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Abstract

This paper presents a learning-based vehicle control system capable of navi-
gating autonomously. Our approach is based on image processing, road and
navigable area recognition, template matching classification for navigation
control, and trajectory selection based on GPS way-points. The vehicle fol-
lows a trajectory defined by GPS points avoiding obstacles using a single
monocular camera and maintaining the vehicle in the road lane. Different
parts of the image, obtained from the camera, are classified into navigable
and non-navigable regions of the environment using neural networks. They
provide steering and velocity control to the vehicle. Several experimental
tests have been carried out under different environmental conditions to eval-
uate the proposed techniques.

Keywords: Robotic Vehicle Navigation, Artificial Neural Networks,
Computer Vision, Compass, GPS way-points, and Templates.

1. Introduction

Research in autonomous vehicles have reached significant progress and
improved the experimental results over the last years. Some of them have
focused on autonomous navigation, which is a fundamental task in this area
[11]. Lately, several works have improved navigation in urban environments.
Competitions, like DARPA Grand [8] and Urban [9] Challenges and ELROB
[3] have been pushing the state of the art in autonomous vehicle control.
In these competitions, several different solutions that combine information
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from a large number of complex sensors were proposed. Some approaches
use five (or more) laser range finders, video cameras, radar, differential GPS,
and inertial measurement units [2], [11]. Although there is a large number
of interesting applications for autonomous vehicle technology, its cost is still
very high, hampering commercial applications.

This paper proposes a GPS-oriented and vision-based autonomous navi-
gation approach for urban environments. The system uses a single monocular
camera to acquire data from the environment, a compass (orientation) and a
GPS (localization) to obtain the necessary information for the vehicle to reach
destination through a safe path. It also detects the navigable regions (roads)
and estimates the most appropriate maneuver. Several Artificial Neural Net-
works (ANNs) topologies have been evaluated in order to keep the vehicle in
a safe path, and finally control the vehicle’s steering and acceleration.

Our approach uses two different systems based on ANN. The first iden-
tifies road lane regions in the image. After that, our system verifies several
possible directions are free to navigate. The value of the azimuth (difference
between the current and target positions) as well as a set of values that corre-
spond to free or obstructed directions on the road are obtained. These values
are used as the inputs of the second system based on ANN, which aims to
learn rules for vehicle control, providing steering and velocity values. The
system is detailed in section 3. Figure 1 presents our CaRINA test platform.

Figure 1: Intelligent Robotic Car for Autonomous Navigation (CaRINA) test platform.

2. Related Works

ALVINN [12] is an ANN-based navigation system that calculates a steer
angle to keep an autonomous vehicle in the road limits. The gray-scale levels
of a 30 x 32 image were used as the input of an ANN. The original road
image and steering were provided to improve the training, allowing ALVINN
to learn how to navigate in new roads. After several upgrades, this system
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was able to travel on many road types like single-lane and unlined paved
roads at speeds of up to 55 mph. However, it is important to emphasize that
this system was designed and tested to drive on well-maintained roads like
highways under favorable traffic conditions. According to [6], the problem of
ALVINN is the lack of ability to learn features, which would allow the system
to drive on different road types other than that on which it was trained.

Hamner et al. [5] presented an outdoor mobile robot that learns to avoid
collisions based on human behavior. The test vehicle is equipped with laser,
GPS and IMU to produce a map. This method automatically learns the
parameters of the control model. The model input is a goal point and a
set of obstacles defined as points in the x-y plane of the vehicle. Random,
Genetic Algorithm (GA) and Simulated Annealing (SA) were used in the
learning step. GA and Random performed similarly well, and SA was worse
than the other techniques. The authors also compared the randomly learned
parameter set with the principal component analysis and observed that the
random generalized well. The issue was the dependency of a goal point and
the set of obstacles, and all the parameters were limited to a fixed range.

Intelligent Speed Adaptation and Steering Control [1] allows the vehicle
to anticipate and negotiate curves safely. It uses Generic Self-Organizing
Fuzzy Neural Network (GenSoFNN-Yager), which includes the Yager infer-
ence scheme [10]. GenSoFNN-Yager can induce knowledge from low-level
information in the form of fuzzy if-then rules. Results have shown the robust-
ness of the system in the task of learning from examples of human driving,
negotiating new unseen roads. The disadvantage is that the autonomous
driver demonstrates that anticipating is not always sufficient. Moreover,
large variations in the distribution of the rules were observed, implying a
high complexity of the system.

Stein and Santos [18] system computes the steering of an autonomous
robot, moving in a road-like environment. It uses ANNs to learn behaviors
based on examples from a human driver, replicating and sometimes even
improving human-like behaviors. To validate the created ANNs, real tests
were performed and the robot successfully completed several laps of the test
circuit showing good capacities for both recovery and generalization with
relatively small data sets.

Driving School [7] learns driving skills based on a human teacher. It
is implemented as a multi-threaded, parallel architecture in a real car and
trained with real driving data to generate steering and acceleration control for
road following. Furthermore, it uses an algorithm to detect independently-
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moving objects (IMOs) to spot obstacles with a stereo camera, demanding
a more complex hardware. A predicted action sequence is compared to the
driver’s actions and a warning is issued if there are many differences between
the two actions. The IMO detection algorithm is more general as it will
respond not only to cars, but also to any sufficiently large (11 x 11 pixels)
moving object. The steering prediction is very close to the human signal,
but the acceleration is less reliable.

3. Proposed Method

Our approach is composed by three steps. In the first, our system iden-
tifies the road on a color image obtained by a video camera attached to the
vehicle. The result from first step is a visual navigation map that is used in
the next step. In the second step, a template matching algorithm identifies
possible geometries of the road ahead of the vehicle (straight line, soft and
hard turn to left/right) and calculates an occupation percentage for each of
them. Applying a threshold in these occupation values, the system distin-
guishes free areas from obstructed areas based on the visual navigation map
and road geometry. Finally, a supervised learning technique is used to de-
fine the action that the vehicle should take to remain in the safe navigation
regions (road). These steps are described in the next subsections.

3.1. Road Identification Step

In order to solve the road identification task, we apply a method based on
[14]. This approach creates a system composed of several ANNs (committee
classifier) that identifies the road into the image which is decomposed in many
regions also called sub-images. Therefore, the classification of each sub-image
is an average of the results of all ANN outputs (committee machine).

Initially, an image is transformed into a set of sub-images of (K × K)
pixels, where a set of features are extracted from each of them.

According to the approach described in [14], an image-feature is a sta-
tistical measure computed for a group of pixels considering a specific color
channel. The following statistical measures are used: average, entropy, vari-
ance and energy. These measures can be associated with some channel from
four different color spaces in order to define a feature: RGB, HSV, YUV and
normalized RGB. The normalized RGB is composed by (R/(R + G + B)),
(G/(R + G + B)), (B/(R + G + B)).
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(a) (b) (c)

Figure 2: Real image (a), Road identifier (b) and VNMap result (c).

The ANN used in this step consist of a Multi-Layer Perceptron (MLP)
with Resilient-Propagation (RProp) training algorithm. The ANN topology
consists in, basically, three layers, one input layer, one hidden layer with
five neurons and the output layer. The ANN has been trained to return the
value 1.0 when receives patterns belonging to a road class and to return 0.0
when receives patterns that does not belong to road class. In this work, the
step of road identification uses six ANNs - as shown in Fig. 2(b) - and each
one uses some, not all, image-features as input. In other words, these ANN
are distinguished by the combination of image-features used as input. Table
1 shows the set of image-features adopted in each ANN. Their choice was
based on the latest results of [14]. Since the number of neurons is small, the
training time is also reduced, enabling the instantiation of multiple ANN.

After the features are generated, all the sub-images are classified by the
six ANN, the six outputs are combined for each sub-image in order to gener-
ate a Matrix. This Matrix is composed by real numbers where Matrix(i, j)
is the classification of sub-image(i, j). This matrix is called Visual Naviga-
tion Map (VNMAP) and it is used by next step to calculate the occupation
values. Fig. 2 shows a sample of an image classified by this system, where the
Fig. 2(c) shows the VNMap in gray-scale - black represents non-road class,
white represents road class and the gray represents the intermediate values.

3.2. Occupation Value Step

In this step, our system identifies five possible geometries of the road
ahead of the vehicle into VNMAP, as shows Fig. 3, and calculates an occu-
pation value for each of them. The Equation 1 shows how to calculate the
occupation value:

score(T ) =

∑
x∈T Matrix(x.row, x.col)

|T |
, (1)
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Table 1: Input attributes of the ANNs (R, G, B = red, green, blue components; H, S, V
= hue, saturation, value components; Y, U, V = Luminance-Chrominance, average = av,
normalized = norm, entropy = ent, energy = en and variance = var).

ANNs Input attributes
ANN1 U av, V av, B norm av, H ent, G norm en and H av
ANN2 V av, H ent, G norm en, G av, U av, R av,

H av, B norm av, G norm av and Y ent
ANN3 U av, B norm av, V av, B var, S av, H av,

G norm av and G norm ent
ANN4 U av, V av, B norm av, H ent, G norm en and H av
ANN5 V av, H ent, G norm en, G av, U av, R av,

H av, B norm av, G norm av and Y ent
ANN6 U av, B norm av, V av, B var, S av, H av,

G norm av and G norm ent

where T is a set of all sub-image(i, j) that belongs to detemined geometry, |T |
is the number of cells into geometry or template and finally, Matrix(x.row, y.col)
is the real value into VNMAP that corresponds to sub-image(x.row, y.col).
The final result score(T ) is a value ranging from 0 to 1. A good performance
was obtained in the navigation defined by the urban path avoiding obstacles
using the best score [17].

(a) (b) (c) (d) (e)

Figure 3: Five possible geometries defining the vehicle directions it can follow. (a) Hard
left turn, (b) Soft left turn, (c) Straight, (d) Soft right turn, (e) Hard right turn.

After obtaining the score for all templates, the system verifies if the
occupation value is lower than a threshold level. If the occupation value
from template is lower than threshold level, this template is considered as
obstructed (value 0), if larger, this template is considered as free (value 1).
The values free or obstructed are part of the system input for the next step.

3.3. Learning-Based Navigation

We have already analyzed several levels of memory of the templates based
on examples obtained from human drivers using neural networks [16]. The
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results of these neural networks have also been compared with different su-
pervised learning techniques for the same purpose [15].

In this step, the basic network structure used is a feedforward MLP. The
activation functions of the hidden neurons are logistic sigmoid and hyperbolic
tangent, and the ANN learning method is the Resilient-Propagation (RProp).
The inputs are represented by the azimuth (difference between the current
and target positions of the vehicle) and the values for each template obtained
by the occupation value step - obstructed or free occupation areas (OA). The
outputs of the proposed method are the steering angle and speed (Figure 4).

Figure 4: Structure of the second ANN used to steering and acceleration commands.

4. Results

Experiments were performed using CaRINA (Figure 1), an adapted elec-
tric vehicle capable of autonomous navigation in an urban road. It is equipped
with a VIDERE DSG camera, a ROBOTEQ AX2580 motor controller for
steering, a TNT Revolution GS Compass (orientation) and a GARMIN 18X-
5Hz GPS (localization). The image acquisition resolution was set to (320 x
240) pixels.

The road identification system converts an image of 320 x 240 pixels in
a matrix of 32 x 24 blocks (K = 10). Each block is individually classified.
During the learning step the user manually classifies parts of one or more
scenes as navigable or non-navigable to serve as learning data to the ANN.
In the control learning step, the system uses the classified image as input
and the desired controls as output of the second ANN, as it is described in
the Section 3.3.

Next subsections describe the performed experiments, in addition to an
analysis of the neural networks used in the road identification step. The
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experiments have been performed in an urban environment in two scenarios
with distinct characteristics. Experiment 1 shows a closed area with several
objects such as buildings, trees, walls, transit plates, bikes, cars and buses,
which influence the road identification step. The experiment 2 presents a
more open environment with few objects in the scene.

4.1. Experiment 1

Seven GPS waypoints were used to define the desired trajectory. In order
to navigate, the vehicle used a monocular camera to avoid obstacles. The
experiment was successfully performed as it followed the GPS points and
avoided obstacles. In some of the straight paths, the vehicle had to avoid
curbs at the same time it was attracted by the GPS goal points, resulting in
some oscillation in the final trajectory. Figure 5 shows the vehicle trajectory
obtained by GPS coordinates.

Figure 5: GPS coordinates performed by CaRINA (environment 1).

Table 2 shows the ANNs classification results obtained during the vehicle
navigation. Five different ANNs topologies have been analyzed using two
neural transfer functions (logistic sigmoid and hyperbolic tangent). These
topologies represent the architecture of the second ANN used in our pro-
posed system. Several topologies of ANNs were tested to obtain the min-
imum training error and the optimal neural network, with a well-defined
architecture.

The ANN architecture was selected considering the number of neurons
in the hidden layer using the RProp supervised learning algorithm in MLP
networks and considering the values of MSE (Mean squared error) and the
best epoch (Optimal point of generalization [OPG], i.e., minimum training
error and maximum capacity of generalization).
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We also evaluated the ANNs modifying the neural transfer functions.
The main difference between these functions is that logistic sigmoid produces
positive numbers between 0 and 1, and the hyperbolic tangent (HT), numbers
between -1 and 1. After the analysis of Table 2, the 6x15x2 architecture using
the hyperbolic activation function showed the lowest MSE for the 10600
epoch. Five different runs were executed changing the random seed used in
the neural networks (Tests 1 to 5).

Table 2: Results of the ANNs for each topology.
Learning Functions [OGP and MSE (10−3)]

Logistic Sigmoid Hyperbolic Tangent
ANN Topology Test 1 Test 2 Test 3 Test 4 Test 5 Test 1 Test 2 Test 3 Test 4 Test 5

6x3x2 600 3000 1400 700 1000 1400 2300 1000 2000 2600
Topology 1 5.266 3.922 3.747 5.407 4.856 4.119 3.418 3.737 3.393 3.310

6x6x2 7600 1200 8300 1700 5600 2200 700 1900 9700 26400
Topology 2 2.490 3.257 3.250 3.670 3.414 3.271 3.413 2.148 5.404 3.217

6x9x2 800 600 500 900 2300 1100 1100 800 800 400
Topology 3 3.774 5.013 4.584 5.050 3.190 3.162 3.318 3.650 2.352 4.292

6x12x2 91800 15200 1000 23600 1400 400 1400 800 300 7400
Topology 4 2.836 3.797 3.746 2.048 5.645 4.040 3.899 2.959 3.595 3.895

6x15x2 400 600 1300 400 700 2600 76100 10600 2500 1000
Topology 5 4.226 4.597 4.000 5.319 3.188 3.232 1.999 1.881 3.510 2.989

Figure 6 shows the histograms of the errors based on the best ANN topol-
ogy obtained in Table 2. Topologies 4 and 5 were accepted based on the
results. Figure 6(b) presents the error concentrated on zero and with a lower
dispersion than the one in Figure 6(a). The same is true for Figure 6(d),
which shows a lower dispersion compared to Figure 6(c), therefore encourag-
ing the use of topology 5.

The statistical inference of the results was evaluated using Shapiro method
[13]. We observed that the null hypothesis (normal adequacy), had not been
satisfied (Table 3) using the best ANN topology (6x15x2) for the test data.

Table 3: Results of the Shapiro-Wilk Test.
Shapiro-Wilk Normality Test

p-value
Steering Velocity

Topology 1 0.2468 3.84e-09
Topology 2 5.43e-14 1.97e-15
Topology 3 6.81e-14 2.68e-15
Topology 4 6.69e-13 8.60e-15
Topology 5 2.20e-16 1.59e-15

Value in boldface - Accepted as normal
Other values - Not accepted as normal

The nonparametric method of Man-Whitney [4] was used to check the dif-
ferences between the topologies (see Table 4). For the velocity, the method
does not reject the null hypothesis (equality) (the p-values are higher than

9



(a) Steering of topology 4 (Test 4 LS) (b) Steering of topology 5 (Test 3 HT)

(c) Velocity of topology 4 (Test 4 LS) (d) Velocity of topology 5 (Test 3 HT)

Figure 6: Error histogram considering different hidden layers of the best ANNs (MSE =
2.048 [topology 4] and MSE = 1.881 [topology 5]) (a) using steering angle data of topology
4 (logistic sigmoid [LS]), (b) steering angle data of topology 5 (hyperbolic tangent [HT]),
(c) velocity data of topology 4 (LS), and (d) velocity data of topology 5 (HT). The x axis
represents the error used in the first experiment (Test 1).

0.05) and for the steering, the null hypothesis is rejected only between topolo-
gies (T) 1 and 5 (the p-values are lower than 0.05). According to this method
and using a confidence level of 95%, there is no evidence of statistical differ-
ences between the best results, except for T1 and T5 concerning the steering.

Table 4: Results of the Man-Whitney Test.
Man-Whitney Test

p-value
T1 T2 T3 T4

Steering T5 0.031 0.115 0.397 0.114
Velocity T5 0.464 0.403 0.715 0.585

Figures 7(a) and 7(b) illustrate the steering angle and velocity of CaRINA
using the training data for the Experiment 1.

Figures 8(a) and 8(b) illustrate the steering angle and velocity of CaRINA
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(a) Steering wheel

(b) Velocity
Figure 7: The steering wheel and velocity using the training data.

using the 6x15x2 architecture (Test 3 HT), showing the values based on
the control rules (supervised training data) and the results obtained by the
learning of the ANN. Small oscillations are present in the data learned by the
ANN, since the rules maintained the steering wheel and velocity constant,
resulting in the linearity of data (the problem for the ANN was to learn a
rigid curve and high velocity, but this fact did not interfere in the results).

4.2. Experiment 2

Seven GPS waypoints were used. They were more than 100 meters
away of each other and separated by sidewalks between the points and non-
navigable areas (grass fields).

Figure 9 shows the vehicle trajectory obtained by GPS coordinates (Ex-
periment 2). Waypoints P0 to P6 represent the GPS points. The red dashed
line represents the orientation obtained by both GPS and compass, which
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(a) Steering wheel

(b) Velocity

Figure 8: The human driver and ANN values using the test data.

should be traversed by the vehicle. The yellow line is the real path followed
by the vehicle, showing the obstacles avoidance by using the camera images.
The path performed was approximately 1.08 km. We only show the orienta-
tion lines between P0 and P1 (red line) and between P1 and P2 to keep the
GPS coordinates image more clearly.

Figures 10 (a) and 10 (b) show the histogram of the error, where the main
goal in these images is to observe its dispersion. In both images, which have
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Figure 9: GPS coordinates performed by CaRINA (environment 2).

similar outliers, the error is concentrated near zero. Using Shapiro-Wilk test
of normality, we obtain p-values lower than 0.05, and with 95% confidence,
the distribution of the error is not accepted as normal. Therefore, we compare
the distributions using the non parametric Man-Whitney test, and, with 95%
confidence, there is no difference between the groups.

(a) Topology 4 (6x12x2 - LS) (b) Topology 5 (6x15x2 - HT)

Figure 10: Error histogram considering the topologies 4 and 5 (steering angle data - it
was used in the path 2). (a) Topology 4. (b) Topology 5. The x axis represents the error.
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Table 5 shows the steering and velocity data of the best ANNs, where the
ANN with 15 neurons in the hidden layer has smaller mean and standard
deviation error than the ANN with 12 neurons. Therefore, even if both are
statistically equivalent, topology 5 should be used in the system.

Table 5: Results of the mean and standard deviation error using steering and velocity.

Topologies Steering Velocity
Mean ANN 15 0.007629 0.000528

ANN 12 0.014762 0.002138
Std ANN 15 0.055944 0.035246

ANN 12 0.073536 0.038567

Figures 11(a) and 11(b) illustrate the steering angle and velocity of Ca-
RINA using the training data for the Experiment 2.

(a) Steering wheel

(b) Velocity
Figure 11: The steering angle and velocity using the training data.
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Figures 12 (a) and 12 (b) illustrate the steering angle and velocity of Ca-
RINA, showing the expected values and the values obtained by the learning
of ANNs 15 and 12. Figure 12 (a) shows that both results are very similar,
with small changes. According to Figure 12 (b), the results show small oscil-
lations, which represent the high velocity peaks that the ANNs did not learn
in some paths, but they do not interfere significantly in the vehicle control.

(a) Steering wheel

(b) Velocity
Figure 12: The steering angle and velocity using the test data.

CaRINA was able to safely navigate autonomously in an urban road; it
did not get too close to the sidewalk or run over it (non-navigable areas) and
also was able to track the GPS points (way-point) provided to the system.

15



4.3. Analysis of the Road Identification System

This subsection presents the hit rate from different frames over the path.
These frames were manually classified to evaluate the road identification
system. The graphics from Fig. 13(a) and (b) show the hit rate for the
Experiment 1 and Experiment 2 respectively. The graphics show the hit rate
varying from 0 to 1 by different threshold values and each line represents one
frame. In general, the results of road identification system were satisfactory,
since the hit rate is around 80% when the threshold value is larger than 0.4.

(a) Experiment 1 (b) Experiment 2

Figure 13: Hit rates by threshold value interpretationt. Different colored lines represent
different analyzed frames from the experiments. Hit Rate is expressed into the interval
from 0.0 to 1.0 (100% correct classification). X axis represents the Road classification
treshold and Y axis represents the Road classification hit rate.

Is important to note that the evaluation occurs only below the horizon
since the positions templates are fixed and always below the horizon line (sky-
line). Also, although the system presents several false positives in Fig. 14(b)
and (d), the black blocks show that our system distinguish very well the
non-navigable region from road regions. These black blocks decrease the oc-
cupation value for the templates in this area and this is satisfactory step to
choose the best direction for the vehicle. The image classification approach
can handle some degree of lighting variance in the scene like shadows. How-
ever a large variation in the illumination may require to repeat the learning
step.

16



(a) (b) (c) (d)

Figure 14: Some samples of results from road identification step. (a) image raw from
Experiment 1 ; (b) VNMap from Experiment 1 ; (c) image raw from Experiment 2 ; (d)
VNMap from Experiment 2.

5. Conclusions and Future Works

Autonomous vehicle navigation is a fundamental task in mobile robotics.
This paper has presented a monocular camera and a GPS-based autonomous
navigation system that can be trained to identify the road and navigable re-
gions. It uses a template matching classification to identify possible navigable
directions, determines the occupation percentage in order to avoid obstacles,
and controls the steering and velocity using an ANN learning scheme to fol-
low GPS Waypoints, which is a novelty compared to our previous works.
Our approach was evaluated using an Electrical Vehicle (CaRINA) in an ur-
ban road. CaRINA was able to navigate autonomously in this environment,
successfully following the desired trajectory. Our quantitative analysis also
obtained satisfactory results for the different ANNs topologies.

The integration of the monocular camera and GPS was one of the con-
tributions of this paper, where CaRINA was able to safely navigate au-
tonomously in different urban environments. The proposed method has been
used to negotiate the curves and roundabouts, did not too close to the side-
walk (non-navigable areas) and tracked the GPS points (waypoint).

As future works, we plan to evaluate other classification methods and
decision-making algorithms. We also intend to integrate a Stereo Camera
and/or a LIDAR to deal with bumps and depressions in the road.
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2011. Template-based autonomous navigation and obstacle avoidance in
urban environments. ACM - Applied Computing Review.

[18] Stein, P. S., Santos, V., 2010. Visual guidance of an autonomous
robot using machine learning. 7th IFAC Symposium on Intelligent Au-
tonomous Vehicles.

19



Jefferson Rodrigo de Souza is a PhD student in the Institute of Mathematics
and Computer Science at the University of Sao Paulo. He obtained his
MSc degree in Computer Science at the Federal University of Pernambuco in
2010. At ICMC/USP, he has been working in machine learning techniques
for mobile robots and autonomous vehicles. More specifically, autonomous
driving based on learning human behavior. His current research interests are
Mobile Robotics, Machine Learning, and Hybrid Intelligent System.

Gustavo Pessin is a PhD student in the Institute of Mathematics and Com-
puter Science at the University of Sao Paulo. He obtained a M.S. in Com-
puter Science in 2008 from the University of the Sinos Valley. At ICMC/USP,
he has been working on several research projects related to robotics and ma-
chine learning techniques. His current research interests are Mobile Robotics,
Artificial Intelligence, and MultiAgent Systems.

Patrick Yuri Shinzato is a PhD student in the Institute of Mathematics and
Computer Science at the University of Sao Paulo. He obtained a M.S. in
Computer Science in 2010 from the University of Sao Paulo. At ICMC/USP,
he has been working in computer vision, machine learning and neural net-
works. His current research interests are Computational Vision, Artificial
Intelligence, Mobile Robotics and Sensors Fusion.

20



Fernando Santos Osrio is an Assistant Professor in the Department of Com-
puter Systems at the University of Sao Paulo (ICMC/USP). He obtained his
PhD degree in Computer Science (Informatique) at the INPG-IMAG (Insti-
tut National Politechnique de Grenoble - France) in 1998. Currently he is
Co-Director of the Mobile Robotics Laboratory at ICMC/USP (LRM Lab.).
His current research interests are Intelligent Robots, Machine Learning, Com-
puter Vision, Pattern Recognition and Virtual Simulation. He has published
an extensive number of journal and conference papers, focused in the above
cited research areas.

Denis Fernando Wolf is an Assistant Professor in the Department of Com-
puter Systems at the University of Sao Paulo (ICMC/USP). He obtained his
PhD degree in Computer Science at the University of Southern California -
USC in 2006. Currently he is Co-Director of the Mobile Robotics Laboratory
at ICMC/USP. His current research interests are Mobile Robotics, Machine
Learning, Computer Vision, and Embedded Systems. He has published over
50 journal and conference papers over the last years.

21


