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ABSTRACT
This paper presents a vehicle control system capable of learn-
ing to navigate autonomously. Our approach is based on im-
age processing, road and navigable area identification, tem-
plate matching classification for navigation control, and tra-
jectory selection based on GPS way-points. The vehicle fol-
lows a trajectory defined by GPS points avoiding obstacles
using a single monocular camera. The images obtained from
the camera are classified into navigable and non-navigable
regions of the environment using neural networks that con-
trol the steering and velocity of the vehicle. Several experi-
mental tests have been carried out under different environ-
mental conditions to evaluate the proposed techniques.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Autonomous Ve-
hicles.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Robotic Vehicles Navigation, Compass, GPS, Trapezoidal
Algorithm, Neural Networks and Urban Environments.

1. INTRODUCTION
Human driving errors are a major cause of car accidents on

roads. These errors are caused by a series of in-car distrac-
tions, such as using mobile phones, eating while driving, or
listening to loud music. Other human errors include drunk
driving, speeding, and fatigue.

People often get injured or even die due to road traffic
collisions (RTC). Also, bad road and weather conditions
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Figure 1: CaRINA test platform.

increase the risk of RTC. Autonomous vehicles could pro-
vide safer conditions in roads, as they can use sensors and
actuators to detect and avoid dangerous situations. They
could also improve the efficiency in freight transportation
and traffic flow in large cities and provide transportation to
physically handicapped or visually impaired people.

Research in mobile robotics have reached significant pro-
gress and improved the experimental results over the last
years. Some of them have focused on autonomous naviga-
tion, which is a fundamental task in the area [9]. Lately,
several works have improved navigation in urban environ-
ments. Competitions, like DARPA Grand [6] and Urban [7]
Challenges and ELROB [1] have been pushing the state of
the art in autonomous vehicle control.

The relevant results obtained in such competitions com-
bine information from a large number of complex sensors.
Some approaches use five (or more) laser range finders, video
cameras, radar, differential GPS, and inertial measurement
units [3], [10]. Although there are several interesting appli-
cations for such a technology, its cost is very high, hampering
commercial applications.

This paper proposes a GPS-oriented and vision-based au-
tonomous navigation approach for urban environments. The
system uses a single monocular camera to acquire data from
the environment, a compass (orientation) and a GPS (lo-
calization) to obtain the necessary information for the the
vehicle to reach destination through a safe path. It also de-
tects the navigable regions (roads) and estimates the most
appropriate maneuver. Different Artificial Neural Networks
(ANNs) topologies are evaluated in order to keep the vehicle
in a safe path, and finally control the vehicleŠs steering and
acceleration. Figure 1 presents our Intelligent Robotic Car
for Autonomous Navigation (CaRINA).
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Figure 2: General outline of the vision and GPS based autonomous navigation system.

Our approach is based on two ANNs. The first identi-
fies navigable regions using a template-based algorithm. It
classifies the image and identifies the actions that should
be taken by CaRINA. Images are acquired and then pro-
cessed using the ANNs, which identify the road ahead of the
vehicle. The value of the azimuth (difference between the
current and target positions) as well as a set of values that
correspond to navigable and non-navigable regions (free or
obstructed) of the road is obtained. These values are used
as the input of the second ANN, which aims to learn the
control rules (supervised training data) for vehicle control,
providing steering and velocity values. Several ANN topolo-
gies have been evaluated in order to obtain the minimum
training error. The system is detailed in section 3.

2. RELATED WORKS
Autonomous Land Vehicle in a Neural Network (ALVINN)

[11] is an ANN-based navigation system that calculates a
steer angle to keep an autonomous vehicle in the road lim-
its. The gray-scale levels of a 30 x 32 image were used as
the input of an ANN. The original road image and steering
were generated to improve the training, allowing ALVINN
to learn how to navigate in new roads. Low resolution of
a 30 x 32 image and high computational time are some of
the problems found. The architecture comprises 960 input
units fully connected to a hidden layer by 4 units, also fully
connected to 30 units in an output layer. As this approach
requires real time decisions, this topology is not efficient.

Chan et al. [2] shows an Intelligent Speed Adaptation
and Steering Control that allows the vehicle to anticipate
and negotiate curves safely. It uses Generic Self-Organizing
Fuzzy Neural Network (GenSoFNN-Yager) which include
the Yager inference scheme [8]. GenSoFNN-Yager has as
feature their ability to induce from low-level information in
form of fuzzy if-then rules. Results show the robustness of
the system in learning from example human driving, nego-
tiating new unseen roads. The autonomous driver demon-
strates that to anticipate is not always sufficient. More-
over, large variations in the distribution of the rules were
observed, which imply a high complexity of the system.

Stein and Santos [18] system’s computes the steering of
an autonomous robot, moving in a road-like environment.
It uses ANNs to learn behaviors based on examples from
a human driver, replicating and sometimes even improving
human-like behaviors. To validate the created ANNs, real
tests were performed and the robot successfully completed
several laps of the test circuit showing good capacities for
both recovery and generalization with relatively small data
sets. One of the issues found is the impossibility of validating
network training without testing it with the real robot.

Markelic et al. [5], proposes a system that learns driving
skills based on a human teacher. Driving School (DRIVSCO)
is implemented as a multi-threaded, parallel CPU/GPU ar-
chitecture in a real car and trained with real driving data to
generate steering and acceleration control for road following.
Furthermore, it uses an algorithm to detect independently-
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(a) (b) (c) (d)

Figure 3: Classifier structure (a), real image (b), image processing step (c) and template matching (T) (d).

moving objects (IMOs) to spot obstacles with a stereo cam-
era. A predicted action sequence is compared to the driver’s
actions and a warning is issued if there are many differences
between the two actions. The IMO detection algorithm is
more general as it will respond not only to cars, but also to
any sufficiently large (11 x 11 pixels) moving object. The
steering prediction is very close to the human signal, but the
acceleration is less reliable.

3. PROPOSED METHOD
Our approach is composed of 4 steps. In the first step

an image is obtained and through ANNs another image is
generated, identifying where the road (navigable region) is
(Figure 3 (c)). In the second step, a template matching al-
gorithm is used to identify the geometry of the road ahead
of the vehicle (straight line, soft turn, or hard turn). In
the third step, an occupation percentage is calculated to ob-
tain the occupation areas, verifying if the road is obstructed
or free based on the classified image. Finally, a supervised
learning technique is used to define the action that the ve-
hicle should take to remain in the safe navigation regions
(road). These steps are described in the next subsections.

3.1 Image Processing Step
The proposed method by Shinzato [13] was used here, as

it applies ANNs to a road identification task. A system
composed of six Multilayer Perceptron (MLP) ANNs was
proposed to identify the navigable regions in urban environ-
ments (Figure 3 (a)). The real image can be seen on Figure
3 (b). The result of this ANNs output combination is a nav-
igability map (Figure 3 (c)). The brighter blocks represent
the more likely area to be considered navigable. This step
divides an image into blocks of pixels and evaluates them as
single units. The advantage is that it can train the ANNs
to identify different types of navigable and non-navigable
regions (e.g. paved and non-paved roads, sidewalks).

Initially, the image is divided into blocks of pixels, which
are individually evaluated. Several features, such as pixel
attributes, like RGB average, image entropy and other fea-
tures obtained from this collection of pixels are calculated
for each block. In the grouping step, a frame with (MxN )
pixels resolution is sliced into groups with (KxK ) pixels.
Suppose an image represented by a matrix I of size (MxN ).
Element I(m,n) corresponds to the pixel in row m and col-
umn n of the image, where (0 <= m < M ) and (0 <= n
< N ). Therefore, group G(i,j) contains all the pixels I(m,n)
such that ((i*K ) <= m < ((i*K )+K )) and ((j*K ) <= n
< ((j*K )+K )). This strategy has been used to reduce the
amount of data, allowing faster processing.

Once a block has been processed, its attributes are used
as inputs of the ANNs. The ANNs are used to classify
the blocks considering their attributes (output 0 to non-
navigable and 1 to navigable). Each ANN contains an input
layer with neurons according to the image input features (see
Table 1), one hidden layer with five neurons, and an output
layer with only one neuron (binary classification). However,
after the training step, the ANN returns real values between
0 and 1 as outputs. These real values can be interpreted as
the classification certainty degree of one specific block. The
main difference between the six ANNs is the set of image at-
tributes used as input. All these sets of attributes (see Table
1) are calculated during the block-segmentation of the im-
age. Their choice was based on the results of Shinzato [13].

Table 1: Input attributes of the ANNs (R, G, B =
red, green, blue components; H, S, V = hue, sat-
uration, value components; Y, U, V = Luminance,
average = av, normalized = norm, entropy = ent,
energy = en and variance = var).

ANNs Input attributes
ANN1 U av, V av, B norm av, H ent, G norm en

and H av
ANN2 V av, H ent, G norm en, G av, U av, R av,

H av, B norm av, G norm av and Y ent
ANN3 U av, B norm av, V av, B var, S av, H av,

G norm av and G norm ent
ANN4 U av, V av, B norm av, H ent, G norm en

and H av
ANN5 V av, H ent, G norm en, G av, U av, R av,

H av, B norm av, G norm av and Y ent
ANN6 U av, B norm av, V av, B var, S av, H av,

G norm av and G norm ent

After obtaining the six outputs of the ANNs referring to
each block, the classifier calculates the average of these val-
ues to compose a single final output value. These values
represent each block obtained from the original image to-
gether with the navigability map matrix (Figure 3(c)) used
to identify the most likely navigable region. It is important
to mention that the ANN is previously trained using exam-
ples of navigable and non-navigable regions selected by the
user using the initial image frames. Next, the trained ANN
is integrated into the vehicle control system and used as the
main source of information for the autonomous navigation
control system.
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3.2 Template Matching Step
After obtaining the ANN classification, different road tem-

plates are placed over the image in order to identify the road
geometry. One of them identifies a straight road ahead, two
identify soft turns, and two identify hard turns. Each tem-
plate is composed of a mask of 1s and 0s, as proposed in
[17]. The value of each mask is multiplied by the correspon-
dent value into the navigability matrix. The total score for
each template is the sum of products. A good performance
was obtained in the navigation defined by the urban path
avoiding obstacles using the best template [16].

In this step, templates are selected for use in the next step
of the system. The template that obtains the higher score
is selected as the best match to the road geometry.

3.3 Occupation Percentage
In this step, the templates of the previous step are used to

calculate the occupation percentage of the road regions (nav-
igable and non-navigable). This calculation is performed by
dividing the template score by its maximum value. This is
carried out for each template, so several values normalized
between [0, 1] are obtained.

After obtaining these values based on the occupation ar-
eas resulting from the classified images (navigable and non-
navigable - image processing step), we verify if the occupa-
tion percentage obtained is lower than a threshold level. It
is then assigned as either obstructed (value 0) or free (value
1) for the occupation areas, which are part of the system
input for the next step.

3.4 Learning Based Navigation
We have already developed works analyzing different lev-

els of memory of the templates based on examples obtained
from human drivers using neural networks [15]. The re-
sults of these neural networks have also been compared with
different supervised learning techniques for the same pur-
pose [14]. This work is based in the integration of GPS
and compass, furthermore the occupation percentage on the
autonomous navigation system.

In this step, the basic network structure used is a feedfor-
ward MLP. The activation functions of the hidden neurons
are logistic sigmoid and hyperbolic tangent, and the ANN
learning method is the resilient backpropagation (RPROP).
The inputs are represented by azimuth (difference between
the current and target positions of the vehicle) and the
five values obtained by the occupation percentage step (ob-
structed or free occupation areas). The outputs of the pro-
posed method are the steer angle and speed (Figure 4).

Figure 4: Structure of the second ANN used to gen-
erate steering and acceleration commands.

4. EXPERIMENTAL RESULTS
The experiments were performed using CaRINA (Figure

1), an electric vehicle capable of autonomous navigation in
an urban road, equipped with a VIDERE DSG camera, a
ROBOTEQ AX2580 motor controller for steering control, a
TNT Revolution GS Compass (orientation) and a GARMIN
18X-5Hz GPS (localization). The image acquisition resolu-
tion was set to (320 x 240) pixels. Figure 5 shows the vehicle
trajectory obtained by GPS coordinates.

Figure 5: GPS coordinates performed by CaRINA.

Seven GPS waypoints (desired trajectory) were defined.
In order to navigate, the vehicle used a monocular camera to
avoid obstacles. The experiment was successfully performed
as it followed the GPS points and avoided obstacles. In some
of the straight paths, the vehicle had to avoid curbs at the
same time it was attracted by the GPS goal points, resulting
in some oscillation in the final trajectory.

Table 2 shows the values of the path performed by Ca-
RINA. Five different ANNs topologies were analyzed using
two learning functions (logistic sigmoid and hyperbolic tan-
gent). These topologies represent the architecture of the
second ANN used in our proposed system. Several topolo-
gies of ANNs were tested to obtain the minimum training
error and a near optimal neural architecture.

The ANN architecture was selected considering the num-
ber of neurons in the hidden layer using the RPROP super-
vised learning algorithm in MLP networks and considering
the values of MSE (Mean squared error) and the best epoch
(Optimal point of generalization [OPG], i.e., minimum train-
ing error and maximum capacity of generalization).

We also evaluated the ANNs modifying the learning func-
tions. The main difference between these functions is that
logistic sigmoid produces positive numbers between 0 and 1,
and the hyperbolic tangent (HT), numbers between -1 and
1. Furthermore the HT is the activation function most com-
monly used in neural networks. After the analysis of Table
2, the 6x15x2 architecture using the hyperbolic activation
function showed the lowest MSE for the 10600 epoch. Five
different runs were executed changing the random seed used
in the neural networks (Tests 1 to 5).

Figure 6 shows the histograms of the errors based on the
best ANN topology obtained in Table 2. Topologies 4 and
5 were accepted based on the results. Figure 6(b) presents
the error concentrated on zero and with a lower dispersion
than the one in Figure 6(a). The same is true for Figure
6(d), which shows a lower dispersion compared to Figure
6(c), therefore encouraging the use of topology 5.
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Table 2: Results of the ANNs for each topology.
Learning Functions

Logistic Sigmoid Hyperbolic Tangent
ANN Topology Test 1 Test 2 Test 3 Test 4 Test 5 Test 1 Test 2 Test 3 Test 4 Test 5

6x3x2 OGP 600 3000 1400 700 1000 1400 2300 1000 2000 2600
Topology 1 MSE (10−3) 5.266 3.922 3.747 5.407 4.856 4.119 3.418 3.737 3.393 3.310

6x6x2 OGP 7600 1200 8300 1700 5600 2200 700 1900 9700 26400
Topology 2 MSE (10−3) 2.490 3.257 3.250 3.670 3.414 3.271 3.413 2.148 5.404 3.217

6x9x2 OGP 800 600 500 900 2300 1100 1100 800 800 400
Topology 3 MSE (10−3) 3.774 5.013 4.584 5.050 3.190 3.162 3.318 3.650 2.352 4.292

6x12x2 OGP 91800 15200 1000 23600 1400 400 1400 800 300 7400
Topology 4 MSE (10−3) 2.836 3.797 3.746 2.048 5.645 4.040 3.899 2.959 3.595 3.895

6x15x2 OGP 400 600 1300 400 700 2600 76100 10600 2500 1000
Topology 5 MSE (10−3) 4.226 4.597 4.000 5.319 3.188 3.232 1.999 1.881 3.510 2.989

The statistical difference of the results was evaluated using
Shapiro method [12]. We observed that the null hypothesis,
i.e., normal adequacy, had not been satisfied (Table 3) using
the best ANN topology (6x15x2) for the test data.

Table 3: Results of the Shapiro-Wilk Test.
Shapiro-Wilk Normality Test

p-value
Steering Velocity

Topology 1 0.2468 3.84e-09
Topology 2 5.43e-14 1.97e-15
Topology 3 6.81e-14 2.68e-15
Topology 4 6.69e-13 8.60e-15
Topology 5 2.20e-16 1.59e-15

Value in boldface - Accepted as normal
Other values - Not accepted as normal

The Man-Whitney method [4] was used to check the differ-
ences between the topologies (see Table 4). For the velocity,
the method does not reject the null hypothesis (equality)
(the p-values are higher than 0.05) and for the steering, the
null hypothesis (equality) is rejected only between topologies
(T) 1 and 5 (the p-values are lower than 0.05). According to
this statistical method and using a confidence level of 95%,
there is no evidence of statistical differences between the
best results, except for T1 and T5 concerning the steering.

Table 4: Results of the Man/Whitney Test.
Man/Whitney Test

p-value
T1 T2 T3 T4

Steering T5 0.031 0.115 0.397 0.114
Velocity T5 0.464 0.403 0.715 0.585

Figures 7 and 8 illustrate the steering angle and velocity of
CaRINA using the 6x15x2 architecture (Test 3 HT), showing
the values based on the control rules (supervised training
data) and the results obtained by the learning of the ANN.
Small oscillations are present in the data learned by the
ANN, since the original control rules maintained the steering
wheel and velocity constant, resulting in the linearity of data
(the only problem for the ANN was to learn a rigid curve and
high velocity, but this fact did not interfere in the results).

CaRINA was able to navigate autonomously in an urban
road safely; it did not get too close to the sidewalk (non-
navigable areas) and tracked the GPS points (way-point)
provided to the system.

5. CONCLUSION AND FUTURE WORKS
Autonomous vehicle navigation is a fundamental task in

mobile robotics. This paper has showed a GPS oriented
vision-based autonomous navigation system that can be trai-
ned to identify the road and navigable regions using ANNs,
template matching classification, occupation percentage and
learning based navigation. Our approach was evaluated us-
ing CaRINA in urban road. CaRINA was able to navigate
autonomously in this environment, successfully following the
desired trajectory. Our quantitative analysis also obtained
satisfactory results for the different ANNs topologies.

As future work, we plan to evaluate other classification
methods and decision making algorithms. We also are plan-
ning to integrate camera and LIDAR in order to deal with
bumps and depressions in the road.
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