
  

  

Abstract— In this paper, we present a proposal of an 
autonomous topological navigation system for structured 
outdoor environments. This system uses a camera as the main 
sensor, and an association of Finite State Machines (FSM) with 
Artificial Neural Networks (ANN) for path features detection. 
The environment is represented by a Topological map in which 
each state is related to a specific track shape. This way, the 
robot can become able to autonomously reach any destination, 
going through a sequence of these states, as for example straight 
path, right and left turns and intersections. The experiments 
were performed in a real structured outdoor environment in 
order to validate and evaluate this approach. The proposed 
system demonstrated to be a promising approach to 
autonomous vehicles navigation. 

I. INTRODUCTION 

The development of robust autonomous intelligent 
systems for robotic applications is a very important research 
field. Several applications are related to robotics, from 
industry to military tasks.   

The autonomous driving capability is one of the most 
desirable features for a mobile robot. Research related to this 
goal is being developed since the 1990´s, and groups such as 
NavLab have been presenting relevant results on autonomous 
vehicles navigation. 

There are many other relevant and known works on 
autonomous robotics being developed worldwide. Some of 
them are powered by government initiatives as for example 
the DARPA Grand Challenges [7][8]. The first two editions 
(2004 and 2005) were held in desert, and 2007 edition in an 
urban environment. 

Autonomous mobile robots usually perform three main 
tasks: localization, mapping and navigation control [17]. 
Mapping is the creation of an environment model using the 
sensorial data, representing the environment structure. 
Localization task must occur simultaneously to navigation 
control. It consists on estimate the robot´s position in a well-
known environment, using its sensorial data. The Navigation 
task is therefore the ability to obtain enough information 
about the environment, process it, and act, moving safely 
through the navigable area. 

 In order to develop an intelligent autonomous vehicle 
able to navigate through environments composed by streets 
and highways, it must be assumed that the robot knows its 
approximate position, the environment map and the path to be 
followed (origin/destination). This way, navigation in this 
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environment consists on following a well-defined path, 
considering the navigable areas. 

This work focuses on this navigation task, and describes 
the proposal of a Vision-Based Perception System, able to 
recognize the navigable area of a structured outdoor 
environment (streets) processing the captured frame and 
classifying it into states which represent structural features of 
the environment, allowing the robot to detect its current 
context. 

The proposed approach does not need a very detailed 
environment map (metric map), only a graph to represent the 
main elements, in a simpler path representation. Furthermore, 
accurate pose estimation is not necessary. The approximate 
robot´s position is enough to navigate. So, the main objective 
is to detect the current node in a Topological map, being 
useful to autonomously decide when and how to proceed in 
order to go straight, turn left or right, even if these three 
situations are detected simultaneously (at an intersection, for 
example). 

The developed system uses Artificial Neural Networks 
(ANN) [19] in two steps: first to classify the frame obtained 
from camera, resulting in a navigability map and second to 
detect patterns on these navigability maps, representing the 
current context. For this second step, a Finite State Machine 
(FSM) is used to represent the chosen paths. The ANN is 
trained to recognize the different kinds of states at the 
environment and then a FSM generator converts any chosen 
path into a sequence of these states. Each state has its own 
reactive navigation control sub-system. This way, the system 
combines the high-level deliberative behavior with a reactive 
control, allowing a safe navigation control. 

The next topics of this work are organized as follows: 
Section 2 presents some previous related works; Section 3 
presents the Topological Navigation System overview, 
Section 4 presents the experiments and results and Section 5 
presents the conclusion and possible future works. 

II. RELATED WORKS 

Several approaches have been used for navigation, using 
many different sensors (for example laser, sonar, GPS, IMU, 
compass) singly or fused [9][17][18]. One of the most used 
approaches recently is the Vision-Based navigation [20]. This 
method uses video cameras as the main sensor. Cameras are 
very suitable for outdoor navigation and obstacle avoiding 
tasks due to its low weight and energy consumption [1]. 
Furthermore, one single image can provide many different 
types of information about the environment simultaneously. It 
is also possible to reduce costs by using cameras rather than 
other types of sensors [2].  
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The Vision-based approach implementation is already 
usual in navigation systems for structured or semi-structured 
environments. [3][7][9][10][11]. These systems classify the 
image, with track segmentation for safe navigable area 
identification, resulting in reactive models for navigation 
control. Works such as ALVINN [13] and RALPH [14] were 
the first to apply neural networks for this reactive control in 
outdoor environments. In [15], a reactive control was 
implemented by combining a neural classifier for navigable 
area detection with template matching for steering wheel 
angle control. 

For our autonomous navigation system development, 
purely reactive models are not totally adequate, since 
immediate reaction to sensors data is not enough to guarantee 
a correct control in more complex environments. A more 
robust system must be implemented, providing sequence and 
context information that are absent in purely reactive models. 

In robotics, FSM-based approaches [5] are very often 
used. FSMs are useful because the system can be easily 
described as a sequence of states (context changes), 
considering the inputs (sensors) and specific actions for each 
state. This way, for each detected state the robot can assume a 
different behavior. This work uses this idea as principle, so 
the path is described as a FSM in which current state is 
detected after processing sensors data. 

The use of a Machine Learning technique such as 
Artificial Neural Networks is a very interesting way to 
process input data, identifying and classifying the states and 
transitions to determine the best actions to be performed [6]. 
ANNs are tolerant to noise and imprecision on input data, and 
able to detect the states and transitions between these states. 
ANNs are also very efficient to generalize knowledge 
(adjusting the outputs to many inputs, even the ones not 
explicitly taught to the net). So, this technique is very useful 
for state detection through path features recognition. 

The association of ANNs with FSMs is being developed 
and evolved since the 1990´s [21][22][23][24], and recent 
researches are focused on the application of this approach in 
robotics. In [12], an autonomous car parking system was 
developed, using recurrent neural networks for FSM learning. 
The sensors data and current state were used as ANN inputs, 
so the system could detect when a context change was 
needed. This work inspired the development of our FSM-
based topological navigation control. 

So, in [20] a Vision-based autonomous navigation system 
was implemented for indoor environments using a simple 
FSM control. In that work, a neural vision system was 
responsible to provide a navigability map of a captured frame 
in an indoor environment, generating a matrix with values 
between 0 and 1 to represent the certainty about the 
navigability of a block of pixels. Then, an algorithm was 
developed to analyze interest areas of this matrix in order to 
detect the current state of a FSM (robot context), navigating 
through a set of straights and turns. 

The main idea of this FSM-Control was evolved, so in [4] 
an autonomous navigation system was developed with an 
ANN as control unit. A LIDAR sensor was adopted as the 
main sensor, so an ANN was trained to recognize the “laser 
signatures” associated to every possible state of a FSM. The 

environment was represented by a Topological map, so each 
state was related to a specific node (part of the indoor 
environment). This way, all possible states could be learned 
by the ANN, and all possible paths (subgraphs) represented 
by FSMs. This work introduced the Topological approach 
adopted in this paper. The topological navigation system was 
also successful with other sensorial systems, such as 3D-
vision in indoor environments, as implemented on [16]. 

The proposed approach comes from these previous works, 
combining the visual navigation designed in [20] with the 
neural FSM learning for Topological Navigation developed in 
[4]. A newer (and more robust) version of the classifier used 
in [20] is adopted. The developed system components are 
described in next section. 

III. MATH 

The proposed system is composed by two main steps 
performed by ANNs: the first one is the generation of a 
navigability map after processing the captured frame; the 
second one is the pattern recognition in the navigability 
maps, resulting on state detection for Topological Navigation 
control. Figure 1 shows the full-system overview. 

 
Figure 1 – System overview. 

A. Navigability Map Generation 
This step consists on process the captured frame in order 

to know which pixels are representing a navigable area in 
front of the robot (autonomous vehicle). 

The neural classifier adopted was proposed by Shinzato 
[3] as an improvement to the model used in [20]. It is 
composed by an ANN committee with five ANNs; each one 
is responsible to classify the pixels into navigable (1) or non-
navigable (0), based on different sets of features of the 
image. The ANN attributes are image features such as RGB 
average, HSV entropy, variance and energy. The mean of the 
five values is the final classification, ranging from 0 to 1. 

In order to increase system efficiency, the pixels are not 
classified individually; the original frame is sliced into 
blocks of 10x10 pixels. This way, the navigability map 
dimensions are not the [320x240] of the original frame, but 
[32x24] only. Figure 2 shows the classifier structure. This 
classifier was chosen due to its excellent results in many 
environments and climate conditions, as shown on Figure 3. 
No modifications were done to the original classifier. 



  

 
Figure 2 – Classifier Structure [3]. 

 
 

Figure 3 – Classification results on different scenarios and conditions [3]. 
 

The navigability map generated by this classifier is the 
input considered for ANN training indeed, in Topological 
Navigation step. This way, climate and luminosity conditions 
have no direct effect on state detection, since pattern 
recognition is done over navigability maps only. 

B. Topological Navigation System 
This step consists on train an ANN to efficiently 

recognize patterns on the input data, allowing the detection of 
environment features used to determine the current state 
(context).  

The environment is mapped as a topological map in which 
each node is related to a specific part of the environment, 
described by its structural features such as straight path, turn 
or intersections. All possible kinds of states (environment 
features) are taught to the net, so any possible path on this 
environment can be seen as a sequence of these states, being 
represented by a FSM, as represented on Figure 4. 

 
Figure 4 – Example of Topological Map. 

After selecting a destination, a FSM with expected states 
sequence (subgraph) can be generated. For each state, an 
adequate reactive control must be activated, for example 
keeping the robot aligned at a straight path state. This way, 
the system combines this deliberative control (path planning) 
with a reactive control to keep a correct motion at the 
navigable areas only according to current state.  

The ANN input is the data obtained from sensorial system 
(navigability matrix), and the output is the current state 
(environment feature) detected. Each different class must be 
related to a different track shape or condition (straight, left 
and right turns, bifurcation and obstacle ahead, for example). 

In order to begin the training process, a database must be 
generated. This is done collecting a set of frames for each 
possible situation, then processing the collected frames with 
Shinzato´s neural classifier, for navigability maps generation. 
As the learning process is supervised, a specialist must 
classify these navigability maps in one of the possible states 
before ANN training, resulting in a set of input/desired-output 
pairs. 

The system setup is shown on Figure 5 with its two main 
stages: the environment classification, in which the ANN is 
trained to recognize the possible situations; and navigation 
control, which consists on follow a well-defined path, 
generated after route selection.  

 
Figure 5 – System setup. 

Despite the speed benefits obtained after processing the 
pixels in 10x10 blocks with Shinzato´s classifier on previous 
step, the total amount of elements in navigability map (768) is 
still too large for processing as ANN input. As the first 384 
elements (upper half of matrix) are related to elements above 
the horizon line, they are not relevant for track analysis, so 
only the bottom half is used as ANN inputs. This way, the 
ANN input layer has 384 neurons only.  

Some empirical tests were realized in order to determine 
the number of hidden layer neurons. The best results were 
achieved by a feed-forward MLP, with the 384 input neurons, 
384 neurons on hidden layer and 5 neurons on output layer (1 
neuron per defined class). Figure 6 shows a simplified 
representation of this MLP. 

 
 

Figure 6 – ANN Topology. 

Each output neuron must correspond to one of the 
implemented states. The ANN is trained just once e must be 
able to work for any possible path at the environment. 



  

Once the Topological Map of an environment is given, it 
becomes easy to establish a route between two points, “by 
hand” or with an algorithm. Every route can be seen as a 
sequence of steps (states), so it is trivial to generate a FSM to 
represent a well-defined route. 

 An algorithm must be responsible to convert any possible 
path into a sequence of states and related actions (also 
considering that one single state can have different associated 
actions). So, after selecting a path to be covered, the FSM 
must be stored on memory to be used by the control unit. 

As mentioned earlier, the proposed hybrid control 
combines the deliberative control resulting from FSM-based 
topological navigation with a reactive control to guarantee a 
safe driving, avoiding collisions. 

The Topological Navigation previously validated in indoor 
environments allows the robot to follow its planned path and 
also know its approximate position, but doesn´t control the 
motion “into” every situation (state). When the autonomous 
vehicle is in a straight path for example, a reactive control 
must be activated to keep it centered and aligned in the track. 
This is the main benefit of this hybrid/hierarchical control: 
take advantage of deliberative model for path control and 
simultaneously guarantee a safe navigation and obstacle 
avoidance with reactive control. 

For this implementation, it is assumed that vehicle´s initial 
position is always known, as the topological map also. The 
current position can be estimated through current state 
detection. So, it isn´t necessary to estimate the exact current 
position, and navigation and self-localization tasks are 
performed together. 

Input data processing makes it possible to determine if the 
vehicle still at the same state (part of the path) or if a context 
change is needed. State transitions must occur only if the 
detected state is compatible with next expected state (this 
information is related to the stored FSM). Figure 7 shows the 
topological navigation control flowchart. 

 
Figure 7 – Navigation control flowchart. 

IV. EXPERIMENTS AND RESULTS 

The experiments were carried out in a real structured 
urban environment, using a standard monocular RGB camera 
as the only sensor. This environment was composed by 
straights, turns and intersections, so its properties could be 
represented with four states: “straight path”, “left turn”, “right 
turn”, and “bifurcation”. 

Some dynamic elements such other moving vehicles were 
included on database examples as “obstacle ahead” state, so if 

this situation is detected, an adequate behavior must be 
activated. Examples of input frames for the five implemented 
states are shown next, on Figure 8. 

 
Figure 8 – Possible states for detection. 

The ANN was implemented and trained with Stuttgart 
Neural Network Simulator (SNNS) software, then it was 
converted to C language using SNNS2C tool in order to be 
integrated to vehicle´s control unit. 

ANN training database was generated collecting about 
1’25” video at 30fps for each class in a run through the 
environment, resulting in about 2500 examples per class. The 
final database was composed by 11186 input/output pairs.  

The training algorithm used was Resilient Propagation (R-
Prop). This algorithm is achieving great results for feed-
forward networks in many applications due to its good 
training time and convergence. Training parameters were set 
up as follows: δ0 = 0.1, δmax = 50, α = 5.0 and number of 
epochs = 500.  

Three different topologies were tested, with different 
number of hidden layer neurons. The tests were held with 96, 
192 and 384 neurons on hidden layer. These amounts were 
considered after empirical tests. As mentioned earlier, the 
input layer is composed by 384 neurons (bottom elements of 
navigability matrix), and output layer is composed by 5 
neurons (1 neuron for each possible class). 

ANN validation was done with stratified 5-fold cross-
validation method. This way, 5 train and test sets were 
generated, with 80-20 proportion on data (80% used for 
training and 20% for test, with same proportion of elements 
from the 5 classes on the datasets).  



  

All networks presented great results (higher than 98%). 
The network with best results was 384-384-5, with 99.44% 
accuracy, as can be observed at Table 1. The training time 
for this network is about two hours at a dual core PC. 

TABLE I.  ANN´S ACCURACY AFTER 500 TRAINING CICLES 

ANN Test 
1 

Test 
2 

Test 
3 

Test 
4 

Test 
5 Mean 

384-96-5 0,98 0,98 0,99 0,98 0,99 0,984 

384-192-5 0,99 0,98 0,99 0,98 0,99 0,986 

384-384-5 0,995 0,995 0,993 0,993 0,994 0,994 

 
The confusion matrices for 384-384-5 net tests are shown 

next, on Figure 9. The error per class is close to zero, so it is 
easy to note that classification errors occur very few times. 

 
Figure 9 – Confusion matrices for 384-384-5 net.   

The recall rate, precision rate and F1 measure for each 
class in the five tests carried out are shown next, on Table 2, 
Table 3 and Table 4 respectively. In order to estimate these 
values for each class independently, the following 
assumptions were taken: 

• TP (True Positive) rate is the amount of examples 
rightly classified as the target class; 

• FP (False Positive) rate is the amount of examples 
classified as target class but their real class is one 
of the other 4 classes; 

• FN (False Negative) rate is the amount of target 
class examples classified as other classes 
examples. 

TABLE II.  RECALL RATE FOR EACH CLASS IN THE FIVE TESTS 

Recall Test 
1 

Test 
2 

Test 
3 

Test 
4 

Test 
5 Mean 

Class 1 0,998 0,991 0,987 0,998 1 0,995 

Class 2 1 0,997 1 1 1 0,999 

Class 3 0,992 0,992 0,995 0,987 0,997 0,993 

Class 4 0,993 0,997 0,993 0,987 0,983 0,991 

Class 5 0,993 0,995 0,988 0,995 0,991 0,992 

Total 0,995 0,995 0,993 0,993 0,994 0,994 

 

TABLE III.  PRECISION RATE FOR EACH CLASS IN THE FIVE TESTS 

Precision Test 
1 

Test 
2 

Test 
3 

Test 
4 

Test 
5 Mean 

Class 1 0,996 0,998 0,995 0,995 0,998 0,996 

Class 2 1 1 0,995 0,997 0,997 0,998 

Class 3 0,995 1 0,997 0,995 0,992 0,996 

Class 4 0,993 0,991 0,989 0,989 0,991 0,991 

Class 5 0,993 0,986 0,991 0,991 0,991 0,990 

Total 0,995 0,995 0,993 0,993 0,994 0,994 

 

TABLE IV.  F1 MEASURE FOR EACH CLASS IN THE FIVE TESTS 

F1 Measure Test 
1 

Test 
2 

Test 
3 

Test 
4 

Test 
5 Mean 

F1 Measure 1 0,997 0,994 0,991 0,997 0,999 0,995 

F1 Measure 2 1 0,998 0,997 0,998 0,998 0,998 

F1 Measure 3 0,993 0,996 0,996 0,991 0,995 0,994 

F1 Measure 4 0,993 0,994 0,991 0,988 0,987 0,991 

F1 Measure 5 0,993 0,991 0,99 0,993 0,991 0,991 

Total 0,995 0,995 0,993 0,993 0,994 0,994 

 
Despite the excellent results considering the accuracy 

mean, a 100% safe navigation is not guaranteed with a good 
classifier only. Furthermore, as a 100% accuracy is not 
achieved with the ANN, something must be done to 
guarantee that no unexpected state changes occur due to a 
wrong classification. 

This way, an iteration counter was implemented, removing 
oscillations resulting from possible classification errors. This 
means that a state transition will occur only after a 
determined amount of consecutive detections of the expected 
state, indicating confidence on transition detection. 

V. CONCLUSION 
The developed classifier achieved good results, with high 

accuracy level for the ANN individually, and 100% accuracy 
after iteration counter implementation on the experiments 
carried out. This shows that the association of ANN and 
FSM – an already successful implementation for indoor 
environments – can be a suitable approach for autonomous 
vehicles navigation in structured outdoor environments.  

The use of a camera as main sensor proved to be an 
efficient and reliable solution for state detection, allowing the 
development of low-cost autonomous driving systems, since 
it can also be used for reactive control. 

The main challenge for future works is to apply this same 
methodology for autonomous urban navigation with dynamic 
elements, avoiding accidents and obeying the traffic laws. 
We also consider using other sensorial systems (also fusing 
sensors and techniques) to detect new features and landmarks 
useful for navigation control.  
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