
Evolving Gait Control of Physically Based Simulated Robots
Milton Roberto Heinen 1

Fernando Santos Osório 2

Abstract: This paper describes the LegGen System, used to automatically create
and control stable gaits for legged robots into a physically based simulation environ-
ment. In our approach, the gait is defined using three different methods: a finite state
machine based on robot’s leg joint angles sequences; a locus based gait defining the
endpoint (paw) trajectory and using inverse kinematics to determine joint angles; and
through a half ellipse cyclic function used to define each endpoint trajectory. The pa-
rameters used to control the robot through these methods are optimized using Genetic
Algorithms. The model validation was performed by several experiments realized
with different configurations of four and six legged robots, simulated using the ODE
physical simulation engine. A comparison between these different robot configura-
tions and control methods was realized, and the best solution was selected in order to
help us to build a physical legged robot. The results also showed that it is possible to
generate stable gaits using Genetic Algorithms in a efficient manner, using these three
different methods.

1 Introduction

The autonomous mobile robots has been attracting the attention of a great number of
researchers, due to the challenge that this new research domain proposes: make these systems
capable of intelligent reasoning and able to interact with the environment they are inserted in,
through sensor’s perception (infrared, sonar, bumpers, gyroscopes, etc) and motor’s action
planning and execution [10, 17]. At the present time, the most part of mobile robots use
wheels for locomotion, what does this task easy to control and efficient in terms of energy
consumption, but they have some disadvantages since they have problems to move across
irregular surfaces and to cross borders and edges [18]. So, in order to make mobile robots
better adapted to human environments and to irregular surfaces, they must be able to walk
and/or to have a similar locomotion mechanism used by the humans and animals, that is, they
should have a legged locomotion mechanism [1].

However, the development of legged robots capable to move in irregular surfaces is a
quite difficult task, that needs the configuration of many gait parameters [28]. The manual
configuration of these parameters demands a lot of effort and spent time of a human specialist,

1Informatics Institute, UFRGS, CEP 91501-970
{mrheinen@inf.ufrgs.br}
2Applied Computing, UNISINOS, CEP 93022-000
{fosorio@unisinos.br}



Evolving Gait Control of Physically Based Simulated Robots

and the obtained results are usually suboptimal and specific for one robot architecture [5].
Thus, it is interesting to generate the robot gait configuration in an automatic manner, using
Machine Learning techniques [23] to perform this task.

One of these Machine Learning techniques that are most adapted for this specific task
are the Genetic Algorithms (GA) [8, 22]. This is a reasonable choice because according to
the Evolution’s Theory [6], the locomotion mechanisms of life forms resulted from the nat-
ural evolution, what makes the use of Genetic Algorithms a natural solution since they are
biologically inspired and can generate biologically plausible solutions. From the computa-
tional point of view, the Genetic Algorithms are also very well adapted for the automatic gait
configuration of legged robots, because: (a) they use a multi-criterion optimization method to
search solutions in the configuration space, that means in our specific case, they are capable
to optimize not only the gait velocity, but also the stability and even other gait parameters;
(b) they don’t need local information for the error minimization, nor the gradient calculation,
what is very important for the gait parameters generation and optimization, since it is very
difficult to have available some a priori training data for supervised learning; (c) if correctly
used, the Genetic Algorithms are capable to avoid local minima [22].

The main goal of this paper is to describe the LegGen System [12, 13, 11]. This system
is capable to automatically evolve the gait control of physically based simulated legged robots
using Genetic Algorithms. This paper is structured as follows: The Section 3 describes the
Genetic Algorithms and the GAlib software library adopted in our system; The Section 4
the use of a physical simulation engine, the Section 5 describes some possible alternatives to
legged robot configuration; The Section 6 describes the LegGen system, and the robots used
in the simulations; The Section 7 describes the accomplished experiments and the obtained
results; and the Section 8 provides some final conclusions and future perspectives.

2 Related Works

Control of locomotion in legged robots is a challenging multidimensional control
problem [7, 1]. It requires the specification and coordination of motions in all robots’ legs
while considering factors such as stability and surface friction [19]. This is a research area
which has obvious ties with the control of animal locomotion, and it is a suitable task to use
to explore this issue [27]. It has been a research area for a considerable period of time, from
the first truly independent legged robots like the Phony Pony built by Frank and McGhee
[21], where each joint was controlled by a simple finite state machine, to the very successful
algorithmic control of bipeds and quadrupeds by Raibert [26].

Lewis [20] evolved controllers for a hexapod robot, where the controller was evaluated
on a robot which learn to walk inspired on insect-like gaits. After a staged evolution, its
behavior was shaped toward the final goal of walking. Bongard [2] evolved the parameters

2 RITA • Volume XVI • Número 1 • 2007



Evolving Gait Control of Physically Based Simulated Robots

of a dynamic neural network to control various types of simulated robots. Busch [4] used
genetic programming to evolve the control parameters of several robot types. Jacob [16],
on the other hand, used reinforcement learning to control a simulated tetrapod robot. Reeve
[27] evolved the parameters of various neural network models using genetic algorithms. The
neural networks were used for the gait control of tetrapod robots.

In the most part of these approaches described above, the fitness function used was the
distance traveled by the robot in a predefined amount of time. Although this fitness function
is largely used, it may hinder the evolution of more stable gaits [9]. In our approach, we
use in the fitness function, beyond distance traveled, sensorial information (gyroscope and
bumpers) to guarantee stable and fast gaits.

3 Genetic Algorithms

Genetic Algorithms are optimization methods of stochastic space state search based on
the Darwin’s Natural Evolution Theory [6], that are proposed in the 60s by John Holland [15].
They work with a population of initial solutions, called chromosomes, which are evolved
through several operations during a certain number of generations, usually reaching a well
optimized solution, and preserving the best individuals according to a specific evaluation
criterion. In order to accomplish this, in each generation the chromosomes are individually
evaluated using a function that measures its performance, called fitness function [22]. The
chromosomes with the best fitness values are selected to generate the next generation applying
the crossover and mutation operations. Thus, each new generation tends to adapt and improve
the quality of solutions, until we obtain a solution that satisfies a specific objective.

The Genetic Algorithms implementation used in our system was based on the GAlib
software library3, developed by Matthew Wall of Massachusetts Institute of Technology
(MIT). GAlib was selected as it is one of the most complete, efficient and well known li-
braries for Genetic Algorithms simulation, and also it is a free and open source C++ library.

In the LegGen System, a Genetic Algorithm as described by Goldberg in his book [8]
was used, and a floating point type genome was adopted. In order to reduce the search space,
alleles were used to limit generated values only to possible values for each parameter.

4 Mobile Robot Simulation

In order to do more realistic mobile robots simulation, several elements of the real
world should be present in the simulated model, doing the simulated bodies to behave in a

3the GAlib is available for download in the site http://www.lancet.mit.edu/ga/

RITA • Volume XVI • Número 1 • 2007 3



Evolving Gait Control of Physically Based Simulated Robots

similar way related to the reality. Especially, it is necessary that the robot suffers from insta-
bility and falls down if badly positioned and controlled, and also it should interact and collide
against the environment objects in a realistic manner [24]. To accomplish that, it is neces-
sary to model the physics laws in the simulation environment (e.g. gravity, inertia, friction,
collision). Nowadays, several physics simulation tools exist used for the implementation of
physics laws in simulations. After study different possibilities, we chose a widely adopted
free open source physics simulation library, called Open Dynamics Engine - ODE4. ODE is
a software library for the simulation of articulated rigid bodies dynamics. With this software
library, it’s possible to make autonomous mobile and legged robots simulations with great
physical realism. In ODE, several rigid bodies can be created and connected through dif-
ferent types of joints. To move bodies using ODE, it’s possible to apply forces or torques
directly to the body, or it is possible to activate and control angular motors. An angular motor
is a simulation element that can be connected to two articulated bodies, which have several
control parameters like axis, angular velocity and maximum force. With these elements, it’s
possible to reproduce articulations present in real robots, humans or animals, with a high
precision level [24].

5 Gait Generation

In legged robots, the gait control can be generated in several different ways. One of the
most simple ways to control the robot joints is using a Finite State Machine (FSM), in which
is defined for each state the duration of the state and the activation level (force/velocity) for
each joint. The Table 1 illustrates an example of a FSM table used to control an articulated
mobile robot. Since the most of the robots are symmetrical (and great part of living forms
too), only one half of the robot’s states need to be learned - the other half is obtained by
switching the left legs values with right legs values.

Table 1. Example of a FSM table
State 1 State 2 State 3 State 4

Duration 0.05 0.10 0.55 0.80
Joint A 1.25 2.45 3.00 0.95
Joint B 2.70 0.15 0.70 1.95
Joint C 1.15 1.65 0.30 2.70

The main disadvantage of this approach described above is that the robot control is
accomplished without any feedback from the external world, that is, no sensor data is used
by the robot controller. But in a real robot, small differences in the actuators behavior, in the
4A library ODE is free and available for download in the site http://openode.sourcefourge.net

4 RITA • Volume XVI • Número 1 • 2007



Evolving Gait Control of Physically Based Simulated Robots

battery level charge, the friction in the joints or external obstacles collision may change the
effective velocity and response of the joints, and thus the robot may not work as expected.

An alternative approach was developed in this work, using a FSM table similar to
the above described method, but instead of determining the duration and the velocity of each
state, it is determined for each state and for each robot joint their final expected angles config-
uration. In this way, the controller needs to continually read the joints angle state, in order to
check if the joint motor accomplished the task. Real robots do this using sensors (encoders)
to control the actual angle attained by the joints [1]. So, in this approach the gait control is
accomplished in the following way: initially the controller verify if the joints have already
reached the expected angles. The joints that do not have reached them are moved (activate
motors), and when all the joints have reached their respective angles, the FSM passes to the
following state. If some of the joints have not reached the specified angles after a certain
limited time, the state is advanced independently of this. In a future version of the system,
we are planning to treat this situation more carefully, because the leg can be blocked by an
obstacle and the robot can be damaged in this case.

To synchronize the movements, it is important that all joints can reach their respective
angles at almost the same time. This is possible with the application of a specific joint angular
velocity adjust value for each joint, calculated by the equation:

Vij = ki(αij − αij−1) (1)

where Vij is the velocity adjust applied to the motor joint i in the j state, αij is the joint angle
i in the j state, αij−1 is the joint angle i in j − 1 state, and ki is a constant of the i state, used
to control the set velocity. The k is a parameter of the gait control that is also optimized by
the Genetic Algorithm. The other parameters are the joints angles for each state. To reduce
the search space, the Genetic Algorithm only generates values between the maximum and
minimum accepted values for each specific parameter.

The second possible approach we implemented uses a “locus based gait” to control
the robot joints [28]. In this approach, instead of using a FSM to determine velocity or angles
of each joint, the positions of each endpoint (“foot” or “paw”) are determined and specified
by spatial coordinates in the x, y and z axis. In order to generate the gait, the controller
needs to calculate the inverse kinematics and then use the calculated joints angles to move
the robot. The advantage of this technique is that the search space can be reduced, even
if the legs are composed by several segments. The main disadvantage is that we need a
fast and efficient way to calculate the inverse kinematics. This also requires some specific
knowledge about the robot structure and about the direct kinematics model implemented. In
our implementation, the direct kinematics was calculated using the R Statistical Software5

and the inverse kinematics was calculated in real time using the Powell’s method [3, 25].
5The R Software is a free statistical software available for download in the site http://www.r-project.org/

RITA • Volume XVI • Número 1 • 2007 5



Evolving Gait Control of Physically Based Simulated Robots

Another way we used to control the robot gait was to model the trajectory of endpoints
using a cyclical function, as for example a half ellipse. The Figure 1, reproduced from [9],
illustrates this situation.

Figure 1. Example of a half ellipse trajectory [9]

With the trajectory defined by a half ellipse, the only parameters that need to be opti-
mized by the Genetic Algorithm are the position of each leg’s ellipse center (x, y and z axis
coordinates), the height and width of each ellipse, the total time cycle duration and the spe-
cific time duration of the cycle during which the leg is touching the ground. The advantage of
this approach is that theoretically it reduces the search space, simplifying the learning task.
The main disadvantages are: (a) the half ellipse restricts a lot the possible robot movements,
hindering gait in irregular surfaces; (b) the inverse kinematics also needs to be calculated in
a fast and efficient way.

6 Proposed System

The LegGen System was developed to accomplish the gait control of simulated legged
robots in an automatic way [12, 13, 11, 14, 14]. It was implemented using the C++ program-
ming language and the free software libraries ODE and GAlib. The LegGen System reads two
configuration files, one describing the robot format and dimensions and the other file describ-
ing the simulation parameters. Table 2 shows the parameters used by the LegGen System,
with the values used in the simulations (described below in Section 7). The Crossover, Mu-
tation, Population size and Number of generations parameters are used directly by the GAlib
software. The Number of states parameter is the number of FSM states, the Time of walk
parameter is the time of each individual walk during the fitness evaluation, and the Velocity
min and Velocity max are the k interval generated by the Genetic Algorithm.

6 RITA • Volume XVI • Número 1 • 2007



Evolving Gait Control of Physically Based Simulated Robots

Table 2. Parameters of the LegGen System
Par-ID Parameter Value

1 Uniform crossover 0.60
2 Mutation 0.05
3 Population size 50
4 Number of generations 100
5 Number of states 4
6 Time of walk 60
7 Velocity min 0.0
8 Velocity max 1.0

The LegGen System works as follows: initially the file describing the robot is loaded,
and the robot is created in the ODE environment according to file specifications. After this,
the system parameters are loaded (Table 2), and the Genetic Algorithm is initialized and
executed until the number of generations is reached. The evaluation of each chromosome is
realized in the following way:

• The robot is placed in the starting position and orientation;
• The genome is read and the robot control FSM table values are set;
• The physical simulation is executed during a predefined time;
• Gait information and sensor data are captured during each physical simulation;
• Fitness is calculated and returned to the GAlib.

The way as the FSM table values are set by the genome depends of the gait generation
method used. The LegGen System implements three methods for the gait generation: (a)
FMS angles table; (b) locus based gait; (c) half ellipse controller. The fitness evaluation uses
the following sensorial information that must be calculated: (a) the distance D covered by the
robot; (b) instability measure G; and (c) average number of endpoints touching the ground
B. The covered distance D is given by the equation:

D = Px1 − Px0 (2)

where D is the distance traveled by the robot in the x axis (forward walk following a straight
line), Px0 is the robot start position and Px1 is the final robot position in the x axis.

The instability measure is calculated using the robot position variations in the x, y
and z axis. These variations are collected during the physical simulation, simulating a gy-
roscope/accelerometer sensor, which is a sensor present in some modern robots [7]. The

RITA • Volume XVI • Número 1 • 2007 7



Evolving Gait Control of Physically Based Simulated Robots

instability measure G (Gyro) is then calculated by the following equation [9]:

G =

√

∑N

i=1
(xi − xx)2 +

∑N

i=1
(yi − xy)2 +

∑N

i=1
(zi − xz)2

N
(3)

where N is the number of sample readings, xi, yi and zi are the data collected by the
simulated gyroscope in the time i, and xx, xy and xz are the gyroscope reading means,
calculated by the equation:

xx =

∑N

i=1
xi

N
, xy =

∑

N

i=1
yi

N
, xz =

∑N

i=1
zi

N
(4)

To obtain the average number of endpoints touching the ground, we simulate touch
sensors that imitate the operation of bumpers [7] placed under each paw of the robot. During
the simulation, the number of endpoints touching the ground is collected, and at the end of
each physical simulation the average number B is calculated using the equation:

B =

∑N

i=1
bi

N
(5)

where N is the number of samples collected and bi is the number of endpoints touching the
ground at the time i. After finished the sensorial information processing, the fitness function
F is then calculated through the equation:

F =
D

1 + G + (B − L/2)2
(6)

where L is the number of robot legs. Analyzing the fitness function, we see that B reaches
its best value when the robot maintains half of its endpoints touching the ground, what is
desirable when the gait used is the trot. In this way, the best solutions have (B − L/2)2

close to zero, so this parameter will have a strong influence in the population evaluation and
evolution. Related to the other parameters, the individual better qualified will be the one that
has the best relationship between velocity and stability, so the best solutions are those that
moves fast, but without losing the stability [9].

During the simulation, if all paws of the robot leave the ground at same time for more
than one second, the simulation of this individual is immediately stopped, because this robot
probably fell down, and therefore it is not necessary to continue the physical simulation until
the predefined end time.

6.1 Modeled Robots

According to the documentation, computational complexity when using the ODE li-
brary is O(n2), where n is the amount of bodies present in the simulated physical world.

8 RITA • Volume XVI • Número 1 • 2007



Evolving Gait Control of Physically Based Simulated Robots

Thus, in order to maintain the simulation speed in an acceptable rate, we should use few and
simple objects. For this reason, all the simulated robots were modeled with simple objects, as
rectangles and cylinders, and they have only the necessary articulations to perform the gait.
In order to keep our robot project simple, the joints used in the robots legs just move around
the z axis of the robot (the same axis of our knees), and the simulations just used robots
walking in a straight line. In the near future, we plan to extend our system to accept more
complex robot models and joints.

Several robot types were developed and tested, before we defined the final four main
models presented here, that are shown in Figure 2. The Figure 2(a) model, called HexaL3J,

(a) (b) (c) (d)

Figure 2. Robot models used in the simulations

have six legs and three parts per leg. The paws are wider than the remaining legs, in way to
give a large support to the robot. The Figure 2(b) model, called TetraL3J, is similar to the
previous model, but it has just four legs. Both models in Figure 2(a) and 2(b) have the paws
final joint angles automatically calculated using direct kinematics, in such a manner as these
paws are always parallel to the ground. The model of Figure 2(c), called HexaL2J, is similar
to the Figure 2(a) model, but it has just two articulations per leg, in other words, it doesn’t
have paws. Thus, in this model all the joint angles are calculated by the Genetic Algorithm,
without using direct kinematics. At last, the model of Figure 2(d) , called TetraL2J, is similar
to the previous one, with two articulations per leg and no paws, but it has just four legs. The
Table 3 shows the dimensions of the robots in meters. The simulated robots dimensions are
approximately the dimensions of a dog.

The use of paws as showed in Figures 2(a) and 2(b) models was designed to allow a
more stable walk, mainly when dynamic stability was used. The robot joints have maximum
and minimum joint angle limits similar to horses and dogs, but these animals have more
articulated members than the implemented in our models.

RITA • Volume XVI • Número 1 • 2007 9



Evolving Gait Control of Physically Based Simulated Robots

Table 3. Dimensions of the simulated robots
Body Thigh and shin Paw

Robot x y z x y z x y z
HexaL3J 0.80 0.15 0.30 0.05 0.15 0.05 0.08 0.05 0.09
TetraL3J 0.45 0.15 0.25 0.05 0.15 0.05 0.08 0.05 0.09
HexaL2J 0.80 0.15 0.30 0.05 0.15 0.05 - - -
TetraL2J 0.45 0.15 0.25 0.05 0.15 0.05 - - -

7 Results

In order to determine the best robot model to build, several experiments were con-
ducted. The first experiments aimed to discover the best robot configurations, including the
number of robot legs, and the number of segments per leg. Our intention was to construct a
robot using the smallest amount of articulations, in order to simplify the hardware and reduce
the robot building costs. Other tests were conducted to discover the most suitable method
to be applied in the robot gait control. Several tests were made using a FSM angles table
(Angles), a locus based gait (Locus) and the half ellipse modeling (Ellipse). The gait method
adopted in our experiments was mainly the trot (two legs are lift at the same time), but some
other experiments were made using four legged robots in a walk gait (just one leg per time is
moved away from the ground). The Table 4 shows the results obtained in the accomplished
experiments. Each type of experiment present in this table was repeated ten times using
different random seeds, and the mean and standard deviation values relative to the fitness
function and sensors information obtained from these experiments were calculated.

The first column indicates the experiment identification, the fifth and sixth columns
show, respectively, the mean and the standard deviation of the fitness (F ), the seventh and
the eighth columns show the mean and the standard deviation of the distance covered by the
robot (D) in meters and the last two columns show the mean and the standard deviation of
the robot instability measure (G). The Figure 3 shows the boxplot graphic of all experiments,
the Figure 4(a) shows the boxplot of the TetraL3J experiments (Exp 3, 7, 9 and 11) and the
Figure 4(b) shows the boxplot of the TetraL2J experiments (Exp 8, 8, 10 and 12).

From the observed results presented in Table 4 and the fitness distributions of the
Figure 3, we can reach to the following conclusions:

• Six legged robots are faster than four legged robots;
• Six legged robots without paws are a little bit faster than equivalent robots with paws;
• Four legged robots without paws did not achieve a satisfactory displacement;
• Although not significant statistically, the experiments using the FSM angles table were

a little bit more efficient than the others;

10 RITA • Volume XVI • Número 1 • 2007



Evolving Gait Control of Physically Based Simulated Robots

Table 4. Results obtained in the simulations
F D G

Exp Gait Method Robot µ σ µ σ µ σ
01 HexaL3J Angles Trot 4.364 0.850 6.894 1.026 0.600 0.182
02 HexaL2J Angles Trot 4.453 0.555 7.067 0.952 0.591 0.144
03 TetraL3J Angles Trot 2.618 0.804 3.831 0.938 0.502 0.222
04 TetraL2J Angles Trot 1.830 0.725 3.301 0.789 0.912 0.372
05 HexaL3J Locus Trot 3.450 0.361 5.720 0.559 0.665 0.152
06 HexaL2J Locus Trot 2.957 0.332 4.548 0.662 0.542 0.179
07 TetraL3J Locus Trot 1.509 0.512 2.327 0.773 0.547 0.166
08 TetraL2J Locus Trot 0.992 0.366 2.013 0.696 1.040 0.315
09 HexaL3J Ellipse Trot 1.801 0.430 2.435 0.579 0.359 0.107
10 HexaL2J Ellipse Trot 0.478 0.230 0.763 0.396 0.557 0.183
11 TetraL3J Ellipse Walk 1.493 0.480 2.174 0.763 0.447 0.106
12 TetraL2J Ellipse Walk 0.462 0.221 0.801 0.378 0.763 0.402

• The trot gait is faster than the walk gait, remaining as stable as in the walk gait.

The first conclusion is quite logical since the six legged robots have static stability
in the trot, allowing to obtain faster velocities without falling risks. The second and third
conclusions show that six legged robots don’t need paws, but the four legged robots need
them, and this is also results from the fact that six legged robots are more stable. The fourth
conclusion demonstrates the good performance of experiments based on the FSM angles
table, which can be due to the difficulties to calculate inverse kinematics in real time, and also
because the endpoints sometimes do not follow exactly the planned trajectory (as observed in
some simulations). The last conclusion shows that the use of the trot in the four legged robots
with paws generates a stable gait, but not in the four legged robot without paws, showing the
importance of the stability in gait control.

The Figure 5(a) show the evolution and the relationship between the fitness and the
number of generations in a experiment. The bright points (not filled) show the best fitness
values for each generation, and the dark points (filled) show the mean fitness values of the
population for each generation. The Figure 5(b) shows the relationship between instability
and velocity in the experiments accomplished using the TetraL3J robot.

We observed in the Figure 5(b) that an interesting relationship between velocity and
instability exists. The population evolution emerged two separated groups (main diagonals
in Figure 5(b)) that are both capable of moving across long distances, but one group assures
a good stability of their movements, and the other group don’t. This suggest we can obtain
very stable solutions and solutions that remain under control.

RITA • Volume XVI • Número 1 • 2007 11



Evolving Gait Control of Physically Based Simulated Robots

Figure 3. Boxplot of the all experiments

The main goal of our optimization search GA algorithm was to obtain control solutions
with the lowest possible instability (solutions points close to the x axis) and with the greater
possible distance coverage (solution points far from the y axis), in order to maximize the
velocity and to minimize the instability. The Figure 5(b) shows that we achieved that goal
and also obtained unstable good solutions. The Figure 6(a) shows the gait control simulation
of a TetraL3J robot, and the Figure 6(b) shows the gait control simulation of a HexaL2J
robot6.

8 Conclusions and Perspectives

Based on the performed experiments, we observed that six legged robots are able
to move faster than other robots, using very small or even no paws, like it occurs in the
nature with some Arthropods: Insects and Arachnids are very fast animals if we consider
the covered distances related to their small size, and the number of legs seems also to play
and important role related to their movement skills. In four legged robots with paws, we
observed through our simulations that endpoints with a larger support surface are necessary

6Some videos of accomplished experiments are available in http://www.inf.unisinos.br/~osorio/leggen/

12 RITA • Volume XVI • Número 1 • 2007



Evolving Gait Control of Physically Based Simulated Robots

(a) (b)

Figure 4. Boxplot of the some experiments

for a stable gait, and again it is interesting to try to make a parallel between our physically
based and biologically inspired evolved robots and the real animals present in the nature. We
also concluded that both robot models, the 6 legs with 2 joints and no paws robot and the 4
legs with 3 joints including the paws, are possible and viable configurations to be adopted in
a physical construction of a real robot, and also our control gait system implementation can
achieve a good performance and can provide a stable gait control.

In relation to the gait type, the trot is a quite efficient gait, including for the four
legged robots with paws. On the other side, if we consider the modeling of the gait style
(gait control method), the differences between the three implemented methods are not very
significant, but we consider that the FSM angles table was more efficient and robust than
the other two approaches, being chose to be adopted in our future research. The use of half
ellipse trajectory didn’t made the learning easier, nor the incorporation of this knowledge in
the model. Besides that, the inverse kinematics method based on a half ellipse didn’t help us
to obtain a more generalized gait control. For more information about the LegGen simulator,

RITA • Volume XVI • Número 1 • 2007 13



Evolving Gait Control of Physically Based Simulated Robots

(a) Generations x Fitness (b) Velocity x Instability

Figure 5. Fitness evolution

results and recent research please refer to this work [11].

The perspectives of this work includes to adapt gait control in order to make possible
control robots moving over irregular surfaces and to climb and to descend the stairs, as well
as this work will help us in the physical robot construction based on the specifications of our
best learned models. The real robot implementation created from a virtual model will help us
to validate the control system in real conditions.

References

[1] G. A. Bekey. Autonomous Robots: From Biological Inspiration to Implementation and Control.
MIT Press, Cambridge, MA, 2005.

[2] J. C. Bongard and R. Pfeifer. A method for isolating morphological effects on evolved behaviour.
In Proc. 7th Int. Conf. Simulation of Adaptive Behaviour (SAB), pages 305–311, Edinburgh, UK,
Aug. 2002. MIT Press.

[3] R. P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs,
NJ, 1973.

[4] J. Busch, J. Ziegler, C. Aue, A. Ross, D. Sawitzki, and W. Banzhaf. Automatic generation of
control programs for walking robots using genetic programming. In Proc. 5th European Conf.
Genetic Programming (EuroGP), volume 2278 of LNCS, pages 258–267, Kinsale, Ireland, Apr.
2002. Springer-Verlag.

[5] S. Chernova and M. Veloso. An evolutionary approach to gait learning for four-legged robots. In
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Sendai, Japan, Sept. 2004.

14 RITA • Volume XVI • Número 1 • 2007



Evolving Gait Control of Physically Based Simulated Robots

(a) TetraL3J gait

(b) HexaL2J gait

Figure 6. Examples of evolved gaits

[6] C. Darwin. Origin of Species. John Murray, London, UK, 1859.
[7] G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics. Cambridge Univ. Press,

Cambridge, UK, 2000.
[8] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-

Wesley, Reading, MA, 1989.
[9] D. Golubovic and H. Hu. Ga-based gait generation of sony quadruped robots. In Proc. 3th

IASTED Int. Conf. Artificial Intelligence and Applications (AIA), Benalmadena, Spain, Sept.
2003.

[10] F. J. Heinen and F. S. Osório. HyCAR - a robust hybrid control architecture for autonomous
robots. In Proc. Hybrid Intelligent Systems (HIS), volume 87, pages 830–840, Santiago, Chile,
2002. IOS Press.

RITA • Volume XVI • Número 1 • 2007 15



Evolving Gait Control of Physically Based Simulated Robots

[11] M. R. Heinen. Controle inteligente do caminhar de robôs móveis simulados. Master’s thesis
- applied computing, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS,
Brazil, 2007.

[12] M. R. Heinen and F. S. Osório. Applying genetic algorithms to control gait of physically based
simulated robots. In Proc. IEEE Congr. Evolutionary Computation (CEC), Vancouver, Canada,
July 2006.

[13] M. R. Heinen and F. S. Osório. Gait control generation for physically based simulated robots
using genetic algorithms. In Proc. Int. Joint Conf. 2006, 10th Ibero-American Conference on AI
(IBERAMIA), 18th Brazilian Symposium on AI (SBIA), LNCS, Ribeirão Preto - SP, Brazil, Oct.
2006. Springer-Verlag.

[14] M. R. Heinen and F. S. Osório. Uso de algoritmos genéticos para a configuração automática do
caminhar em robôs móveis. In Anais do Encontro de Robótica Inteligente (EnRI), Campo grande,
MS, Brazil, July 2006.

[15] J. H. Holland. Adaptation in Natural and Artificial Systems. Univ. Michigan Press, Ann Arbor,
MI, 1975.

[16] D. Jacob, D. Polani, and C. L. Nehaniv. Legs than can walk: Embodiment-based modular re-
inforcement learning applied. In Proc. IEEE Int. Symposium on Computational Intelligence in
Robotics and Automation (CIRA), pages 365–372, Espoo, Finland, June 2005.

[17] C. Kelber, C. R. Jung, F. S. Osório, and F. J. Heinen. Electrical drives in intelligent vehicles:
Basis for active driver assistance systems. In Proc. IEEE Int. Symposium on Industrial Electronics
(ISIE), volume 4, pages 1623–1628, Dubrovnik, Croatia, 2005.

[18] R. Knight and U. Nehmzow. Walking robots - a survey and a research proposal. Technical Report
CSM-375, Univ. Essex, Essex, UK, 2002.

[19] N. Kohl and P. Stone. Policy gradient reinforcement learning for fast quadrupedal locomotion.
In Proc. IEEE Int. Conf. Robotics and Automation (ICRA), pages 2619–2624, New Orleans, LA,
Apr. 2004.

[20] M. A. Lewis, A. H. Fagg, and A. Solidum. Genetic programming approach to the construction of
a neural network for control of a walking robot. In Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), pages 2618–2623, Nice, France, 1992.

[21] R. B. McGhee. Robot locomotion. Neural Control of Locomotion, pages 237–264, 1976.
[22] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, 1996.
[23] T. Mitchell. Machine Learning. McGrall-Hill, New York, 1997.
[24] F. S. Osório, S. R. Musse, R. Vieira, M. R. Heinen, and D. C. Paiva. Increasing Reality in

Virtual Reality Applications through Physical and Behavioural Simulation, volume 2, pages 1–
45. Springer-Verlag, Berlin, Germany, 2006.

[25] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The
Art of Scientific Computing. Cambridge Univ. Press, Cambridge, MA, 1992.

[26] M. H. Raibert. Legged Robots That Balance. MIT Press, Cambridge, MA, 1986.
[27] R. Reeve and J. Hallam. An analysis of neural models for walking control. IEEE Trans. Neural

Networks, 16(3):733–742, May 2005.
[28] G. Wyeth, D. Kee, and T. F. Yik. Evolving a locus based gait for a humanoid robot. In Proc.

IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), volume 2, pages 1638–1643, Las
Vegas, NV, Oct. 2003.

16 RITA • Volume XVI • Número 1 • 2007


