versions of Nios II soft-processor
[14] system were implemented with and without the FPU. It
is interesting to notice that the most powerful processor (with
all the hardware accelerations) needs 2% more device area
only to implement the FPU compared to the same processor
without it. Therefore considering the total area and memory
saved by fixed-point implementation of ANNs, it is still
necessary to verify the fixed-point network precision.

All of the previous developed networks were saved using
floating-point and fixed-point. Previous results showed that
the best accuracy was achieved by the ensemble using
the majority/ABA voting scheme. The six networks of the
ensemble were executed in their fixed-point versions to be
evaluated and to allow the comparison between the results.

The comparison is shown graphically in figure 3. This
graphic represents the number of pixel blocks that composed



Fig. 3. Fixed and floating-point Comparison

the validation set for cross-validation strategy by the dif-
ference between the given answer of the networks and the
expected answer. The 12 networks compared were classified
by its representation (fixed for fixed-point and floating for
floating-point) and by the features set that was used to train
the network (defined in section II.A.). Each value of the
graphic represents the number of pixel blocks that achieved
difference less than the distance value. For example when the
difference is 0, that means that the output of the network is
exactly the expected output, all values show the maximum
number of patterns and that happens because even for the
best classifications the output is about 0.9999 and not 1.0 (in
this case the difference is 0.0001). As long as the difference
grows, the numbers of wrong classified patterns decreases.
This graphic is interesting because it shows the results of all
ensemble networks for the validation set and it shows that
that the results of the fixed-point network are considerably
less accurate comparing to the floating-point networks. This
is the result of the lower precision of these numbers because
of their fixed representation, but this fact alone was not
responsible for the worse results.

This bad results of the fixed-point networks were caused
by the lack of normalization on the input data. The proposed
sets of image features are composed by values that are not
normalized between −1 and 1. This fact caused overflows
that could not be avoided while the library was converting
the network. This problem can be solved by normalizing the
input data, but before normalization the ensemble behavior
of the fixed-point networks was evaluated. The results are
presented in table II.

The results of the ensembles were unacceptable and the
average achieved a better result in this case because is less

TABLE II
VOTING TECHNIQUES COMPARISON BETWEEN IMPLEMENTATIONS

Classifier Accuracy Accuracy
Floating-Point Fixed Point

Network 1 Hidden Layer 60% 35%
12 neurons

Ensemble Voting Average 40,17% 2%
Ensemble Voting Majority/ABA 65% 0%

affected by the number of errors than the majority voting or
the ABA. The fixed-point networks have a higher error rate
that impact directly in the results of the voting, caused by the
lack of data normalization. In this case the result was worse
because the networks were not so well-converted. This result
shows that even with good networks executed in fixed-point
the voting schemes for fixed-point network ensembles should
be reviewed considering the high error rate. Other procedure
that can smooth the impact on voting is to use only networks
that were trained with the best features for classification in
order to obtain lower number of errors or results that are
wrong but not sufficient to have a high influence in the voting
schemes.

After the ensemble results, the network that achieved
the best accuracy was re-implemented using fixed-point and
with data normalization. All the inputs of the network were
normalized between −1 and 1. The network was composed
by one hidden layer of 12 neurons, 6 inputs and one output.
After data normalization the MSE achieved after 1500 epochs
were 0.022 2. That was the lower MSE achieved comparing
all networks implemented for this work. Also a floating-point
network with the same configuration was configured after the



same training.
Normalization of the input data changed significantly the

results of the networks. The same network using floating-
point numbers achieved a accuracy of 70% while the fixed-
point network achieved 66% for the same validation set. The
difference is very small and the fixed-point network with
data normalization achieved a better result than the previous
implemented ensemble result of 65%. Considering that the
time to do this data normalization is not significant, this
procedure can be adopted to achieve better results in this
work. The bit need for the representation decreased from 14
to 12.

Other point that is relevant for fixed-point implementations
is the execution time. In this case the networks were executed
on a Inter Core 2 Duo with 2GB of RAM running CentOS
Linux version 5.5. The fixed-point implementation achieved
almost half of the floating-point implementation execution
time considering the same input. The execution time is very
important for the visual navigation system and can be the
be the difference between a normal system and a real-time
system.

IV. CONCLUSIONS

This work presented the implementation of ANNs and
NNEs for a visual navigation system. The visual navigation
system was proposed in [11] but some questions about the
configuration and implementation of ANNs were not present
and consequently some changes had to be done and new
techniques were also tested. The fixed-point implementation
of the networks was proposed, implemented and analyzed.

The networks implemented in [11] were small compared
to the network that achieved the best results in this work.
The configuration with one hidden layer of 12 neurons had
a fast training phase and the best accuracy. The activation
function was also defined and the number of 1500 epochs
were sufficient for the network to achieve a training MSE
stability.

The ensembles were also implemented. The results showed
that the major voting and ABA techniques achieve better
results than the average in classification tasks, consequently
in this case. The networks with 5 hidden layer when forming
a ensemble achieved a 5% of increase on accuracy using the
better voting schemes. Considering the fixed-point networks,
the ensembles’ voting techniques were not sufficient to
achieve the desirable accuracy. The voting schemes, when
fixed-point networks are used, have to change or at least be
reviewed. Also, all the networks should consider the same
input features because this procedure can decrease the error
by the large exploration of the solution space.

The fixed-point version of the best network achieve only
4% less accuracy compared to the floating-point implemen-
tation. The execution time is also faster achieving almost
50% of the floating-point networks’ execution time. The way
that fixed-point network is implemented on the FANN library
achieved good results and can be used for further hardware
implementation of the system. The memory necessary to
store the weights is considerably lower for the fixed-point

network, another important feature for hardware implemen-
tation. The accuracy of the networks were low considering
the MSE but with the achieved results, that were the main
goals of this work, can help with the next experiments
and probably the next NNEs will be able to achieve better
accuracy considering MSE and the FIT rate [11].

Considering all previous information, for systems that
need faster execution times, the fixed-point network using
the described implementation should be used. The ensemble
techniques achieved better results for floating-point imple-
mentations but have to be reviewed for fixed-point networks.
The next steps for this work are the definition of new
voting schemes and techniques for fixed-point neural network
ensembles and the hardware implementation for the visual
navigation system to achieve better execution times. Other
ANNs also have to be tested to achieve a better MSE.
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